// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Package testing provides support for automated testing of Go packages. // It is intended to be used in concert with the ``go test'' command, which automates // execution of any function of the form // func TestXxx(*testing.T) // where Xxx can be any alphanumeric string (but the first letter must not be in // [a-z]) and serves to identify the test routine. // // Within these functions, use the Error, Fail or related methods to signal failure. // // To write a new test suite, create a file whose name ends _test.go that // contains the TestXxx functions as described here. Put the file in the same // package as the one being tested. The file will be excluded from regular // package builds but will be included when the ``go test'' command is run. // For more detail, run ``go help test'' and ``go help testflag''. // // Tests and benchmarks may be skipped if not applicable with a call to // the Skip method of *T and *B: // func TestTimeConsuming(t *testing.T) { // if testing.Short() { // t.Skip("skipping test in short mode.") // } // ... // } // // Benchmarks // // Functions of the form // func BenchmarkXxx(*testing.B) // are considered benchmarks, and are executed by the "go test" command when // its -bench flag is provided. Benchmarks are run sequentially. // // For a description of the testing flags, see // https://golang.org/cmd/go/#hdr-Description_of_testing_flags. // // A sample benchmark function looks like this: // func BenchmarkHello(b *testing.B) { // for i := 0; i < b.N; i++ { // fmt.Sprintf("hello") // } // } // // The benchmark function must run the target code b.N times. // During benchmark execution, b.N is adjusted until the benchmark function lasts // long enough to be timed reliably. The output // BenchmarkHello 10000000 282 ns/op // means that the loop ran 10000000 times at a speed of 282 ns per loop. // // If a benchmark needs some expensive setup before running, the timer // may be reset: // // func BenchmarkBigLen(b *testing.B) { // big := NewBig() // b.ResetTimer() // for i := 0; i < b.N; i++ { // big.Len() // } // } // // If a benchmark needs to test performance in a parallel setting, it may use // the RunParallel helper function; such benchmarks are intended to be used with // the go test -cpu flag: // // func BenchmarkTemplateParallel(b *testing.B) { // templ := template.Must(template.New("test").Parse("Hello, {{.}}!")) // b.RunParallel(func(pb *testing.PB) { // var buf bytes.Buffer // for pb.Next() { // buf.Reset() // templ.Execute(&buf, "World") // } // }) // } // // Examples // // The package also runs and verifies example code. Example functions may // include a concluding line comment that begins with "Output:" and is compared with // the standard output of the function when the tests are run. (The comparison // ignores leading and trailing space.) These are examples of an example: // // func ExampleHello() { // fmt.Println("hello") // // Output: hello // } // // func ExampleSalutations() { // fmt.Println("hello, and") // fmt.Println("goodbye") // // Output: // // hello, and // // goodbye // } // // Example functions without output comments are compiled but not executed. // // The naming convention to declare examples for the package, a function F, a type T and // method M on type T are: // // func Example() { ... } // func ExampleF() { ... } // func ExampleT() { ... } // func ExampleT_M() { ... } // // Multiple example functions for a package/type/function/method may be provided by // appending a distinct suffix to the name. The suffix must start with a // lower-case letter. // // func Example_suffix() { ... } // func ExampleF_suffix() { ... } // func ExampleT_suffix() { ... } // func ExampleT_M_suffix() { ... } // // The entire test file is presented as the example when it contains a single // example function, at least one other function, type, variable, or constant // declaration, and no test or benchmark functions. // // Main // // It is sometimes necessary for a test program to do extra setup or teardown // before or after testing. It is also sometimes necessary for a test to control // which code runs on the main thread. To support these and other cases, // if a test file contains a function: // // func TestMain(m *testing.M) // // then the generated test will call TestMain(m) instead of running the tests // directly. TestMain runs in the main goroutine and can do whatever setup // and teardown is necessary around a call to m.Run. It should then call // os.Exit with the result of m.Run. When TestMain is called, flag.Parse has // not been run. If TestMain depends on command-line flags, including those // of the testing package, it should call flag.Parse explicitly. // // A simple implementation of TestMain is: // // func TestMain(m *testing.M) { // flag.Parse() // os.Exit(m.Run()) // } // package testing import ( "bytes" "flag" "fmt" "os" "runtime" "runtime/pprof" "strconv" "strings" "sync" "time" ) var ( // The short flag requests that tests run more quickly, but its functionality // is provided by test writers themselves. The testing package is just its // home. The all.bash installation script sets it to make installation more // efficient, but by default the flag is off so a plain "go test" will do a // full test of the package. short = flag.Bool("test.short", false, "run smaller test suite to save time") // The directory in which to create profile files and the like. When run from // "go test", the binary always runs in the source directory for the package; // this flag lets "go test" tell the binary to write the files in the directory where // the "go test" command is run. outputDir = flag.String("test.outputdir", "", "directory in which to write profiles") // Report as tests are run; default is silent for success. chatty = flag.Bool("test.v", false, "verbose: print additional output") count = flag.Uint("test.count", 1, "run tests and benchmarks `n` times") coverProfile = flag.String("test.coverprofile", "", "write a coverage profile to the named file after execution") match = flag.String("test.run", "", "regular expression to select tests and examples to run") memProfile = flag.String("test.memprofile", "", "write a memory profile to the named file after execution") memProfileRate = flag.Int("test.memprofilerate", 0, "if >=0, sets runtime.MemProfileRate") cpuProfile = flag.String("test.cpuprofile", "", "write a cpu profile to the named file during execution") blockProfile = flag.String("test.blockprofile", "", "write a goroutine blocking profile to the named file after execution") blockProfileRate = flag.Int("test.blockprofilerate", 1, "if >= 0, calls runtime.SetBlockProfileRate()") traceFile = flag.String("test.trace", "", "write an execution trace to the named file after execution") timeout = flag.Duration("test.timeout", 0, "if positive, sets an aggregate time limit for all tests") cpuListStr = flag.String("test.cpu", "", "comma-separated list of number of CPUs to use for each test") parallel = flag.Int("test.parallel", runtime.GOMAXPROCS(0), "maximum test parallelism") haveExamples bool // are there examples? cpuList []int ) // common holds the elements common between T and B and // captures common methods such as Errorf. type common struct { mu sync.RWMutex // guards output and failed output []byte // Output generated by test or benchmark. failed bool // Test or benchmark has failed. skipped bool // Test of benchmark has been skipped. finished bool start time.Time // Time test or benchmark started duration time.Duration self interface{} // To be sent on signal channel when done. signal chan interface{} // Output for serial tests. } // Short reports whether the -test.short flag is set. func Short() bool { return *short } // Verbose reports whether the -test.v flag is set. func Verbose() bool { return *chatty } // decorate prefixes the string with the file and line of the call site // and inserts the final newline if needed and indentation tabs for formatting. func decorate(s string) string { _, file, line, ok := runtime.Caller(3) // decorate + log + public function. if ok { // Truncate file name at last file name separator. if index := strings.LastIndex(file, "/"); index >= 0 { file = file[index+1:] } else if index = strings.LastIndex(file, "\\"); index >= 0 { file = file[index+1:] } } else { file = "???" line = 1 } buf := new(bytes.Buffer) // Every line is indented at least one tab. buf.WriteByte('\t') fmt.Fprintf(buf, "%s:%d: ", file, line) lines := strings.Split(s, "\n") if l := len(lines); l > 1 && lines[l-1] == "" { lines = lines[:l-1] } for i, line := range lines { if i > 0 { // Second and subsequent lines are indented an extra tab. buf.WriteString("\n\t\t") } buf.WriteString(line) } buf.WriteByte('\n') return buf.String() } // fmtDuration returns a string representing d in the form "87.00s". func fmtDuration(d time.Duration) string { return fmt.Sprintf("%.2fs", d.Seconds()) } // TB is the interface common to T and B. type TB interface { Error(args ...interface{}) Errorf(format string, args ...interface{}) Fail() FailNow() Failed() bool Fatal(args ...interface{}) Fatalf(format string, args ...interface{}) Log(args ...interface{}) Logf(format string, args ...interface{}) Skip(args ...interface{}) SkipNow() Skipf(format string, args ...interface{}) Skipped() bool // A private method to prevent users implementing the // interface and so future additions to it will not // violate Go 1 compatibility. private() } var _ TB = (*T)(nil) var _ TB = (*B)(nil) // T is a type passed to Test functions to manage test state and support formatted test logs. // Logs are accumulated during execution and dumped to standard error when done. type T struct { common name string // Name of test. startParallel chan bool // Parallel tests will wait on this. } func (c *common) private() {} // Fail marks the function as having failed but continues execution. func (c *common) Fail() { c.mu.Lock() defer c.mu.Unlock() c.failed = true } // Failed reports whether the function has failed. func (c *common) Failed() bool { c.mu.RLock() defer c.mu.RUnlock() return c.failed } // FailNow marks the function as having failed and stops its execution. // Execution will continue at the next test or benchmark. // FailNow must be called from the goroutine running the // test or benchmark function, not from other goroutines // created during the test. Calling FailNow does not stop // those other goroutines. func (c *common) FailNow() { c.Fail() // Calling runtime.Goexit will exit the goroutine, which // will run the deferred functions in this goroutine, // which will eventually run the deferred lines in tRunner, // which will signal to the test loop that this test is done. // // A previous version of this code said: // // c.duration = ... // c.signal <- c.self // runtime.Goexit() // // This previous version duplicated code (those lines are in // tRunner no matter what), but worse the goroutine teardown // implicit in runtime.Goexit was not guaranteed to complete // before the test exited. If a test deferred an important cleanup // function (like removing temporary files), there was no guarantee // it would run on a test failure. Because we send on c.signal during // a top-of-stack deferred function now, we know that the send // only happens after any other stacked defers have completed. c.finished = true runtime.Goexit() } // log generates the output. It's always at the same stack depth. func (c *common) log(s string) { c.mu.Lock() defer c.mu.Unlock() c.output = append(c.output, decorate(s)...) } // Log formats its arguments using default formatting, analogous to Println, // and records the text in the error log. For tests, the text will be printed only if // the test fails or the -test.v flag is set. For benchmarks, the text is always // printed to avoid having performance depend on the value of the -test.v flag. func (c *common) Log(args ...interface{}) { c.log(fmt.Sprintln(args...)) } // Logf formats its arguments according to the format, analogous to Printf, // and records the text in the error log. For tests, the text will be printed only if // the test fails or the -test.v flag is set. For benchmarks, the text is always // printed to avoid having performance depend on the value of the -test.v flag. func (c *common) Logf(format string, args ...interface{}) { c.log(fmt.Sprintf(format, args...)) } // Error is equivalent to Log followed by Fail. func (c *common) Error(args ...interface{}) { c.log(fmt.Sprintln(args...)) c.Fail() } // Errorf is equivalent to Logf followed by Fail. func (c *common) Errorf(format string, args ...interface{}) { c.log(fmt.Sprintf(format, args...)) c.Fail() } // Fatal is equivalent to Log followed by FailNow. func (c *common) Fatal(args ...interface{}) { c.log(fmt.Sprintln(args...)) c.FailNow() } // Fatalf is equivalent to Logf followed by FailNow. func (c *common) Fatalf(format string, args ...interface{}) { c.log(fmt.Sprintf(format, args...)) c.FailNow() } // Skip is equivalent to Log followed by SkipNow. func (c *common) Skip(args ...interface{}) { c.log(fmt.Sprintln(args...)) c.SkipNow() } // Skipf is equivalent to Logf followed by SkipNow. func (c *common) Skipf(format string, args ...interface{}) { c.log(fmt.Sprintf(format, args...)) c.SkipNow() } // SkipNow marks the test as having been skipped and stops its execution. // Execution will continue at the next test or benchmark. See also FailNow. // SkipNow must be called from the goroutine running the test, not from // other goroutines created during the test. Calling SkipNow does not stop // those other goroutines. func (c *common) SkipNow() { c.skip() c.finished = true runtime.Goexit() } func (c *common) skip() { c.mu.Lock() defer c.mu.Unlock() c.skipped = true } // Skipped reports whether the test was skipped. func (c *common) Skipped() bool { c.mu.RLock() defer c.mu.RUnlock() return c.skipped } // Parallel signals that this test is to be run in parallel with (and only with) // other parallel tests. func (t *T) Parallel() { t.signal <- (*T)(nil) // Release main testing loop <-t.startParallel // Wait for serial tests to finish // Assuming Parallel is the first thing a test does, which is reasonable, // reinitialize the test's start time because it's actually starting now. t.start = time.Now() } // An internal type but exported because it is cross-package; part of the implementation // of the "go test" command. type InternalTest struct { Name string F func(*T) } func tRunner(t *T, test *InternalTest) { // When this goroutine is done, either because test.F(t) // returned normally or because a test failure triggered // a call to runtime.Goexit, record the duration and send // a signal saying that the test is done. defer func() { t.duration = time.Now().Sub(t.start) // If the test panicked, print any test output before dying. err := recover() if !t.finished && err == nil { err = fmt.Errorf("test executed panic(nil) or runtime.Goexit") } if err != nil { t.Fail() t.report() panic(err) } t.signal <- t }() t.start = time.Now() test.F(t) t.finished = true } // An internal function but exported because it is cross-package; part of the implementation // of the "go test" command. func Main(matchString func(pat, str string) (bool, error), tests []InternalTest, benchmarks []InternalBenchmark, examples []InternalExample) { os.Exit(MainStart(matchString, tests, benchmarks, examples).Run()) } // M is a type passed to a TestMain function to run the actual tests. type M struct { matchString func(pat, str string) (bool, error) tests []InternalTest benchmarks []InternalBenchmark examples []InternalExample } // MainStart is meant for use by tests generated by 'go test'. // It is not meant to be called directly and is not subject to the Go 1 compatibility document. // It may change signature from release to release. func MainStart(matchString func(pat, str string) (bool, error), tests []InternalTest, benchmarks []InternalBenchmark, examples []InternalExample) *M { return &M{ matchString: matchString, tests: tests, benchmarks: benchmarks, examples: examples, } } // Run runs the tests. It returns an exit code to pass to os.Exit. func (m *M) Run() int { flag.Parse() parseCpuList() before() startAlarm() haveExamples = len(m.examples) > 0 testOk := RunTests(m.matchString, m.tests) exampleOk := RunExamples(m.matchString, m.examples) stopAlarm() if !testOk || !exampleOk { fmt.Println("FAIL") after() return 1 } fmt.Println("PASS") RunBenchmarks(m.matchString, m.benchmarks) after() return 0 } func (t *T) report() { dstr := fmtDuration(t.duration) format := "--- %s: %s (%s)\n%s" if t.Failed() { fmt.Printf(format, "FAIL", t.name, dstr, t.output) } else if *chatty { if t.Skipped() { fmt.Printf(format, "SKIP", t.name, dstr, t.output) } else { fmt.Printf(format, "PASS", t.name, dstr, t.output) } } } func RunTests(matchString func(pat, str string) (bool, error), tests []InternalTest) (ok bool) { ok = true if len(tests) == 0 && !haveExamples { fmt.Fprintln(os.Stderr, "testing: warning: no tests to run") return } for _, procs := range cpuList { runtime.GOMAXPROCS(procs) // We build a new channel tree for each run of the loop. // collector merges in one channel all the upstream signals from parallel tests. // If all tests pump to the same channel, a bug can occur where a test // kicks off a goroutine that Fails, yet the test still delivers a completion signal, // which skews the counting. var collector = make(chan interface{}) numParallel := 0 startParallel := make(chan bool) for i := 0; i < len(tests); i++ { matched, err := matchString(*match, tests[i].Name) if err != nil { fmt.Fprintf(os.Stderr, "testing: invalid regexp for -test.run: %s\n", err) os.Exit(1) } if !matched { continue } testName := tests[i].Name t := &T{ common: common{ signal: make(chan interface{}), }, name: testName, startParallel: startParallel, } t.self = t if *chatty { fmt.Printf("=== RUN %s\n", t.name) } go tRunner(t, &tests[i]) out := (<-t.signal).(*T) if out == nil { // Parallel run. go func() { collector <- <-t.signal }() numParallel++ continue } t.report() ok = ok && !out.Failed() } running := 0 for numParallel+running > 0 { if running < *parallel && numParallel > 0 { startParallel <- true running++ numParallel-- continue } t := (<-collector).(*T) t.report() ok = ok && !t.Failed() running-- } } return } // before runs before all testing. func before() { if *memProfileRate > 0 { runtime.MemProfileRate = *memProfileRate } if *cpuProfile != "" { f, err := os.Create(toOutputDir(*cpuProfile)) if err != nil { fmt.Fprintf(os.Stderr, "testing: %s", err) return } if err := pprof.StartCPUProfile(f); err != nil { fmt.Fprintf(os.Stderr, "testing: can't start cpu profile: %s", err) f.Close() return } // Could save f so after can call f.Close; not worth the effort. } if *traceFile != "" { f, err := os.Create(toOutputDir(*traceFile)) if err != nil { fmt.Fprintf(os.Stderr, "testing: %s", err) return } /* if err := trace.Start(f); err != nil { fmt.Fprintf(os.Stderr, "testing: can't start tracing: %s", err) f.Close() return } */ _ = f // Could save f so after can call f.Close; not worth the effort. } if *blockProfile != "" && *blockProfileRate >= 0 { runtime.SetBlockProfileRate(*blockProfileRate) } if *coverProfile != "" && cover.Mode == "" { fmt.Fprintf(os.Stderr, "testing: cannot use -test.coverprofile because test binary was not built with coverage enabled\n") os.Exit(2) } } // after runs after all testing. func after() { if *cpuProfile != "" { pprof.StopCPUProfile() // flushes profile to disk } if *traceFile != "" { /* trace.Stop() // flushes trace to disk */ } if *memProfile != "" { f, err := os.Create(toOutputDir(*memProfile)) if err != nil { fmt.Fprintf(os.Stderr, "testing: %s\n", err) os.Exit(2) } runtime.GC() // materialize all statistics if err = pprof.WriteHeapProfile(f); err != nil { fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *memProfile, err) os.Exit(2) } f.Close() } if *blockProfile != "" && *blockProfileRate >= 0 { f, err := os.Create(toOutputDir(*blockProfile)) if err != nil { fmt.Fprintf(os.Stderr, "testing: %s\n", err) os.Exit(2) } if err = pprof.Lookup("block").WriteTo(f, 0); err != nil { fmt.Fprintf(os.Stderr, "testing: can't write %s: %s\n", *blockProfile, err) os.Exit(2) } f.Close() } if cover.Mode != "" { coverReport() } } // toOutputDir returns the file name relocated, if required, to outputDir. // Simple implementation to avoid pulling in path/filepath. func toOutputDir(path string) string { if *outputDir == "" || path == "" { return path } if runtime.GOOS == "windows" { // On Windows, it's clumsy, but we can be almost always correct // by just looking for a drive letter and a colon. // Absolute paths always have a drive letter (ignoring UNC). // Problem: if path == "C:A" and outputdir == "C:\Go" it's unclear // what to do, but even then path/filepath doesn't help. // TODO: Worth doing better? Probably not, because we're here only // under the management of go test. if len(path) >= 2 { letter, colon := path[0], path[1] if ('a' <= letter && letter <= 'z' || 'A' <= letter && letter <= 'Z') && colon == ':' { // If path starts with a drive letter we're stuck with it regardless. return path } } } if os.IsPathSeparator(path[0]) { return path } return fmt.Sprintf("%s%c%s", *outputDir, os.PathSeparator, path) } var timer *time.Timer // startAlarm starts an alarm if requested. func startAlarm() { if *timeout > 0 { timer = time.AfterFunc(*timeout, func() { panic(fmt.Sprintf("test timed out after %v", *timeout)) }) } } // stopAlarm turns off the alarm. func stopAlarm() { if *timeout > 0 { timer.Stop() } } func parseCpuList() { for _, val := range strings.Split(*cpuListStr, ",") { val = strings.TrimSpace(val) if val == "" { continue } cpu, err := strconv.Atoi(val) if err != nil || cpu <= 0 { fmt.Fprintf(os.Stderr, "testing: invalid value %q for -test.cpu\n", val) os.Exit(1) } for i := uint(0); i < *count; i++ { cpuList = append(cpuList, cpu) } } if cpuList == nil { for i := uint(0); i < *count; i++ { cpuList = append(cpuList, runtime.GOMAXPROCS(-1)) } } }