// -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with this library; see the file COPYING. If not, write to // the Free Software Foundation, 51 Franklin Street, Fifth Floor, // Boston, MA 02110-1301, USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * Copyright (c) 1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file include/bitset * This is a Standard C++ Library header. */ #ifndef _GLIBCXX_BITSET #define _GLIBCXX_BITSET 1 #pragma GCC system_header #include // For size_t #include #include // For invalid_argument, out_of_range, // overflow_error #include #include #define _GLIBCXX_BITSET_BITS_PER_WORD (__CHAR_BIT__ * sizeof(unsigned long)) #define _GLIBCXX_BITSET_WORDS(__n) \ ((__n) < 1 ? 0 : ((__n) + _GLIBCXX_BITSET_BITS_PER_WORD - 1) \ / _GLIBCXX_BITSET_BITS_PER_WORD) _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) /** * Base class, general case. It is a class invariant that _Nw will be * nonnegative. * * See documentation for bitset. */ template struct _Base_bitset { typedef unsigned long _WordT; /// 0 is the least significant word. _WordT _M_w[_Nw]; _Base_bitset() { _M_do_reset(); } _Base_bitset(unsigned long __val) { _M_do_reset(); _M_w[0] = __val; } static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } _WordT& _M_getword(size_t __pos) { return _M_w[_S_whichword(__pos)]; } _WordT _M_getword(size_t __pos) const { return _M_w[_S_whichword(__pos)]; } _WordT& _M_hiword() { return _M_w[_Nw - 1]; } _WordT _M_hiword() const { return _M_w[_Nw - 1]; } void _M_do_and(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] &= __x._M_w[__i]; } void _M_do_or(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] |= __x._M_w[__i]; } void _M_do_xor(const _Base_bitset<_Nw>& __x) { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] ^= __x._M_w[__i]; } void _M_do_left_shift(size_t __shift); void _M_do_right_shift(size_t __shift); void _M_do_flip() { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] = ~_M_w[__i]; } void _M_do_set() { for (size_t __i = 0; __i < _Nw; __i++) _M_w[__i] = ~static_cast<_WordT>(0); } void _M_do_reset() { __builtin_memset(_M_w, 0, _Nw * sizeof(_WordT)); } bool _M_is_equal(const _Base_bitset<_Nw>& __x) const { for (size_t __i = 0; __i < _Nw; ++__i) if (_M_w[__i] != __x._M_w[__i]) return false; return true; } size_t _M_are_all_aux() const { for (size_t __i = 0; __i < _Nw - 1; __i++) if (_M_w[__i] != ~static_cast<_WordT>(0)) return 0; return ((_Nw - 1) * _GLIBCXX_BITSET_BITS_PER_WORD + __builtin_popcountl(_M_hiword())); } bool _M_is_any() const { for (size_t __i = 0; __i < _Nw; __i++) if (_M_w[__i] != static_cast<_WordT>(0)) return true; return false; } size_t _M_do_count() const { size_t __result = 0; for (size_t __i = 0; __i < _Nw; __i++) __result += __builtin_popcountl(_M_w[__i]); return __result; } unsigned long _M_do_to_ulong() const; // find first "on" bit size_t _M_do_find_first(size_t __not_found) const; // find the next "on" bit that follows "prev" size_t _M_do_find_next(size_t __prev, size_t __not_found) const; }; // Definitions of non-inline functions from _Base_bitset. template void _Base_bitset<_Nw>::_M_do_left_shift(size_t __shift) { if (__builtin_expect(__shift != 0, 1)) { const size_t __wshift = __shift / _GLIBCXX_BITSET_BITS_PER_WORD; const size_t __offset = __shift % _GLIBCXX_BITSET_BITS_PER_WORD; if (__offset == 0) for (size_t __n = _Nw - 1; __n >= __wshift; --__n) _M_w[__n] = _M_w[__n - __wshift]; else { const size_t __sub_offset = (_GLIBCXX_BITSET_BITS_PER_WORD - __offset); for (size_t __n = _Nw - 1; __n > __wshift; --__n) _M_w[__n] = ((_M_w[__n - __wshift] << __offset) | (_M_w[__n - __wshift - 1] >> __sub_offset)); _M_w[__wshift] = _M_w[0] << __offset; } std::fill(_M_w + 0, _M_w + __wshift, static_cast<_WordT>(0)); } } template void _Base_bitset<_Nw>::_M_do_right_shift(size_t __shift) { if (__builtin_expect(__shift != 0, 1)) { const size_t __wshift = __shift / _GLIBCXX_BITSET_BITS_PER_WORD; const size_t __offset = __shift % _GLIBCXX_BITSET_BITS_PER_WORD; const size_t __limit = _Nw - __wshift - 1; if (__offset == 0) for (size_t __n = 0; __n <= __limit; ++__n) _M_w[__n] = _M_w[__n + __wshift]; else { const size_t __sub_offset = (_GLIBCXX_BITSET_BITS_PER_WORD - __offset); for (size_t __n = 0; __n < __limit; ++__n) _M_w[__n] = ((_M_w[__n + __wshift] >> __offset) | (_M_w[__n + __wshift + 1] << __sub_offset)); _M_w[__limit] = _M_w[_Nw-1] >> __offset; } std::fill(_M_w + __limit + 1, _M_w + _Nw, static_cast<_WordT>(0)); } } template unsigned long _Base_bitset<_Nw>::_M_do_to_ulong() const { for (size_t __i = 1; __i < _Nw; ++__i) if (_M_w[__i]) __throw_overflow_error(__N("_Base_bitset::_M_do_to_ulong")); return _M_w[0]; } template size_t _Base_bitset<_Nw>::_M_do_find_first(size_t __not_found) const { for (size_t __i = 0; __i < _Nw; __i++) { _WordT __thisword = _M_w[__i]; if (__thisword != static_cast<_WordT>(0)) return (__i * _GLIBCXX_BITSET_BITS_PER_WORD + __builtin_ctzl(__thisword)); } // not found, so return an indication of failure. return __not_found; } template size_t _Base_bitset<_Nw>::_M_do_find_next(size_t __prev, size_t __not_found) const { // make bound inclusive ++__prev; // check out of bounds if (__prev >= _Nw * _GLIBCXX_BITSET_BITS_PER_WORD) return __not_found; // search first word size_t __i = _S_whichword(__prev); _WordT __thisword = _M_w[__i]; // mask off bits below bound __thisword &= (~static_cast<_WordT>(0)) << _S_whichbit(__prev); if (__thisword != static_cast<_WordT>(0)) return (__i * _GLIBCXX_BITSET_BITS_PER_WORD + __builtin_ctzl(__thisword)); // check subsequent words __i++; for (; __i < _Nw; __i++) { __thisword = _M_w[__i]; if (__thisword != static_cast<_WordT>(0)) return (__i * _GLIBCXX_BITSET_BITS_PER_WORD + __builtin_ctzl(__thisword)); } // not found, so return an indication of failure. return __not_found; } // end _M_do_find_next /** * Base class, specialization for a single word. * * See documentation for bitset. */ template<> struct _Base_bitset<1> { typedef unsigned long _WordT; _WordT _M_w; _Base_bitset(void) : _M_w(0) { } _Base_bitset(unsigned long __val) : _M_w(__val) { } static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } _WordT& _M_getword(size_t) { return _M_w; } _WordT _M_getword(size_t) const { return _M_w; } _WordT& _M_hiword() { return _M_w; } _WordT _M_hiword() const { return _M_w; } void _M_do_and(const _Base_bitset<1>& __x) { _M_w &= __x._M_w; } void _M_do_or(const _Base_bitset<1>& __x) { _M_w |= __x._M_w; } void _M_do_xor(const _Base_bitset<1>& __x) { _M_w ^= __x._M_w; } void _M_do_left_shift(size_t __shift) { _M_w <<= __shift; } void _M_do_right_shift(size_t __shift) { _M_w >>= __shift; } void _M_do_flip() { _M_w = ~_M_w; } void _M_do_set() { _M_w = ~static_cast<_WordT>(0); } void _M_do_reset() { _M_w = 0; } bool _M_is_equal(const _Base_bitset<1>& __x) const { return _M_w == __x._M_w; } size_t _M_are_all_aux() const { return __builtin_popcountl(_M_w); } bool _M_is_any() const { return _M_w != 0; } size_t _M_do_count() const { return __builtin_popcountl(_M_w); } unsigned long _M_do_to_ulong() const { return _M_w; } size_t _M_do_find_first(size_t __not_found) const { if (_M_w != 0) return __builtin_ctzl(_M_w); else return __not_found; } // find the next "on" bit that follows "prev" size_t _M_do_find_next(size_t __prev, size_t __not_found) const { ++__prev; if (__prev >= ((size_t) _GLIBCXX_BITSET_BITS_PER_WORD)) return __not_found; _WordT __x = _M_w >> __prev; if (__x != 0) return __builtin_ctzl(__x) + __prev; else return __not_found; } }; /** * Base class, specialization for no storage (zero-length %bitset). * * See documentation for bitset. */ template<> struct _Base_bitset<0> { typedef unsigned long _WordT; _Base_bitset() { } _Base_bitset(unsigned long) { } static size_t _S_whichword(size_t __pos ) { return __pos / _GLIBCXX_BITSET_BITS_PER_WORD; } static size_t _S_whichbyte(size_t __pos ) { return (__pos % _GLIBCXX_BITSET_BITS_PER_WORD) / __CHAR_BIT__; } static size_t _S_whichbit(size_t __pos ) { return __pos % _GLIBCXX_BITSET_BITS_PER_WORD; } static _WordT _S_maskbit(size_t __pos ) { return (static_cast<_WordT>(1)) << _S_whichbit(__pos); } // This would normally give access to the data. The bounds-checking // in the bitset class will prevent the user from getting this far, // but (1) it must still return an lvalue to compile, and (2) the // user might call _Unchecked_set directly, in which case this /needs/ // to fail. Let's not penalize zero-length users unless they actually // make an unchecked call; all the memory ugliness is therefore // localized to this single should-never-get-this-far function. _WordT& _M_getword(size_t) const { __throw_out_of_range(__N("_Base_bitset::_M_getword")); return *new _WordT; } _WordT _M_hiword() const { return 0; } void _M_do_and(const _Base_bitset<0>&) { } void _M_do_or(const _Base_bitset<0>&) { } void _M_do_xor(const _Base_bitset<0>&) { } void _M_do_left_shift(size_t) { } void _M_do_right_shift(size_t) { } void _M_do_flip() { } void _M_do_set() { } void _M_do_reset() { } // Are all empty bitsets equal to each other? Are they equal to // themselves? How to compare a thing which has no state? What is // the sound of one zero-length bitset clapping? bool _M_is_equal(const _Base_bitset<0>&) const { return true; } size_t _M_are_all_aux() const { return 0; } bool _M_is_any() const { return false; } size_t _M_do_count() const { return 0; } unsigned long _M_do_to_ulong() const { return 0; } // Normally "not found" is the size, but that could also be // misinterpreted as an index in this corner case. Oh well. size_t _M_do_find_first(size_t) const { return 0; } size_t _M_do_find_next(size_t, size_t) const { return 0; } }; // Helper class to zero out the unused high-order bits in the highest word. template struct _Sanitize { static void _S_do_sanitize(unsigned long& __val) { __val &= ~((~static_cast(0)) << _Extrabits); } }; template<> struct _Sanitize<0> { static void _S_do_sanitize(unsigned long) {} }; /** * @brief The %bitset class represents a @e fixed-size sequence of bits. * * @ingroup Containers * * (Note that %bitset does @e not meet the formal requirements of a * container. Mainly, it lacks iterators.) * * The template argument, @a Nb, may be any non-negative number, * specifying the number of bits (e.g., "0", "12", "1024*1024"). * * In the general unoptimized case, storage is allocated in word-sized * blocks. Let B be the number of bits in a word, then (Nb+(B-1))/B * words will be used for storage. B - Nb%B bits are unused. (They are * the high-order bits in the highest word.) It is a class invariant * that those unused bits are always zero. * * If you think of %bitset as "a simple array of bits," be aware that * your mental picture is reversed: a %bitset behaves the same way as * bits in integers do, with the bit at index 0 in the "least significant * / right-hand" position, and the bit at index Nb-1 in the "most * significant / left-hand" position. Thus, unlike other containers, a * %bitset's index "counts from right to left," to put it very loosely. * * This behavior is preserved when translating to and from strings. For * example, the first line of the following program probably prints * "b('a') is 0001100001" on a modern ASCII system. * * @code * #include * #include * #include * * using namespace std; * * int main() * { * long a = 'a'; * bitset<10> b(a); * * cout << "b('a') is " << b << endl; * * ostringstream s; * s << b; * string str = s.str(); * cout << "index 3 in the string is " << str[3] << " but\n" * << "index 3 in the bitset is " << b[3] << endl; * } * @endcode * * Also see: * http://gcc.gnu.org/onlinedocs/libstdc++/manual/bk01pt12ch33s02.html * for a description of extensions. * * Most of the actual code isn't contained in %bitset<> itself, but in the * base class _Base_bitset. The base class works with whole words, not with * individual bits. This allows us to specialize _Base_bitset for the * important special case where the %bitset is only a single word. * * Extra confusion can result due to the fact that the storage for * _Base_bitset @e is a regular array, and is indexed as such. This is * carefully encapsulated. */ template class bitset : private _Base_bitset<_GLIBCXX_BITSET_WORDS(_Nb)> { private: typedef _Base_bitset<_GLIBCXX_BITSET_WORDS(_Nb)> _Base; typedef unsigned long _WordT; void _M_do_sanitize() { _Sanitize<_Nb % _GLIBCXX_BITSET_BITS_PER_WORD>:: _S_do_sanitize(this->_M_hiword()); } public: /** * This encapsulates the concept of a single bit. An instance of this * class is a proxy for an actual bit; this way the individual bit * operations are done as faster word-size bitwise instructions. * * Most users will never need to use this class directly; conversions * to and from bool are automatic and should be transparent. Overloaded * operators help to preserve the illusion. * * (On a typical system, this "bit %reference" is 64 times the size of * an actual bit. Ha.) */ class reference { friend class bitset; _WordT *_M_wp; size_t _M_bpos; // left undefined reference(); public: reference(bitset& __b, size_t __pos) { _M_wp = &__b._M_getword(__pos); _M_bpos = _Base::_S_whichbit(__pos); } ~reference() { } // For b[i] = __x; reference& operator=(bool __x) { if (__x) *_M_wp |= _Base::_S_maskbit(_M_bpos); else *_M_wp &= ~_Base::_S_maskbit(_M_bpos); return *this; } // For b[i] = b[__j]; reference& operator=(const reference& __j) { if ((*(__j._M_wp) & _Base::_S_maskbit(__j._M_bpos))) *_M_wp |= _Base::_S_maskbit(_M_bpos); else *_M_wp &= ~_Base::_S_maskbit(_M_bpos); return *this; } // Flips the bit bool operator~() const { return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) == 0; } // For __x = b[i]; operator bool() const { return (*(_M_wp) & _Base::_S_maskbit(_M_bpos)) != 0; } // For b[i].flip(); reference& flip() { *_M_wp ^= _Base::_S_maskbit(_M_bpos); return *this; } }; friend class reference; // 23.3.5.1 constructors: /// All bits set to zero. bitset() { } /// Initial bits bitwise-copied from a single word (others set to zero). bitset(unsigned long __val) : _Base(__val) { _M_do_sanitize(); } /** * @brief Use a subset of a string. * @param s A string of '0' and '1' characters. * @param position Index of the first character in @a s to use; * defaults to zero. * @throw std::out_of_range If @a pos is bigger the size of @a s. * @throw std::invalid_argument If a character appears in the string * which is neither '0' nor '1'. */ template explicit bitset(const std::basic_string<_CharT, _Traits, _Alloc>& __s, size_t __position = 0) : _Base() { if (__position > __s.size()) __throw_out_of_range(__N("bitset::bitset initial position " "not valid")); _M_copy_from_string(__s, __position, std::basic_string<_CharT, _Traits, _Alloc>::npos, _CharT('0'), _CharT('1')); } /** * @brief Use a subset of a string. * @param s A string of '0' and '1' characters. * @param position Index of the first character in @a s to use. * @param n The number of characters to copy. * @throw std::out_of_range If @a pos is bigger the size of @a s. * @throw std::invalid_argument If a character appears in the string * which is neither '0' nor '1'. */ template bitset(const std::basic_string<_CharT, _Traits, _Alloc>& __s, size_t __position, size_t __n) : _Base() { if (__position > __s.size()) __throw_out_of_range(__N("bitset::bitset initial position " "not valid")); _M_copy_from_string(__s, __position, __n, _CharT('0'), _CharT('1')); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 396. what are characters zero and one. template bitset(const std::basic_string<_CharT, _Traits, _Alloc>& __s, size_t __position, size_t __n, _CharT __zero, _CharT __one = _CharT('1')) : _Base() { if (__position > __s.size()) __throw_out_of_range(__N("bitset::bitset initial position " "not valid")); _M_copy_from_string(__s, __position, __n, __zero, __one); } // 23.3.5.2 bitset operations: //@{ /** * @brief Operations on bitsets. * @param rhs A same-sized bitset. * * These should be self-explanatory. */ bitset<_Nb>& operator&=(const bitset<_Nb>& __rhs) { this->_M_do_and(__rhs); return *this; } bitset<_Nb>& operator|=(const bitset<_Nb>& __rhs) { this->_M_do_or(__rhs); return *this; } bitset<_Nb>& operator^=(const bitset<_Nb>& __rhs) { this->_M_do_xor(__rhs); return *this; } //@} //@{ /** * @brief Operations on bitsets. * @param position The number of places to shift. * * These should be self-explanatory. */ bitset<_Nb>& operator<<=(size_t __position) { if (__builtin_expect(__position < _Nb, 1)) { this->_M_do_left_shift(__position); this->_M_do_sanitize(); } else this->_M_do_reset(); return *this; } bitset<_Nb>& operator>>=(size_t __position) { if (__builtin_expect(__position < _Nb, 1)) { this->_M_do_right_shift(__position); this->_M_do_sanitize(); } else this->_M_do_reset(); return *this; } //@} //@{ /** * These versions of single-bit set, reset, flip, and test are * extensions from the SGI version. They do no range checking. * @ingroup SGIextensions */ bitset<_Nb>& _Unchecked_set(size_t __pos) { this->_M_getword(__pos) |= _Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_set(size_t __pos, int __val) { if (__val) this->_M_getword(__pos) |= _Base::_S_maskbit(__pos); else this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_reset(size_t __pos) { this->_M_getword(__pos) &= ~_Base::_S_maskbit(__pos); return *this; } bitset<_Nb>& _Unchecked_flip(size_t __pos) { this->_M_getword(__pos) ^= _Base::_S_maskbit(__pos); return *this; } bool _Unchecked_test(size_t __pos) const { return ((this->_M_getword(__pos) & _Base::_S_maskbit(__pos)) != static_cast<_WordT>(0)); } //@} // Set, reset, and flip. /** * @brief Sets every bit to true. */ bitset<_Nb>& set() { this->_M_do_set(); this->_M_do_sanitize(); return *this; } /** * @brief Sets a given bit to a particular value. * @param position The index of the bit. * @param val Either true or false, defaults to true. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bitset<_Nb>& set(size_t __position, bool __val = true) { if (__position >= _Nb) __throw_out_of_range(__N("bitset::set")); return _Unchecked_set(__position, __val); } /** * @brief Sets every bit to false. */ bitset<_Nb>& reset() { this->_M_do_reset(); return *this; } /** * @brief Sets a given bit to false. * @param position The index of the bit. * @throw std::out_of_range If @a pos is bigger the size of the %set. * * Same as writing @c set(pos,false). */ bitset<_Nb>& reset(size_t __position) { if (__position >= _Nb) __throw_out_of_range(__N("bitset::reset")); return _Unchecked_reset(__position); } /** * @brief Toggles every bit to its opposite value. */ bitset<_Nb>& flip() { this->_M_do_flip(); this->_M_do_sanitize(); return *this; } /** * @brief Toggles a given bit to its opposite value. * @param position The index of the bit. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bitset<_Nb>& flip(size_t __position) { if (__position >= _Nb) __throw_out_of_range(__N("bitset::flip")); return _Unchecked_flip(__position); } /// See the no-argument flip(). bitset<_Nb> operator~() const { return bitset<_Nb>(*this).flip(); } //@{ /** * @brief Array-indexing support. * @param position Index into the %bitset. * @return A bool for a 'const %bitset'. For non-const bitsets, an * instance of the reference proxy class. * @note These operators do no range checking and throw no exceptions, * as required by DR 11 to the standard. * * _GLIBCXX_RESOLVE_LIB_DEFECTS Note that this implementation already * resolves DR 11 (items 1 and 2), but does not do the range-checking * required by that DR's resolution. -pme * The DR has since been changed: range-checking is a precondition * (users' responsibility), and these functions must not throw. -pme */ reference operator[](size_t __position) { return reference(*this,__position); } bool operator[](size_t __position) const { return _Unchecked_test(__position); } //@} /** * @brief Returns a numerical interpretation of the %bitset. * @return The integral equivalent of the bits. * @throw std::overflow_error If there are too many bits to be * represented in an @c unsigned @c long. */ unsigned long to_ulong() const { return this->_M_do_to_ulong(); } /** * @brief Returns a character interpretation of the %bitset. * @return The string equivalent of the bits. * * Note the ordering of the bits: decreasing character positions * correspond to increasing bit positions (see the main class notes for * an example). */ template std::basic_string<_CharT, _Traits, _Alloc> to_string() const { std::basic_string<_CharT, _Traits, _Alloc> __result; _M_copy_to_string(__result, _CharT('0'), _CharT('1')); return __result; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 396. what are characters zero and one. template std::basic_string<_CharT, _Traits, _Alloc> to_string(_CharT __zero, _CharT __one = _CharT('1')) const { std::basic_string<_CharT, _Traits, _Alloc> __result; _M_copy_to_string(__result, __zero, __one); return __result; } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 434. bitset::to_string() hard to use. template std::basic_string<_CharT, _Traits, std::allocator<_CharT> > to_string() const { return to_string<_CharT, _Traits, std::allocator<_CharT> >(); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // 853. to_string needs updating with zero and one. template std::basic_string<_CharT, _Traits, std::allocator<_CharT> > to_string(_CharT __zero, _CharT __one = _CharT('1')) const { return to_string<_CharT, _Traits, std::allocator<_CharT> >(__zero, __one); } template std::basic_string<_CharT, std::char_traits<_CharT>, std::allocator<_CharT> > to_string() const { return to_string<_CharT, std::char_traits<_CharT>, std::allocator<_CharT> >(); } template std::basic_string<_CharT, std::char_traits<_CharT>, std::allocator<_CharT> > to_string(_CharT __zero, _CharT __one = _CharT('1')) const { return to_string<_CharT, std::char_traits<_CharT>, std::allocator<_CharT> >(__zero, __one); } std::basic_string, std::allocator > to_string() const { return to_string, std::allocator >(); } std::basic_string, std::allocator > to_string(char __zero, char __one = '1') const { return to_string, std::allocator >(__zero, __one); } // Helper functions for string operations. template void _M_copy_from_ptr(const _CharT*, size_t, size_t, size_t, _CharT, _CharT); template void _M_copy_from_string(const std::basic_string<_CharT, _Traits, _Alloc>& __s, size_t __pos, size_t __n, _CharT __zero, _CharT __one) { _M_copy_from_ptr<_CharT, _Traits>(__s.data(), __s.size(), __pos, __n, __zero, __one); } template void _M_copy_to_string(std::basic_string<_CharT, _Traits, _Alloc>&, _CharT, _CharT) const; // NB: Backward compat. template void _M_copy_from_string(const std::basic_string<_CharT, _Traits, _Alloc>& __s, size_t __pos, size_t __n) { _M_copy_from_string(__s, __pos, __n, _CharT('0'), _CharT('1')); } template void _M_copy_to_string(std::basic_string<_CharT, _Traits,_Alloc>& __s) const { _M_copy_to_string(__s, _CharT('0'), _CharT('1')); } /// Returns the number of bits which are set. size_t count() const { return this->_M_do_count(); } /// Returns the total number of bits. size_t size() const { return _Nb; } //@{ /// These comparisons for equality/inequality are, well, @e bitwise. bool operator==(const bitset<_Nb>& __rhs) const { return this->_M_is_equal(__rhs); } bool operator!=(const bitset<_Nb>& __rhs) const { return !this->_M_is_equal(__rhs); } //@} /** * @brief Tests the value of a bit. * @param position The index of a bit. * @return The value at @a pos. * @throw std::out_of_range If @a pos is bigger the size of the %set. */ bool test(size_t __position) const { if (__position >= _Nb) __throw_out_of_range(__N("bitset::test")); return _Unchecked_test(__position); } // _GLIBCXX_RESOLVE_LIB_DEFECTS // DR 693. std::bitset::all() missing. /** * @brief Tests whether all the bits are on. * @return True if all the bits are set. */ bool all() const { return this->_M_are_all_aux() == _Nb; } /** * @brief Tests whether any of the bits are on. * @return True if at least one bit is set. */ bool any() const { return this->_M_is_any(); } /** * @brief Tests whether any of the bits are on. * @return True if none of the bits are set. */ bool none() const { return !this->_M_is_any(); } //@{ /// Self-explanatory. bitset<_Nb> operator<<(size_t __position) const { return bitset<_Nb>(*this) <<= __position; } bitset<_Nb> operator>>(size_t __position) const { return bitset<_Nb>(*this) >>= __position; } //@} /** * @brief Finds the index of the first "on" bit. * @return The index of the first bit set, or size() if not found. * @ingroup SGIextensions * @sa _Find_next */ size_t _Find_first() const { return this->_M_do_find_first(_Nb); } /** * @brief Finds the index of the next "on" bit after prev. * @return The index of the next bit set, or size() if not found. * @param prev Where to start searching. * @ingroup SGIextensions * @sa _Find_first */ size_t _Find_next(size_t __prev ) const { return this->_M_do_find_next(__prev, _Nb); } }; // Definitions of non-inline member functions. template template void bitset<_Nb>:: _M_copy_from_ptr(const _CharT* __s, size_t __len, size_t __pos, size_t __n, _CharT __zero, _CharT __one) { reset(); const size_t __nbits = std::min(_Nb, std::min(__n, __len - __pos)); for (size_t __i = __nbits; __i > 0; --__i) { const _CharT __c = __s[__pos + __nbits - __i]; if (_Traits::eq(__c, __zero)) ; else if (_Traits::eq(__c, __one)) _Unchecked_set(__i - 1); else __throw_invalid_argument(__N("bitset::_M_copy_from_ptr")); } } template template void bitset<_Nb>:: _M_copy_to_string(std::basic_string<_CharT, _Traits, _Alloc>& __s, _CharT __zero, _CharT __one) const { __s.assign(_Nb, __zero); for (size_t __i = _Nb; __i > 0; --__i) if (_Unchecked_test(__i - 1)) _Traits::assign(__s[_Nb - __i], __one); } // 23.3.5.3 bitset operations: //@{ /** * @brief Global bitwise operations on bitsets. * @param x A bitset. * @param y A bitset of the same size as @a x. * @return A new bitset. * * These should be self-explanatory. */ template inline bitset<_Nb> operator&(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result &= __y; return __result; } template inline bitset<_Nb> operator|(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result |= __y; return __result; } template inline bitset<_Nb> operator^(const bitset<_Nb>& __x, const bitset<_Nb>& __y) { bitset<_Nb> __result(__x); __result ^= __y; return __result; } //@} //@{ /** * @brief Global I/O operators for bitsets. * * Direct I/O between streams and bitsets is supported. Output is * straightforward. Input will skip whitespace, only accept '0' and '1' * characters, and will only extract as many digits as the %bitset will * hold. */ template std::basic_istream<_CharT, _Traits>& operator>>(std::basic_istream<_CharT, _Traits>& __is, bitset<_Nb>& __x) { typedef typename _Traits::char_type char_type; typedef std::basic_istream<_CharT, _Traits> __istream_type; typedef typename __istream_type::ios_base __ios_base; std::basic_string<_CharT, _Traits> __tmp; __tmp.reserve(_Nb); // _GLIBCXX_RESOLVE_LIB_DEFECTS // 303. Bitset input operator underspecified const char_type __zero = __is.widen('0'); const char_type __one = __is.widen('1'); typename __ios_base::iostate __state = __ios_base::goodbit; typename __istream_type::sentry __sentry(__is); if (__sentry) { __try { for (size_t __i = _Nb; __i > 0; --__i) { static typename _Traits::int_type __eof = _Traits::eof(); typename _Traits::int_type __c1 = __is.rdbuf()->sbumpc(); if (_Traits::eq_int_type(__c1, __eof)) { __state |= __ios_base::eofbit; break; } else { const char_type __c2 = _Traits::to_char_type(__c1); if (_Traits::eq(__c2, __zero)) __tmp.push_back(__zero); else if (_Traits::eq(__c2, __one)) __tmp.push_back(__one); else if (_Traits:: eq_int_type(__is.rdbuf()->sputbackc(__c2), __eof)) { __state |= __ios_base::failbit; break; } } } } __catch(__cxxabiv1::__forced_unwind&) { __is._M_setstate(__ios_base::badbit); __throw_exception_again; } __catch(...) { __is._M_setstate(__ios_base::badbit); } } if (__tmp.empty() && _Nb) __state |= __ios_base::failbit; else __x._M_copy_from_string(__tmp, static_cast(0), _Nb, __zero, __one); if (__state) __is.setstate(__state); return __is; } template std::basic_ostream<_CharT, _Traits>& operator<<(std::basic_ostream<_CharT, _Traits>& __os, const bitset<_Nb>& __x) { std::basic_string<_CharT, _Traits> __tmp; // _GLIBCXX_RESOLVE_LIB_DEFECTS // 396. what are characters zero and one. const ctype<_CharT>& __ct = use_facet >(__os.getloc()); __x._M_copy_to_string(__tmp, __ct.widen('0'), __ct.widen('1')); return __os << __tmp; } //@} _GLIBCXX_END_NESTED_NAMESPACE #undef _GLIBCXX_BITSET_WORDS #undef _GLIBCXX_BITSET_BITS_PER_WORD #ifdef _GLIBCXX_DEBUG # include #endif #endif /* _GLIBCXX_BITSET */