// TR1 cmath -*- C++ -*- // Copyright (C) 2006, 2007 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /** @file tr1/cmath * This is a TR1 C++ Library header. */ #ifndef _GLIBCXX_TR1_CMATH #define _GLIBCXX_TR1_CMATH 1 #pragma GCC system_header #if defined(_GLIBCXX_INCLUDE_AS_CXX0X) # error TR1 header cannot be included from C++0x header #endif #include #if defined(_GLIBCXX_INCLUDE_AS_TR1) # include #else # define _GLIBCXX_INCLUDE_AS_TR1 # define _GLIBCXX_BEGIN_NAMESPACE_TR1 namespace tr1 { # define _GLIBCXX_END_NAMESPACE_TR1 } # define _GLIBCXX_TR1 tr1:: # include # undef _GLIBCXX_TR1 # undef _GLIBCXX_END_NAMESPACE_TR1 # undef _GLIBCXX_BEGIN_NAMESPACE_TR1 # undef _GLIBCXX_INCLUDE_AS_TR1 #endif /** * @defgroup tr1_math_spec_func Mathematical Special Functions * A collection of advanced mathematical special functions. * @{ */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include // namespace std::tr1 namespace std { namespace tr1 { // 5.2.1.1 Associated Laguerre polynomials. inline float assoc_laguerref(unsigned int __n, unsigned int __m, float __x) { return __detail::__assoc_laguerre(__n, __m, __x); } inline long double assoc_laguerrel(unsigned int __n, unsigned int __m, long double __x) { return __detail::__assoc_laguerre(__n, __m, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type assoc_laguerre(unsigned int __n, unsigned int __m, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__assoc_laguerre<__type>(__n, __m, __x); } // 5.2.1.2 Associated Legendre functions. inline float assoc_legendref(unsigned int __l, unsigned int __m, float __x) { return __detail::__assoc_legendre_p(__l, __m, __x); } inline long double assoc_legendrel(unsigned int __l, unsigned int __m, long double __x) { return __detail::__assoc_legendre_p(__l, __m, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type assoc_legendre(unsigned int __l, unsigned int __m, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__assoc_legendre_p<__type>(__l, __m, __x); } // 5.2.1.3 Beta functions. inline float betaf(float __x, float __y) { return __detail::__beta(__x, __y); } inline long double betal(long double __x, long double __y) { return __detail::__beta(__x, __y); } template inline typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type beta(_Tpx __x, _Tpy __y) { typedef typename __gnu_cxx::__promote_2<_Tpx, _Tpy>::__type __type; return __detail::__beta<__type>(__x, __y); } // 5.2.1.4 Complete elliptic interals of the first kind. inline float comp_ellint_1f(float __k) { return __detail::__comp_ellint_1(__k); } inline long double comp_ellint_1l(long double __k) { return __detail::__comp_ellint_1(__k); } template inline typename __gnu_cxx::__promote<_Tp>::__type comp_ellint_1(_Tp __k) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__comp_ellint_1<__type>(__k); } // 5.2.1.5 Complete elliptic interals of the second kind. inline float comp_ellint_2f(float __k) { return __detail::__comp_ellint_2(__k); } inline long double comp_ellint_2l(long double __k) { return __detail::__comp_ellint_2(__k); } template inline typename __gnu_cxx::__promote<_Tp>::__type comp_ellint_2(_Tp __k) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__comp_ellint_2<__type>(__k); } // 5.2.1.6 Complete elliptic interals of the third kind. inline float comp_ellint_3f(float __k, float __nu) { return __detail::__comp_ellint_3(__k, __nu); } inline long double comp_ellint_3l(long double __k, long double __nu) { return __detail::__comp_ellint_3(__k, __nu); } template inline typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type comp_ellint_3(_Tp __k, _Tpn __nu) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpn>::__type __type; return __detail::__comp_ellint_3<__type>(__k, __nu); } // 5.2.1.7 Confluent hypergeometric functions. inline float conf_hypergf(float __a, float __c, float __x) { return __detail::__conf_hyperg(__a, __c, __x); } inline long double conf_hypergl(long double __a, long double __c, long double __x) { return __detail::__conf_hyperg(__a, __c, __x); } template inline typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type conf_hyperg(_Tpa __a, _Tpc __c, _Tp __x) { typedef typename __gnu_cxx::__promote_3<_Tpa, _Tpc, _Tp>::__type __type; return __detail::__conf_hyperg<__type>(__a, __c, __x); } // 5.2.1.8 Regular modified cylindrical Bessel functions. inline float cyl_bessel_if(float __nu, float __x) { return __detail::__cyl_bessel_i(__nu, __x); } inline long double cyl_bessel_il(long double __nu, long double __x) { return __detail::__cyl_bessel_i(__nu, __x); } template inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_i(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_i<__type>(__nu, __x); } // 5.2.1.9 Cylindrical Bessel functions (of the first kind). inline float cyl_bessel_jf(float __nu, float __x) { return __detail::__cyl_bessel_j(__nu, __x); } inline long double cyl_bessel_jl(long double __nu, long double __x) { return __detail::__cyl_bessel_j(__nu, __x); } template inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_j(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_j<__type>(__nu, __x); } // 5.2.1.10 Irregular modified cylindrical Bessel functions. inline float cyl_bessel_kf(float __nu, float __x) { return __detail::__cyl_bessel_k(__nu, __x); } inline long double cyl_bessel_kl(long double __nu, long double __x) { return __detail::__cyl_bessel_k(__nu, __x); } template inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_bessel_k(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_bessel_k<__type>(__nu, __x); } // 5.2.1.11 Cylindrical Neumann functions. inline float cyl_neumannf(float __nu, float __x) { return __detail::__cyl_neumann_n(__nu, __x); } inline long double cyl_neumannl(long double __nu, long double __x) { return __detail::__cyl_neumann_n(__nu, __x); } template inline typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type cyl_neumann(_Tpnu __nu, _Tp __x) { typedef typename __gnu_cxx::__promote_2<_Tpnu, _Tp>::__type __type; return __detail::__cyl_neumann_n<__type>(__nu, __x); } // 5.2.1.12 Incomplete elliptic interals of the first kind. inline float ellint_1f(float __k, float __phi) { return __detail::__ellint_1(__k, __phi); } inline long double ellint_1l(long double __k, long double __phi) { return __detail::__ellint_1(__k, __phi); } template inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type ellint_1(_Tp __k, _Tpp __phi) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; return __detail::__ellint_1<__type>(__k, __phi); } // 5.2.1.13 Incomplete elliptic interals of the second kind. inline float ellint_2f(float __k, float __phi) { return __detail::__ellint_2(__k, __phi); } inline long double ellint_2l(long double __k, long double __phi) { return __detail::__ellint_2(__k, __phi); } template inline typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type ellint_2(_Tp __k, _Tpp __phi) { typedef typename __gnu_cxx::__promote_2<_Tp, _Tpp>::__type __type; return __detail::__ellint_2<__type>(__k, __phi); } // 5.2.1.14 Incomplete elliptic interals of the third kind. inline float ellint_3f(float __k, float __nu, float __phi) { return __detail::__ellint_3(__k, __nu, __phi); } inline long double ellint_3l(long double __k, long double __nu, long double __phi) { return __detail::__ellint_3(__k, __nu, __phi); } template inline typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type ellint_3(_Tp __k, _Tpn __nu, _Tpp __phi) { typedef typename __gnu_cxx::__promote_3<_Tp, _Tpn, _Tpp>::__type __type; return __detail::__ellint_3<__type>(__k, __nu, __phi); } // 5.2.1.15 Exponential integrals. inline float expintf(float __x) { return __detail::__expint(__x); } inline long double expintl(long double __x) { return __detail::__expint(__x); } template inline typename __gnu_cxx::__promote<_Tp>::__type expint(_Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__expint<__type>(__x); } // 5.2.1.16 Hermite polynomials. inline float hermitef(unsigned int __n, float __x) { return __detail::__poly_hermite(__n, __x); } inline long double hermitel(unsigned int __n, long double __x) { return __detail::__poly_hermite(__n, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type hermite(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__poly_hermite<__type>(__n, __x); } // 5.2.1.17 Hypergeometric functions. inline float hypergf(float __a, float __b, float __c, float __x) { return __detail::__hyperg(__a, __b, __c, __x); } inline long double hypergl(long double __a, long double __b, long double __c, long double __x) { return __detail::__hyperg(__a, __b, __c, __x); } template inline typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type hyperg(_Tpa __a, _Tpb __b, _Tpc __c, _Tp __x) { typedef typename __gnu_cxx::__promote_4<_Tpa, _Tpb, _Tpc, _Tp>::__type __type; return __detail::__hyperg<__type>(__a, __b, __c, __x); } // 5.2.1.18 Laguerre polynomials. inline float laguerref(unsigned int __n, float __x) { return __detail::__laguerre(__n, __x); } inline long double laguerrel(unsigned int __n, long double __x) { return __detail::__laguerre(__n, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type laguerre(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__laguerre<__type>(__n, __x); } // 5.2.1.19 Legendre polynomials. inline float legendref(unsigned int __n, float __x) { return __detail::__poly_legendre_p(__n, __x); } inline long double legendrel(unsigned int __n, long double __x) { return __detail::__poly_legendre_p(__n, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type legendre(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__poly_legendre_p<__type>(__n, __x); } // 5.2.1.20 Riemann zeta function. inline float riemann_zetaf(float __x) { return __detail::__riemann_zeta(__x); } inline long double riemann_zetal(long double __x) { return __detail::__riemann_zeta(__x); } template inline typename __gnu_cxx::__promote<_Tp>::__type riemann_zeta(_Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__riemann_zeta<__type>(__x); } // 5.2.1.21 Spherical Bessel functions. inline float sph_besself(unsigned int __n, float __x) { return __detail::__sph_bessel(__n, __x); } inline long double sph_bessell(unsigned int __n, long double __x) { return __detail::__sph_bessel(__n, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type sph_bessel(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_bessel<__type>(__n, __x); } // 5.2.1.22 Spherical associated Legendre functions. inline float sph_legendref(unsigned int __l, unsigned int __m, float __theta) { return __detail::__sph_legendre(__l, __m, __theta); } inline long double sph_legendrel(unsigned int __l, unsigned int __m, long double __theta) { return __detail::__sph_legendre(__l, __m, __theta); } template inline typename __gnu_cxx::__promote<_Tp>::__type sph_legendre(unsigned int __l, unsigned int __m, _Tp __theta) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_legendre<__type>(__l, __m, __theta); } // 5.2.1.23 Spherical Neumann functions. inline float sph_neumannf(unsigned int __n, float __x) { return __detail::__sph_neumann(__n, __x); } inline long double sph_neumannl(unsigned int __n, long double __x) { return __detail::__sph_neumann(__n, __x); } template inline typename __gnu_cxx::__promote<_Tp>::__type sph_neumann(unsigned int __n, _Tp __x) { typedef typename __gnu_cxx::__promote<_Tp>::__type __type; return __detail::__sph_neumann<__type>(__n, __x); } /* @} */ // group tr1_math_spec_func } } #endif // _GLIBCXX_TR1_CMATH