// The template and inlines for the -*- C++ -*- complex number classes. // Copyright (C) 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. // // ISO C++ 14882: 26.2 Complex Numbers // Note: this is not a conforming implementation. // Initially implemented by Ulrich Drepper // Improved by Gabriel Dos Reis // #ifndef _CPP_COMPLEX #define _CPP_COMPLEX 1 #pragma GCC system_header #include #include #include namespace std { // Forward declarations template class complex; template<> class complex; template<> class complex; template<> class complex; template _Tp abs(const complex<_Tp>&); template _Tp arg(const complex<_Tp>&); template _Tp norm(const complex<_Tp>&); template complex<_Tp> conj(const complex<_Tp>&); template complex<_Tp> polar(const _Tp&, const _Tp& = 0); // Transcendentals: template complex<_Tp> cos(const complex<_Tp>&); template complex<_Tp> cosh(const complex<_Tp>&); template complex<_Tp> exp(const complex<_Tp>&); template complex<_Tp> log(const complex<_Tp>&); template complex<_Tp> log10(const complex<_Tp>&); template complex<_Tp> pow(const complex<_Tp>&, int); template complex<_Tp> pow(const complex<_Tp>&, const _Tp&); template complex<_Tp> pow(const complex<_Tp>&, const complex<_Tp>&); template complex<_Tp> pow(const _Tp&, const complex<_Tp>&); template complex<_Tp> sin(const complex<_Tp>&); template complex<_Tp> sinh(const complex<_Tp>&); template complex<_Tp> sqrt(const complex<_Tp>&); template complex<_Tp> tan(const complex<_Tp>&); template complex<_Tp> tanh(const complex<_Tp>&); // 26.2.2 Primary template class complex template class complex { public: typedef _Tp value_type; complex(const _Tp& = _Tp(), const _Tp & = _Tp()); // Let's the compiler synthetize the copy constructor // complex (const complex<_Tp>&); template complex(const complex<_Up>&); _Tp real() const; _Tp imag() const; complex<_Tp>& operator=(const _Tp&); complex<_Tp>& operator+=(const _Tp&); complex<_Tp>& operator-=(const _Tp&); complex<_Tp>& operator*=(const _Tp&); complex<_Tp>& operator/=(const _Tp&); // Let's the compiler synthetize the // copy and assignment operator // complex<_Tp>& operator= (const complex<_Tp>&); template complex<_Tp>& operator=(const complex<_Up>&); template complex<_Tp>& operator+=(const complex<_Up>&); template complex<_Tp>& operator-=(const complex<_Up>&); template complex<_Tp>& operator*=(const complex<_Up>&); template complex<_Tp>& operator/=(const complex<_Up>&); private: _Tp _M_real, _M_imag; }; template inline _Tp complex<_Tp>::real() const { return _M_real; } template inline _Tp complex<_Tp>::imag() const { return _M_imag; } template inline complex<_Tp>::complex(const _Tp& __r, const _Tp& __i) : _M_real(__r), _M_imag(__i) { } template template inline complex<_Tp>::complex(const complex<_Up>& __z) : _M_real(__z.real()), _M_imag(__z.imag()) { } template complex<_Tp>& complex<_Tp>::operator=(const _Tp& __t) { _M_real = __t; _M_imag = _Tp(); return *this; } // 26.2.5/1 template inline complex<_Tp>& complex<_Tp>::operator+=(const _Tp& __t) { _M_real += __t; return *this; } // 26.2.5/3 template inline complex<_Tp>& complex<_Tp>::operator-=(const _Tp& __t) { _M_real -= __t; return *this; } // 26.2.5/5 template complex<_Tp>& complex<_Tp>::operator*=(const _Tp& __t) { _M_real *= __t; _M_imag *= __t; return *this; } // 26.2.5/7 template complex<_Tp>& complex<_Tp>::operator/=(const _Tp& __t) { _M_real /= __t; _M_imag /= __t; return *this; } template template complex<_Tp>& complex<_Tp>::operator=(const complex<_Up>& __z) { _M_real = __z.real(); _M_imag = __z.imag(); return *this; } // 26.2.5/9 template template complex<_Tp>& complex<_Tp>::operator+=(const complex<_Up>& __z) { _M_real += __z.real(); _M_imag += __z.imag(); return *this; } // 26.2.5/11 template template complex<_Tp>& complex<_Tp>::operator-=(const complex<_Up>& __z) { _M_real -= __z.real(); _M_imag -= __z.imag(); return *this; } // 26.2.5/13 // XXX: This is a grammar school implementation. template template complex<_Tp>& complex<_Tp>::operator*=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() - _M_imag * __z.imag(); _M_imag = _M_real * __z.imag() + _M_imag * __z.real(); _M_real = __r; return *this; } // 26.2.5/15 // XXX: This is a grammar school implementation. template template complex<_Tp>& complex<_Tp>::operator/=(const complex<_Up>& __z) { const _Tp __r = _M_real * __z.real() + _M_imag * __z.imag(); const _Tp __n = norm(__z); _M_imag = (_M_imag * __z.real() - _M_real * __z.imag()) / __n; _M_real = __r / __n; return *this; } // Operators: template inline complex<_Tp> operator+(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) += __y; } template inline complex<_Tp> operator+(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) += __y; } template inline complex<_Tp> operator+(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) += __x; } template inline complex<_Tp> operator-(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template inline complex<_Tp> operator-(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) -= __y; } template inline complex<_Tp> operator-(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) -= __y; } template inline complex<_Tp> operator*(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) *= __y; } template inline complex<_Tp> operator*(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) *= __y; } template inline complex<_Tp> operator*(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__y) *= __x; } template inline complex<_Tp> operator/(const complex<_Tp>& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template inline complex<_Tp> operator/(const complex<_Tp>& __x, const _Tp& __y) { return complex<_Tp> (__x) /= __y; } template inline complex<_Tp> operator/(const _Tp& __x, const complex<_Tp>& __y) { return complex<_Tp> (__x) /= __y; } template inline complex<_Tp> operator+(const complex<_Tp>& __x) { return __x; } template inline complex<_Tp> operator-(const complex<_Tp>& __x) { return complex<_Tp>(-__x.real(), -__x.imag()); } template inline bool operator==(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() == __y.real() && __x.imag() == __y.imag(); } template inline bool operator==(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() == __y && __x.imag() == _Tp(); } template inline bool operator==(const _Tp& __x, const complex<_Tp>& __y) { return __x == __y.real() && _Tp() == __y.imag(); } template inline bool operator!=(const complex<_Tp>& __x, const complex<_Tp>& __y) { return __x.real() != __y.real() || __x.imag() != __y.imag(); } template inline bool operator!=(const complex<_Tp>& __x, const _Tp& __y) { return __x.real() != __y || __x.imag() != _Tp(); } template inline bool operator!=(const _Tp& __x, const complex<_Tp>& __y) { return __x != __y.real() || _Tp() != __y.imag(); } template basic_istream<_CharT, _Traits>& operator>>(basic_istream<_CharT, _Traits>& __is, complex<_Tp>& __x) { _Tp __re_x, __im_x; _CharT __ch; __is >> __ch; if (__ch == '(') { __is >> __re_x >> __ch; if (__ch == ',') { __is >> __im_x >> __ch; if (__ch == ')') __x = complex<_Tp>(__re_x, __im_x); else __is.setstate(ios_base::failbit); } else if (__ch == ')') __x = complex<_Tp>(__re_x, _Tp(0)); else __is.setstate(ios_base::failbit); } else { __is.putback(__ch); __is >> __re_x; __x = complex<_Tp>(__re_x, _Tp(0)); } return __is; } template basic_ostream<_CharT, _Traits>& operator<<(basic_ostream<_CharT, _Traits>& __os, const complex<_Tp>& __x) { basic_ostringstream<_CharT, _Traits> __s; __s.flags(__os.flags()); __s.imbue(__os.getloc()); __s.precision(__os.precision()); __s << '(' << __x.real() << "," << __x.imag() << ')'; return __os << __s.str(); } // Values template inline _Tp real(const complex<_Tp>& __z) { return __z.real(); } template inline _Tp imag(const complex<_Tp>& __z) { return __z.imag(); } template inline _Tp abs(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); const _Tp __s = abs(__x) + abs(__y); if (__s == _Tp()) // well ... return __s; __x /= __s; __y /= __s; return __s * sqrt(__x * __x + __y * __y); } template inline _Tp arg(const complex<_Tp>& __z) { return atan2(__z.imag(), __z.real()); } template inline _Tp norm(const complex<_Tp>& __z) { _Tp __res = abs(__z); return __res * __res; } template inline complex<_Tp> polar(const _Tp& __rho, const _Tp& __theta) { return complex<_Tp>(__rho * cos(__theta), __rho * sin(__theta)); } template inline complex<_Tp> conj(const complex<_Tp>& __z) { return complex<_Tp>(__z.real(), -__z.imag()); } // Transcendentals template inline complex<_Tp> cos(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cos(__x) * cosh(__y), -sin(__x) * sinh(__y)); } template inline complex<_Tp> cosh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(cosh(__x) * cos(__y), sinh(__x) * sin(__y)); } template inline complex<_Tp> exp(const complex<_Tp>& __z) { return polar(exp(__z.real()), __z.imag()); } template inline complex<_Tp> log(const complex<_Tp>& __z) { return complex<_Tp>(log(abs(__z)), arg(__z)); } template inline complex<_Tp> log10(const complex<_Tp>& __z) { return log(__z) / log(_Tp(10.0)); } template inline complex<_Tp> sin(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sin(__x) * cosh(__y), cos(__x) * sinh(__y)); } template inline complex<_Tp> sinh(const complex<_Tp>& __z) { const _Tp __x = __z.real(); const _Tp __y = __z.imag(); return complex<_Tp>(sinh(__x) * cos(__y), cosh(__x) * sin(__y)); } template complex<_Tp> sqrt(const complex<_Tp>& __z) { _Tp __x = __z.real(); _Tp __y = __z.imag(); if (__x == _Tp()) { _Tp __t = sqrt(abs(__y) / 2); return complex<_Tp>(__t, __y < _Tp() ? -__t : __t); } else { _Tp __t = sqrt(2 * (abs(__z) + abs(__x))); _Tp __u = __t / 2; return __x > _Tp() ? complex<_Tp>(__u, __y / __t) : complex<_Tp>(abs(__y) / __t, __y < _Tp() ? -__u : __u); } } template inline complex<_Tp> tan(const complex<_Tp>& __z) { return sin(__z) / cos(__z); } template inline complex<_Tp> tanh(const complex<_Tp>& __z) { return sinh(__z) / cosh(__z); } template inline complex<_Tp> pow(const complex<_Tp>& __z, int __n) { return __pow_helper(__z, __n); } template inline complex<_Tp> pow(const complex<_Tp>& __x, const _Tp& __y) { return exp(__y * log(__x)); } template inline complex<_Tp> pow(const complex<_Tp>& __x, const complex<_Tp>& __y) { return exp(__y * log(__x)); } template inline complex<_Tp> pow(const _Tp& __x, const complex<_Tp>& __y) { return exp(__y * log(__x)); } // 26.2.3 complex specializations // complex specialization template<> class complex { public: typedef float value_type; complex(float = 0.0f, float = 0.0f); #ifdef _GLIBCPP_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif explicit complex(const complex&); explicit complex(const complex&); float real() const; float imag() const; complex& operator=(float); complex& operator+=(float); complex& operator-=(float); complex& operator*=(float); complex& operator/=(float); // Let's the compiler synthetize the copy and assignment // operator. It always does a pretty good job. // complex& operator= (const complex&); template complex&operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex&operator/=(const complex<_Tp>&); private: typedef __complex__ float _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex; friend class complex; }; inline float complex::real() const { return __real__ _M_value; } inline float complex::imag() const { return __imag__ _M_value; } inline complex::complex(float r, float i) { __real__ _M_value = r; __imag__ _M_value = i; } inline complex& complex::operator=(float __f) { __real__ _M_value = __f; __imag__ _M_value = 0.0f; return *this; } inline complex& complex::operator+=(float __f) { __real__ _M_value += __f; return *this; } inline complex& complex::operator-=(float __f) { __real__ _M_value -= __f; return *this; } inline complex& complex::operator*=(float __f) { _M_value *= __f; return *this; } inline complex& complex::operator/=(float __f) { _M_value /= __f; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // 26.2.3 complex specializations // complex specialization template<> class complex { public: typedef double value_type; complex(double =0.0, double =0.0); #ifdef _GLIBCPP_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif complex(const complex&); explicit complex(const complex&); double real() const; double imag() const; complex& operator=(double); complex& operator+=(double); complex& operator-=(double); complex& operator*=(double); complex& operator/=(double); // The compiler will synthetize this, efficiently. // complex& operator= (const complex&); template complex& operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex& operator/=(const complex<_Tp>&); private: typedef __complex__ double _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex; friend class complex; }; inline double complex::real() const { return __real__ _M_value; } inline double complex::imag() const { return __imag__ _M_value; } inline complex::complex(double __r, double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } inline complex& complex::operator=(double __d) { __real__ _M_value = __d; __imag__ _M_value = 0.0; return *this; } inline complex& complex::operator+=(double __d) { __real__ _M_value += __d; return *this; } inline complex& complex::operator-=(double __d) { __real__ _M_value -= __d; return *this; } inline complex& complex::operator*=(double __d) { _M_value *= __d; return *this; } inline complex& complex::operator/=(double __d) { _M_value /= __d; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // 26.2.3 complex specializations // complex specialization template<> class complex { public: typedef long double value_type; complex(long double = 0.0L, long double = 0.0L); #ifdef _GLIBCPP_BUGGY_COMPLEX complex(const complex& __z) : _M_value(__z._M_value) { } #endif complex(const complex&); complex(const complex&); long double real() const; long double imag() const; complex& operator= (long double); complex& operator+= (long double); complex& operator-= (long double); complex& operator*= (long double); complex& operator/= (long double); // The compiler knows how to do this efficiently // complex& operator= (const complex&); template complex& operator=(const complex<_Tp>&); template complex& operator+=(const complex<_Tp>&); template complex& operator-=(const complex<_Tp>&); template complex& operator*=(const complex<_Tp>&); template complex& operator/=(const complex<_Tp>&); private: typedef __complex__ long double _ComplexT; _ComplexT _M_value; complex(_ComplexT __z) : _M_value(__z) { } friend class complex; friend class complex; }; inline complex::complex(long double __r, long double __i) { __real__ _M_value = __r; __imag__ _M_value = __i; } inline long double complex::real() const { return __real__ _M_value; } inline long double complex::imag() const { return __imag__ _M_value; } inline complex& complex::operator=(long double __r) { __real__ _M_value = __r; __imag__ _M_value = 0.0L; return *this; } inline complex& complex::operator+=(long double __r) { __real__ _M_value += __r; return *this; } inline complex& complex::operator-=(long double __r) { __real__ _M_value -= __r; return *this; } inline complex& complex::operator*=(long double __r) { _M_value *= __r; return *this; } inline complex& complex::operator/=(long double __r) { _M_value /= __r; return *this; } template inline complex& complex::operator=(const complex<_Tp>& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); return *this; } template inline complex& complex::operator+=(const complex<_Tp>& __z) { __real__ _M_value += __z.real(); __imag__ _M_value += __z.imag(); return *this; } template inline complex& complex::operator-=(const complex<_Tp>& __z) { __real__ _M_value -= __z.real(); __imag__ _M_value -= __z.imag(); return *this; } template inline complex& complex::operator*=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value *= __t; return *this; } template inline complex& complex::operator/=(const complex<_Tp>& __z) { _ComplexT __t; __real__ __t = __z.real(); __imag__ __t = __z.imag(); _M_value /= __t; return *this; } // These bits have to be at the end of this file, so that the // specializations have all been defined. // ??? No, they have to be there because of compiler limitation at // inlining. It suffices that class specializations be defined. inline complex::complex(const complex& __z) : _M_value(_ComplexT(__z._M_value)) { } inline complex::complex(const complex& __z) : _M_value(_ComplexT(__z._M_value)) { } inline complex::complex(const complex& __z) : _M_value(_ComplexT(__z._M_value)) { } inline complex::complex(const complex& __z) { __real__ _M_value = __z.real(); __imag__ _M_value = __z.imag(); } inline complex::complex(const complex& __z) : _M_value(_ComplexT(__z._M_value)) { } inline complex::complex(const complex& __z) : _M_value(_ComplexT(__z._M_value)) { } } // namespace std #endif /* _CPP_COMPLEX */