// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // For gccgo, use go:linkname to export compiler-called functions. // //go:linkname requireitab //go:linkname assertitab //go:linkname panicdottype //go:linkname ifaceE2E2 //go:linkname ifaceI2E2 //go:linkname ifaceE2I2 //go:linkname ifaceI2I2 //go:linkname ifaceE2T2P //go:linkname ifaceI2T2P //go:linkname ifaceE2T2 //go:linkname ifaceI2T2 //go:linkname ifaceT2Ip // Temporary for C code to call: //go:linkname getitab // The gccgo itab structure is different than the gc one. // // Both gccgo and gc represent empty interfaces the same way: // a two field struct, where the first field points to a type descriptor // (a *_type) and the second field is the data pointer. // // Non-empty interfaces are also two-field structs, and the second // field is the data pointer. However, for gccgo, the first field, the // itab field, is different. The itab field points to the interface // method table, which is the implemention of a specific interface // type for a specific dynamic non-interface type. An interface // method table is a list of pointer values. The first pointer is the // type descriptor (a *_type) for the dynamic type. The subsequent // pointers are pointers to function code, which implement the methods // required by the interface. The pointers are sorted by name. // // The method pointers in the itab are C function pointers, not Go // function pointers; they may be called directly, and they have no // closures. The receiver is always passed as a pointer, and it is // always the same pointer stored in the interface value. A value // method starts by copying the receiver value out of the pointer into // a local variable. // // A method call on an interface value is by definition calling a // method at a known index m in the list of methods. Given a non-empty // interface value i, the call i.m(args) looks like // i.itab[m+1](i.iface, args) // Both an empty interface and a non-empty interface have a data // pointer field. The meaning of this field is determined by the // kindDirectIface bit in the `kind` field of the type descriptor of // the value stored in the interface. If kindDirectIface is set, then // the data pointer field in the interface value is exactly the value // stored in the interface. Otherwise, the data pointer field is a // pointer to memory that holds the value. It follows from this that // kindDirectIface can only be set for a type whose representation is // simply a pointer. In the current gccgo implementation, this is set // for types that are pointer-shaped, including unsafe.Pointer, channels, // maps, functions, single-field structs and single-element arrays whose // single field is simply a pointer-shaped type. // For a nil interface value both fields in the interface struct are nil. // itabs are statically allocated or persistently allocated. They are // never freed. For itabs allocated at run time, they are cached in // itabTable, so we reuse the same itab for the same (interface, concrete) // type pair. The gc runtime prepopulates the cache with statically // allocated itabs. Currently we don't do that as we don't have a way to // find all the statically allocated itabs. const itabInitSize = 512 var ( itabLock mutex // lock for accessing itab table itabTable = &itabTableInit // pointer to current table itabTableInit = itabTableType{size: itabInitSize} // starter table ) // Cache entry type of itab table. // For gccgo, this is not the data type we used in the interface header. type itab struct { inter *interfacetype methods [2]unsafe.Pointer // method table. variable sized. first entry is the type descriptor. } func (m *itab) _type() *_type { return (*_type)(m.methods[0]) } // Note: change the formula in the mallocgc call in itabAdd if you change these fields. type itabTableType struct { size uintptr // length of entries array. Always a power of 2. count uintptr // current number of filled entries. entries [itabInitSize]*itab // really [size] large } func itabHashFunc(inter *interfacetype, typ *_type) uintptr { // compiler has provided some good hash codes for us. return uintptr(inter.typ.hash ^ typ.hash) } // find finds the given interface/type pair in t. // Returns nil if the given interface/type pair isn't present. func (t *itabTableType) find(inter *interfacetype, typ *_type) *itab { // Implemented using quadratic probing. // Probe sequence is h(i) = h0 + i*(i+1)/2 mod 2^k. // We're guaranteed to hit all table entries using this probe sequence. mask := t.size - 1 h := itabHashFunc(inter, typ) & mask for i := uintptr(1); ; i++ { p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) // Use atomic read here so if we see m != nil, we also see // the initializations of the fields of m. // m := *p m := (*itab)(atomic.Loadp(unsafe.Pointer(p))) if m == nil { return nil } if m.inter == inter && m._type() == typ { return m } h += i h &= mask } } // itabAdd adds the given itab to the itab hash table. // itabLock must be held. func itabAdd(m *itab) { // Bugs can lead to calling this while mallocing is set, // typically because this is called while panicing. // Crash reliably, rather than only when we need to grow // the hash table. if getg().m.mallocing != 0 { throw("malloc deadlock") } t := itabTable if t.count >= 3*(t.size/4) { // 75% load factor // Grow hash table. // t2 = new(itabTableType) + some additional entries // We lie and tell malloc we want pointer-free memory because // all the pointed-to values are not in the heap. t2 := (*itabTableType)(mallocgc((2+2*t.size)*sys.PtrSize, nil, true)) t2.size = t.size * 2 // Copy over entries. // Note: while copying, other threads may look for an itab and // fail to find it. That's ok, they will then try to get the itab lock // and as a consequence wait until this copying is complete. iterate_itabs(t2.add) if t2.count != t.count { throw("mismatched count during itab table copy") } // Publish new hash table. Use an atomic write: see comment in getitab. atomicstorep(unsafe.Pointer(&itabTable), unsafe.Pointer(t2)) // Adopt the new table as our own. t = itabTable // Note: the old table can be GC'ed here. } t.add(m) } // add adds the given itab to itab table t. // itabLock must be held. func (t *itabTableType) add(m *itab) { // See comment in find about the probe sequence. // Insert new itab in the first empty spot in the probe sequence. mask := t.size - 1 h := itabHashFunc(m.inter, m._type()) & mask for i := uintptr(1); ; i++ { p := (**itab)(add(unsafe.Pointer(&t.entries), h*sys.PtrSize)) m2 := *p if m2 == m { // A given itab may be used in more than one module // and thanks to the way global symbol resolution works, the // pointed-to itab may already have been inserted into the // global 'hash'. return } if m2 == nil { // Use atomic write here so if a reader sees m, it also // sees the correctly initialized fields of m. // NoWB is ok because m is not in heap memory. // *p = m atomic.StorepNoWB(unsafe.Pointer(p), unsafe.Pointer(m)) t.count++ return } h += i h &= mask } } // init fills in the m.methods array with all the code pointers for // the m.inter/m._type pair. If the type does not implement the interface, // it sets m.methods[1] to nil and returns the name of an interface function that is missing. // It is ok to call this multiple times on the same m, even concurrently. func (m *itab) init() string { inter := m.inter typ := m._type() ni := len(inter.methods) + 1 methods := (*[1 << 16]unsafe.Pointer)(unsafe.Pointer(&m.methods[0]))[:ni:ni] var m1 unsafe.Pointer ri := 0 for li := range inter.methods { lhsMethod := &inter.methods[li] var rhsMethod *method for { if ri >= len(typ.methods) { m.methods[1] = nil return *lhsMethod.name } rhsMethod = &typ.methods[ri] if (lhsMethod.name == rhsMethod.name || *lhsMethod.name == *rhsMethod.name) && (lhsMethod.pkgPath == rhsMethod.pkgPath || *lhsMethod.pkgPath == *rhsMethod.pkgPath) { break } ri++ } if !eqtype(lhsMethod.typ, rhsMethod.mtyp) { m.methods[1] = nil return *lhsMethod.name } if li == 0 { m1 = rhsMethod.tfn // we'll set m.methods[1] at the end } else { methods[li+1] = rhsMethod.tfn } ri++ } m.methods[1] = m1 return "" } func iterate_itabs(fn func(*itab)) { // Note: only runs during stop the world or with itabLock held, // so no other locks/atomics needed. t := itabTable for i := uintptr(0); i < t.size; i++ { m := *(**itab)(add(unsafe.Pointer(&t.entries), i*sys.PtrSize)) if m != nil { fn(m) } } } // Return the interface method table for a value of type rhs converted // to an interface of type lhs. func getitab(lhs, rhs *_type, canfail bool) unsafe.Pointer { if rhs == nil { return nil } if lhs.kind&kindMask != kindInterface { throw("getitab called for non-interface type") } lhsi := (*interfacetype)(unsafe.Pointer(lhs)) if len(lhsi.methods) == 0 { throw("getitab called for empty interface type") } if rhs.uncommontype == nil || len(rhs.methods) == 0 { if canfail { return nil } panic(&TypeAssertionError{nil, rhs, lhs, *lhsi.methods[0].name}) } var m *itab // First, look in the existing table to see if we can find the itab we need. // This is by far the most common case, so do it without locks. // Use atomic to ensure we see any previous writes done by the thread // that updates the itabTable field (with atomic.Storep in itabAdd). t := (*itabTableType)(atomic.Loadp(unsafe.Pointer(&itabTable))) if m = t.find(lhsi, rhs); m != nil { goto finish } // Not found. Grab the lock and try again. lockInit(&itabLock, lockRankItab) lock(&itabLock) if m = itabTable.find(lhsi, rhs); m != nil { unlock(&itabLock) goto finish } // Entry doesn't exist yet. Make a new entry & add it. m = (*itab)(persistentalloc(unsafe.Sizeof(itab{})+uintptr(len(lhsi.methods)-1)*sys.PtrSize, 0, &memstats.other_sys)) m.inter = lhsi m.methods[0] = unsafe.Pointer(rhs) m.init() itabAdd(m) unlock(&itabLock) finish: if m.methods[1] != nil { return unsafe.Pointer(&m.methods[0]) } if canfail { return nil } // this can only happen if the conversion // was already done once using the , ok form // and we have a cached negative result. // The cached result doesn't record which // interface function was missing, so initialize // the itab again to get the missing function name. panic(&TypeAssertionError{nil, rhs, lhs, m.init()}) } // Return the interface method table for a value of type rhs converted // to an interface of type lhs. Panics if the conversion is impossible. func requireitab(lhs, rhs *_type) unsafe.Pointer { return getitab(lhs, rhs, false) } // Return the interface method table for a value of type rhs converted // to an interface of type lhs. Panics if the conversion is // impossible or if the rhs type is nil. func assertitab(lhs, rhs *_type) unsafe.Pointer { if rhs == nil { panic(&TypeAssertionError{nil, nil, lhs, ""}) } if lhs.kind&kindMask != kindInterface { throw("assertitab called for non-interface type") } lhsi := (*interfacetype)(unsafe.Pointer(lhs)) if len(lhsi.methods) == 0 { return unsafe.Pointer(rhs) } return getitab(lhs, rhs, false) } // panicdottype is called when doing an i.(T) conversion and the conversion fails. func panicdottype(lhs, rhs, inter *_type) { panic(&TypeAssertionError{inter, rhs, lhs, ""}) } // Convert an empty interface to an empty interface, for a comma-ok // type assertion. func ifaceE2E2(e eface) (eface, bool) { return e, e._type != nil } // Convert a non-empty interface to an empty interface, for a comma-ok // type assertion. func ifaceI2E2(i iface) (eface, bool) { if i.tab == nil { return eface{nil, nil}, false } else { return eface{*(**_type)(i.tab), i.data}, true } } // Convert an empty interface to a non-empty interface, for a comma-ok // type assertion. func ifaceE2I2(inter *_type, e eface) (iface, bool) { if e._type == nil { return iface{nil, nil}, false } else { itab := getitab(inter, e._type, true) if itab == nil { return iface{nil, nil}, false } else { return iface{itab, e.data}, true } } } // Convert a non-empty interface to a non-empty interface, for a // comma-ok type assertion. func ifaceI2I2(inter *_type, i iface) (iface, bool) { if i.tab == nil { return iface{nil, nil}, false } else { itab := getitab(inter, *(**_type)(i.tab), true) if itab == nil { return iface{nil, nil}, false } else { return iface{itab, i.data}, true } } } // Convert an empty interface to a pointer non-interface type. func ifaceE2T2P(t *_type, e eface) (unsafe.Pointer, bool) { if !eqtype(t, e._type) { return nil, false } else { return e.data, true } } // Convert a non-empty interface to a pointer non-interface type. func ifaceI2T2P(t *_type, i iface) (unsafe.Pointer, bool) { if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { return nil, false } else { return i.data, true } } // Convert an empty interface to a non-pointer non-interface type. func ifaceE2T2(t *_type, e eface, ret unsafe.Pointer) bool { if !eqtype(t, e._type) { typedmemclr(t, ret) return false } else { if isDirectIface(t) { *(*unsafe.Pointer)(ret) = e.data } else { typedmemmove(t, ret, e.data) } return true } } // Convert a non-empty interface to a non-pointer non-interface type. func ifaceI2T2(t *_type, i iface, ret unsafe.Pointer) bool { if i.tab == nil || !eqtype(t, *(**_type)(i.tab)) { typedmemclr(t, ret) return false } else { if isDirectIface(t) { *(*unsafe.Pointer)(ret) = i.data } else { typedmemmove(t, ret, i.data) } return true } } // Return whether we can convert a type to an interface type. func ifaceT2Ip(to, from *_type) bool { if from == nil { return false } if to.kind&kindMask != kindInterface { throw("ifaceT2Ip called with non-interface type") } toi := (*interfacetype)(unsafe.Pointer(to)) if from.uncommontype == nil || len(from.methods) == 0 { return len(toi.methods) == 0 } ri := 0 for li := range toi.methods { toMethod := &toi.methods[li] var fromMethod *method for { if ri >= len(from.methods) { return false } fromMethod = &from.methods[ri] if (toMethod.name == fromMethod.name || *toMethod.name == *fromMethod.name) && (toMethod.pkgPath == fromMethod.pkgPath || *toMethod.pkgPath == *fromMethod.pkgPath) { break } ri++ } if !eqtype(fromMethod.mtyp, toMethod.typ) { return false } ri++ } return true } //go:linkname reflect_ifaceE2I reflect.ifaceE2I func reflect_ifaceE2I(inter *interfacetype, e eface, dst *iface) { t := e._type if t == nil { panic(TypeAssertionError{nil, nil, &inter.typ, ""}) } dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) dst.data = e.data } //go:linkname reflectlite_ifaceE2I internal_1reflectlite.ifaceE2I func reflectlite_ifaceE2I(inter *interfacetype, e eface, dst *iface) { t := e._type if t == nil { panic(TypeAssertionError{nil, nil, &inter.typ, ""}) } dst.tab = requireitab((*_type)(unsafe.Pointer(inter)), t) dst.data = e.data } // staticuint64s is used to avoid allocating in convTx for small integer values. var staticuint64s = [...]uint64{ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f, 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f, 0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f, 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57, 0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f, 0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f, 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77, 0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f, 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87, 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f, 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97, 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f, 0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7, 0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf, 0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7, 0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf, 0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7, 0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf, 0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7, 0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef, 0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7, 0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff, }