/* Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc. Contributed by Andy Vaught Namelist output contibuted by Paul Thomas This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Libgfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Libgfortran; see the file COPYING. If not, write to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "config.h" #include #include #include #include #include #include "libgfortran.h" #include "io.h" #define star_fill(p, n) memset(p, '*', n) typedef enum { SIGN_NONE, SIGN_MINUS, SIGN_PLUS } sign_t; static int no_leading_blank = 0 ; void write_a (fnode * f, const char *source, int len) { int wlen; char *p; wlen = f->u.string.length < 0 ? len : f->u.string.length; p = write_block (wlen); if (p == NULL) return; if (wlen < len) memcpy (p, source, wlen); else { memset (p, ' ', wlen - len); memcpy (p + wlen - len, source, len); } } static int64_t extract_int (const void *p, int len) { int64_t i = 0; if (p == NULL) return i; switch (len) { case 1: i = *((const int8_t *) p); break; case 2: i = *((const int16_t *) p); break; case 4: i = *((const int32_t *) p); break; case 8: i = *((const int64_t *) p); break; default: internal_error ("bad integer kind"); } return i; } static double extract_real (const void *p, int len) { double i = 0.0; switch (len) { case 4: i = *((const float *) p); break; case 8: i = *((const double *) p); break; default: internal_error ("bad real kind"); } return i; } /* Given a flag that indicate if a value is negative or not, return a sign_t that gives the sign that we need to produce. */ static sign_t calculate_sign (int negative_flag) { sign_t s = SIGN_NONE; if (negative_flag) s = SIGN_MINUS; else switch (g.sign_status) { case SIGN_SP: s = SIGN_PLUS; break; case SIGN_SS: s = SIGN_NONE; break; case SIGN_S: s = options.optional_plus ? SIGN_PLUS : SIGN_NONE; break; } return s; } /* Returns the value of 10**d. */ static double calculate_exp (int d) { int i; double r = 1.0; for (i = 0; i< (d >= 0 ? d : -d); i++) r *= 10; r = (d >= 0) ? r : 1.0 / r; return r; } /* Generate corresponding I/O format for FMT_G output. The rules to translate FMT_G to FMT_E or FMT_F from DEC fortran LRM (table 11-2, Chapter 11, "I/O Formatting", P11-25) is: Data Magnitude Equivalent Conversion 0< m < 0.1-0.5*10**(-d-1) Ew.d[Ee] m = 0 F(w-n).(d-1), n' ' 0.1-0.5*10**(-d-1)<= m < 1-0.5*10**(-d) F(w-n).d, n' ' 1-0.5*10**(-d)<= m < 10-0.5*10**(-d+1) F(w-n).(d-1), n' ' 10-0.5*10**(-d+1)<= m < 100-0.5*10**(-d+2) F(w-n).(d-2), n' ' ................ .......... 10**(d-1)-0.5*10**(-1)<= m <10**d-0.5 F(w-n).0,n(' ') m >= 10**d-0.5 Ew.d[Ee] notes: for Gw.d , n' ' means 4 blanks for Gw.dEe, n' ' means e+2 blanks */ static fnode * calculate_G_format (fnode *f, double value, int len, int *num_blank) { int e = f->u.real.e; int d = f->u.real.d; int w = f->u.real.w; fnode *newf; double m, exp_d; int low, high, mid; int ubound, lbound; newf = get_mem (sizeof (fnode)); /* Absolute value. */ m = (value > 0.0) ? value : -value; /* In case of the two data magnitude ranges, generate E editing, Ew.d[Ee]. */ exp_d = calculate_exp (d); if ((m > 0.0 && m < 0.1 - 0.05 / (double) exp_d) || (m >= (double) exp_d - 0.5 )) { newf->format = FMT_E; newf->u.real.w = w; newf->u.real.d = d; newf->u.real.e = e; *num_blank = 0; return newf; } /* Use binary search to find the data magnitude range. */ mid = 0; low = 0; high = d + 1; lbound = 0; ubound = d + 1; while (low <= high) { double temp; mid = (low + high) / 2; /* 0.1 * 10**mid - 0.5 * 10**(mid-d-1) */ temp = 0.1 * calculate_exp (mid) - 0.5 * calculate_exp (mid - d - 1); if (m < temp) { ubound = mid; if (ubound == lbound + 1) break; high = mid - 1; } else if (m > temp) { lbound = mid; if (ubound == lbound + 1) { mid ++; break; } low = mid + 1; } else break; } /* Pad with blanks where the exponent would be. */ if (e < 0) *num_blank = 4; else *num_blank = e + 2; /* Generate the F editing. F(w-n).(-(mid-d-1)), n' '. */ newf->format = FMT_F; newf->u.real.w = f->u.real.w - *num_blank; /* Special case. */ if (m == 0.0) newf->u.real.d = d - 1; else newf->u.real.d = - (mid - d - 1); /* For F editing, the scale factor is ignored. */ g.scale_factor = 0; return newf; } /* Output a real number according to its format which is FMT_G free. */ static void output_float (fnode *f, double value, int len) { /* This must be large enough to accurately hold any value. */ char buffer[32]; char *out; char *digits; int e; char expchar; format_token ft; int w; int d; int edigits; int ndigits; /* Number of digits before the decimal point. */ int nbefore; /* Number of zeros after the decimal point. */ int nzero; /* Number of digits after the decimal point. */ int nafter; /* Number of zeros after the decimal point, whatever the precision. */ int nzero_real; int leadzero; int nblanks; int i; sign_t sign; ft = f->format; w = f->u.real.w; d = f->u.real.d; nzero_real = -1; /* We should always know the field width and precision. */ if (d < 0) internal_error ("Unspecified precision"); /* Use sprintf to print the number in the format +D.DDDDe+ddd For an N digit exponent, this gives us (32-6)-N digits after the decimal point, plus another one before the decimal point. */ sign = calculate_sign (value < 0.0); if (value < 0) value = -value; /* Printf always prints at least two exponent digits. */ if (value == 0) edigits = 2; else { edigits = 1 + (int) log10 (fabs(log10 (value))); if (edigits < 2) edigits = 2; } if (ft == FMT_F || ft == FMT_EN || ((ft == FMT_D || ft == FMT_E) && g.scale_factor != 0)) { /* Always convert at full precision to avoid double rounding. */ ndigits = 27 - edigits; } else { /* We know the number of digits, so can let printf do the rounding for us. */ if (ft == FMT_ES) ndigits = d + 1; else ndigits = d; if (ndigits > 27 - edigits) ndigits = 27 - edigits; } sprintf (buffer, "%+-#31.*e", ndigits - 1, value); /* Check the resulting string has punctuation in the correct places. */ if (buffer[2] != '.' || buffer[ndigits + 2] != 'e') internal_error ("printf is broken"); /* Read the exponent back in. */ e = atoi (&buffer[ndigits + 3]) + 1; /* Make sure zero comes out as 0.0e0. */ if (value == 0.0) e = 0; /* Normalize the fractional component. */ buffer[2] = buffer[1]; digits = &buffer[2]; /* Figure out where to place the decimal point. */ switch (ft) { case FMT_F: nbefore = e + g.scale_factor; if (nbefore < 0) { nzero = -nbefore; nzero_real = nzero; if (nzero > d) nzero = d; nafter = d - nzero; nbefore = 0; } else { nzero = 0; nafter = d; } expchar = 0; break; case FMT_E: case FMT_D: i = g.scale_factor; if (value != 0.0) e -= i; if (i < 0) { nbefore = 0; nzero = -i; nafter = d + i; } else if (i > 0) { nbefore = i; nzero = 0; nafter = (d - i) + 1; } else /* i == 0 */ { nbefore = 0; nzero = 0; nafter = d; } if (ft == FMT_E) expchar = 'E'; else expchar = 'D'; break; case FMT_EN: /* The exponent must be a multiple of three, with 1-3 digits before the decimal point. */ if (value != 0.0) e--; if (e >= 0) nbefore = e % 3; else { nbefore = (-e) % 3; if (nbefore != 0) nbefore = 3 - nbefore; } e -= nbefore; nbefore++; nzero = 0; nafter = d; expchar = 'E'; break; case FMT_ES: if (value != 0.0) e--; nbefore = 1; nzero = 0; nafter = d; expchar = 'E'; break; default: /* Should never happen. */ internal_error ("Unexpected format token"); } /* Round the value. */ if (nbefore + nafter == 0) { ndigits = 0; if (nzero_real == d && digits[0] >= '5') { /* We rounded to zero but shouldn't have */ nzero--; nafter = 1; digits[0] = '1'; ndigits = 1; } } else if (nbefore + nafter < ndigits) { ndigits = nbefore + nafter; i = ndigits; if (digits[i] >= '5') { /* Propagate the carry. */ for (i--; i >= 0; i--) { if (digits[i] != '9') { digits[i]++; break; } digits[i] = '0'; } if (i < 0) { /* The carry overflowed. Fortunately we have some spare space at the start of the buffer. We may discard some digits, but this is ok because we already know they are zero. */ digits--; digits[0] = '1'; if (ft == FMT_F) { if (nzero > 0) { nzero--; nafter++; } else nbefore++; } else if (ft == FMT_EN) { nbefore++; if (nbefore == 4) { nbefore = 1; e += 3; } } else e++; } } } /* Calculate the format of the exponent field. */ if (expchar) { edigits = 1; for (i = abs (e); i >= 10; i /= 10) edigits++; if (f->u.real.e < 0) { /* Width not specified. Must be no more than 3 digits. */ if (e > 999 || e < -999) edigits = -1; else { edigits = 4; if (e > 99 || e < -99) expchar = ' '; } } else { /* Exponent width specified, check it is wide enough. */ if (edigits > f->u.real.e) edigits = -1; else edigits = f->u.real.e + 2; } } else edigits = 0; /* Pick a field size if none was specified. */ if (w <= 0) w = nbefore + nzero + nafter + (sign != SIGN_NONE ? 2 : 1); /* Create the ouput buffer. */ out = write_block (w); if (out == NULL) return; /* Zero values always output as positive, even if the value was negative before rounding. */ for (i = 0; i < ndigits; i++) { if (digits[i] != '0') break; } if (i == ndigits) sign = calculate_sign (0); /* Work out how much padding is needed. */ nblanks = w - (nbefore + nzero + nafter + edigits + 1); if (sign != SIGN_NONE) nblanks--; /* Check the value fits in the specified field width. */ if (nblanks < 0 || edigits == -1) { star_fill (out, w); return; } /* See if we have space for a zero before the decimal point. */ if (nbefore == 0 && nblanks > 0) { leadzero = 1; nblanks--; } else leadzero = 0; /* Padd to full field width. */ if ( ( nblanks > 0 ) && !no_leading_blank ) { memset (out, ' ', nblanks); out += nblanks; } /* Output the initial sign (if any). */ if (sign == SIGN_PLUS) *(out++) = '+'; else if (sign == SIGN_MINUS) *(out++) = '-'; /* Output an optional leading zero. */ if (leadzero) *(out++) = '0'; /* Output the part before the decimal point, padding with zeros. */ if (nbefore > 0) { if (nbefore > ndigits) i = ndigits; else i = nbefore; memcpy (out, digits, i); while (i < nbefore) out[i++] = '0'; digits += i; ndigits -= i; out += nbefore; } /* Output the decimal point. */ *(out++) = '.'; /* Output leading zeros after the decimal point. */ if (nzero > 0) { for (i = 0; i < nzero; i++) *(out++) = '0'; } /* Output digits after the decimal point, padding with zeros. */ if (nafter > 0) { if (nafter > ndigits) i = ndigits; else i = nafter; memcpy (out, digits, i); while (i < nafter) out[i++] = '0'; digits += i; ndigits -= i; out += nafter; } /* Output the exponent. */ if (expchar) { if (expchar != ' ') { *(out++) = expchar; edigits--; } #if HAVE_SNPRINTF snprintf (buffer, 32, "%+0*d", edigits, e); #else sprintf (buffer, "%+0*d", edigits, e); #endif memcpy (out, buffer, edigits); } if ( no_leading_blank ) { out += edigits; memset( out , ' ' , nblanks ); no_leading_blank = 0; } } void write_l (fnode * f, char *source, int len) { char *p; int64_t n; p = write_block (f->u.w); if (p == NULL) return; memset (p, ' ', f->u.w - 1); n = extract_int (source, len); p[f->u.w - 1] = (n) ? 'T' : 'F'; } /* Output a real number according to its format. */ static void write_float (fnode *f, const char *source, int len) { double n; int nb =0, res, save_scale_factor; char * p, fin; fnode *f2 = NULL; n = extract_real (source, len); if (f->format != FMT_B && f->format != FMT_O && f->format != FMT_Z) { res = isfinite (n); if (res == 0) { nb = f->u.real.w; p = write_block (nb); if (nb < 3) { memset (p, '*',nb); return; } memset(p, ' ', nb); res = !isnan (n); if (res != 0) { if (signbit(n)) fin = '-'; else fin = '+'; if (nb > 7) memcpy(p + nb - 8, "Infinity", 8); else memcpy(p + nb - 3, "Inf", 3); if (nb < 8 && nb > 3) p[nb - 4] = fin; else if (nb > 8) p[nb - 9] = fin; } else memcpy(p + nb - 3, "NaN", 3); return; } } if (f->format != FMT_G) { output_float (f, n, len); } else { save_scale_factor = g.scale_factor; f2 = calculate_G_format(f, n, len, &nb); output_float (f2, n, len); g.scale_factor = save_scale_factor; if (f2 != NULL) free_mem(f2); if (nb > 0) { p = write_block (nb); memset (p, ' ', nb); } } } static void write_int (fnode *f, const char *source, int len, char *(*conv) (uint64_t)) { uint32_t ns =0; uint64_t n = 0; int w, m, digits, nzero, nblank; char *p, *q; w = f->u.integer.w; m = f->u.integer.m; n = extract_int (source, len); /* Special case: */ if (m == 0 && n == 0) { if (w == 0) w = 1; p = write_block (w); if (p == NULL) return; memset (p, ' ', w); goto done; } if (len < 8) { ns = n; q = conv (ns); } else q = conv (n); digits = strlen (q); /* Select a width if none was specified. The idea here is to always print something. */ if (w == 0) w = ((digits < m) ? m : digits); p = write_block (w); if (p == NULL) return; nzero = 0; if (digits < m) nzero = m - digits; /* See if things will work. */ nblank = w - (nzero + digits); if (nblank < 0) { star_fill (p, w); goto done; } if (!no_leading_blank) { memset (p, ' ', nblank); p += nblank; memset (p, '0', nzero); p += nzero; memcpy (p, q, digits); } else { memset (p, '0', nzero); p += nzero; memcpy (p, q, digits); p += digits; memset (p, ' ', nblank); no_leading_blank = 0; } done: return; } static void write_decimal (fnode *f, const char *source, int len, char *(*conv) (int64_t)) { int64_t n = 0; int w, m, digits, nsign, nzero, nblank; char *p, *q; sign_t sign; w = f->u.integer.w; m = f->u.integer.m; n = extract_int (source, len); /* Special case: */ if (m == 0 && n == 0) { if (w == 0) w = 1; p = write_block (w); if (p == NULL) return; memset (p, ' ', w); goto done; } sign = calculate_sign (n < 0); if (n < 0) n = -n; nsign = sign == SIGN_NONE ? 0 : 1; q = conv (n); digits = strlen (q); /* Select a width if none was specified. The idea here is to always print something. */ if (w == 0) w = ((digits < m) ? m : digits) + nsign; p = write_block (w); if (p == NULL) return; nzero = 0; if (digits < m) nzero = m - digits; /* See if things will work. */ nblank = w - (nsign + nzero + digits); if (nblank < 0) { star_fill (p, w); goto done; } memset (p, ' ', nblank); p += nblank; switch (sign) { case SIGN_PLUS: *p++ = '+'; break; case SIGN_MINUS: *p++ = '-'; break; case SIGN_NONE: break; } memset (p, '0', nzero); p += nzero; memcpy (p, q, digits); done: return; } /* Convert unsigned octal to ascii. */ static char * otoa (uint64_t n) { char *p; if (n == 0) { scratch[0] = '0'; scratch[1] = '\0'; return scratch; } p = scratch + sizeof (SCRATCH_SIZE) - 1; *p-- = '\0'; while (n != 0) { *p = '0' + (n & 7); p -- ; n >>= 3; } return ++p; } /* Convert unsigned binary to ascii. */ static char * btoa (uint64_t n) { char *p; if (n == 0) { scratch[0] = '0'; scratch[1] = '\0'; return scratch; } p = scratch + sizeof (SCRATCH_SIZE) - 1; *p-- = '\0'; while (n != 0) { *p-- = '0' + (n & 1); n >>= 1; } return ++p; } void write_i (fnode * f, const char *p, int len) { write_decimal (f, p, len, (void *) gfc_itoa); } void write_b (fnode * f, const char *p, int len) { write_int (f, p, len, btoa); } void write_o (fnode * f, const char *p, int len) { write_int (f, p, len, otoa); } void write_z (fnode * f, const char *p, int len) { write_int (f, p, len, xtoa); } void write_d (fnode *f, const char *p, int len) { write_float (f, p, len); } void write_e (fnode *f, const char *p, int len) { write_float (f, p, len); } void write_f (fnode *f, const char *p, int len) { write_float (f, p, len); } void write_en (fnode *f, const char *p, int len) { write_float (f, p, len); } void write_es (fnode *f, const char *p, int len) { write_float (f, p, len); } /* Take care of the X/TR descriptor. */ void write_x (fnode * f) { char *p; p = write_block (f->u.n); if (p == NULL) return; memset (p, ' ', f->u.n); } /* List-directed writing. */ /* Write a single character to the output. Returns nonzero if something goes wrong. */ static int write_char (char c) { char *p; p = write_block (1); if (p == NULL) return 1; *p = c; return 0; } /* Write a list-directed logical value. */ static void write_logical (const char *source, int length) { write_char (extract_int (source, length) ? 'T' : 'F'); } /* Write a list-directed integer value. */ static void write_integer (const char *source, int length) { char *p; const char *q; int digits; int width; q = gfc_itoa (extract_int (source, length)); switch (length) { case 1: width = 4; break; case 2: width = 6; break; case 4: width = 11; break; case 8: width = 20; break; default: width = 0; break; } digits = strlen (q); if(width < digits ) width = digits ; p = write_block (width) ; if (no_leading_blank) { memcpy (p, q, digits); memset(p + digits ,' ', width - digits) ; } else { memset(p ,' ', width - digits) ; memcpy (p + width - digits, q, digits); } } /* Write a list-directed string. We have to worry about delimiting the strings if the file has been opened in that mode. */ static void write_character (const char *source, int length) { int i, extra; char *p, d; switch (current_unit->flags.delim) { case DELIM_APOSTROPHE: d = '\''; break; case DELIM_QUOTE: d = '"'; break; default: d = ' '; break; } if (d == ' ') extra = 0; else { extra = 2; for (i = 0; i < length; i++) if (source[i] == d) extra++; } p = write_block (length + extra); if (p == NULL) return; if (d == ' ') memcpy (p, source, length); else { *p++ = d; for (i = 0; i < length; i++) { *p++ = source[i]; if (source[i] == d) *p++ = d; } *p = d; } } /* Output a real number with default format. This is 1PG14.7E2 for REAL(4) and 1PG23.15E3 for REAL(8). */ static void write_real (const char *source, int length) { fnode f ; int org_scale = g.scale_factor; f.format = FMT_G; g.scale_factor = 1; if (length < 8) { f.u.real.w = 14; f.u.real.d = 7; f.u.real.e = 2; } else { f.u.real.w = 23; f.u.real.d = 15; f.u.real.e = 3; } write_float (&f, source , length); g.scale_factor = org_scale; } static void write_complex (const char *source, int len) { if (write_char ('(')) return; write_real (source, len); if (write_char (',')) return; write_real (source + len, len); write_char (')'); } /* Write the separator between items. */ static void write_separator (void) { char *p; p = write_block (options.separator_len); if (p == NULL) return; memcpy (p, options.separator, options.separator_len); } /* Write an item with list formatting. TODO: handle skipping to the next record correctly, particularly with strings. */ void list_formatted_write (bt type, void *p, int len) { static int char_flag; if (current_unit == NULL) return; if (g.first_item) { g.first_item = 0; char_flag = 0; write_char (' '); } else { if (type != BT_CHARACTER || !char_flag || current_unit->flags.delim != DELIM_NONE) write_separator (); } switch (type) { case BT_INTEGER: write_integer (p, len); break; case BT_LOGICAL: write_logical (p, len); break; case BT_CHARACTER: write_character (p, len); break; case BT_REAL: write_real (p, len); break; case BT_COMPLEX: write_complex (p, len); break; default: internal_error ("list_formatted_write(): Bad type"); } char_flag = (type == BT_CHARACTER); } /* NAMELIST OUTPUT nml_write_obj writes a namelist object to the output stream. It is called recursively for derived type components: obj = is the namelist_info for the current object. offset = the offset relative to the address held by the object for derived type arrays. base = is the namelist_info of the derived type, when obj is a component. base_name = the full name for a derived type, including qualifiers if any. The returned value is a pointer to the object beyond the last one accessed, including nested derived types. Notice that the namelist is a linear linked list of objects, including derived types and their components. A tree, of sorts, is implied by the compound names of the derived type components and this is how this function recurses through the list. */ /* A generous estimate of the number of characters needed to print repeat counts and indices, including commas, asterices and brackets. */ #define NML_DIGITS 20 /* Stores the delimiter to be used for character objects. */ static char * nml_delim; static namelist_info * nml_write_obj (namelist_info * obj, index_type offset, namelist_info * base, char * base_name) { int rep_ctr; int num; int nml_carry; index_type len; index_type obj_size; index_type nelem; index_type dim_i; index_type clen; index_type elem_ctr; index_type obj_name_len; void * p ; char cup; char * obj_name; char * ext_name; char rep_buff[NML_DIGITS]; namelist_info * cmp; namelist_info * retval = obj->next; /* Write namelist variable names in upper case. If a derived type, nothing is output. If a component, base and base_name are set. */ if (obj->type != GFC_DTYPE_DERIVED) { write_character ("\n ", 2); len = 0; if (base) { len =strlen (base->var_name); for (dim_i = 0; dim_i < strlen (base_name); dim_i++) { cup = toupper (base_name[dim_i]); write_character (&cup, 1); } } for (dim_i =len; dim_i < strlen (obj->var_name); dim_i++) { cup = toupper (obj->var_name[dim_i]); write_character (&cup, 1); } write_character ("=", 1); } /* Counts the number of data output on a line, including names. */ num = 1; len = obj->len; obj_size = len; if (obj->type == GFC_DTYPE_COMPLEX) obj_size = 2*len; if (obj->type == GFC_DTYPE_CHARACTER) obj_size = obj->string_length; if (obj->var_rank) obj_size = obj->size; /* Set the index vector and count the number of elements. */ nelem = 1; for (dim_i=0; dim_i < obj->var_rank; dim_i++) { obj->ls[dim_i].idx = obj->dim[dim_i].lbound; nelem = nelem * (obj->dim[dim_i].ubound + 1 - obj->dim[dim_i].lbound); } /* Main loop to output the data held in the object. */ rep_ctr = 1; for (elem_ctr = 0; elem_ctr < nelem; elem_ctr++) { /* Build the pointer to the data value. The offset is passed by recursive calls to this function for arrays of derived types. Is NULL otherwise. */ p = (void *)(obj->mem_pos + elem_ctr * obj_size); p += offset; /* Check for repeat counts of intrinsic types. */ if ((elem_ctr < (nelem - 1)) && (obj->type != GFC_DTYPE_DERIVED) && !memcmp (p, (void*)(p + obj_size ), obj_size )) { rep_ctr++; } /* Execute a repeated output. Note the flag no_leading_blank that is used in the functions used to output the intrinsic types. */ else { if (rep_ctr > 1) { st_sprintf(rep_buff, " %d*", rep_ctr); write_character (rep_buff, strlen (rep_buff)); no_leading_blank = 1; } num++; /* Output the data, if an intrinsic type, or recurse into this routine to treat derived types. */ switch (obj->type) { case GFC_DTYPE_INTEGER: write_integer (p, len); break; case GFC_DTYPE_LOGICAL: write_logical (p, len); break; case GFC_DTYPE_CHARACTER: if (nml_delim) write_character (nml_delim, 1); write_character (p, obj->string_length); if (nml_delim) write_character (nml_delim, 1); break; case GFC_DTYPE_REAL: write_real (p, len); break; case GFC_DTYPE_COMPLEX: no_leading_blank = 0; num++; write_complex (p, len); break; case GFC_DTYPE_DERIVED: /* To treat a derived type, we need to build two strings: ext_name = the name, including qualifiers that prepends component names in the output - passed to nml_write_obj. obj_name = the derived type name with no qualifiers but % appended. This is used to identify the components. */ /* First ext_name => get length of all possible components */ ext_name = (char*)get_mem ( (base_name ? strlen (base_name) : 0) + (base ? strlen (base->var_name) : 0) + strlen (obj->var_name) + obj->var_rank * NML_DIGITS); strcpy(ext_name, base_name ? base_name : ""); clen = base ? strlen (base->var_name) : 0; strcat (ext_name, obj->var_name + clen); /* Append the qualifier. */ for (dim_i = 0; dim_i < obj->var_rank; dim_i++) { strcat (ext_name, dim_i ? "" : "("); clen = strlen (ext_name); st_sprintf (ext_name + clen, "%d", obj->ls[dim_i].idx); strcat (ext_name, (dim_i == obj->var_rank - 1) ? ")" : ","); } /* Now obj_name. */ obj_name_len = strlen (obj->var_name) + 1; obj_name = get_mem (obj_name_len+1); strcpy (obj_name, obj->var_name); strcat (obj_name, "%"); /* Now loop over the components. Update the component pointer with the return value from nml_write_obj => this loop jumps past nested derived types. */ for (cmp = obj->next; cmp && !strncmp (cmp->var_name, obj_name, obj_name_len); cmp = retval) { retval = nml_write_obj (cmp, (index_type)(p - obj->mem_pos), obj, ext_name); } free_mem (obj_name); free_mem (ext_name); goto obj_loop; default: internal_error ("Bad type for namelist write"); } /* Reset the leading blank suppression, write a comma and, if 5 values have been output, write a newline and advance to column 2. Reset the repeat counter. */ no_leading_blank = 0; write_character (",", 1); if (num > 5) { num = 0; write_character ("\n ", 2); } rep_ctr = 1; } /* Cycle through and increment the index vector. */ obj_loop: nml_carry = 1; for (dim_i = 0; nml_carry && (dim_i < obj->var_rank); dim_i++) { obj->ls[dim_i].idx += nml_carry ; nml_carry = 0; if (obj->ls[dim_i].idx > (ssize_t)obj->dim[dim_i].ubound) { obj->ls[dim_i].idx = obj->dim[dim_i].lbound; nml_carry = 1; } } } /* Return a pointer beyond the furthest object accessed. */ return retval; } /* This is the entry function for namelist writes. It outputs the name of the namelist and iterates through the namelist by calls to nml_write_obj. The call below has dummys in the arguments used in the treatment of derived types. */ void namelist_write (void) { namelist_info * t1, *t2, *dummy = NULL; index_type i; index_type dummy_offset = 0; char c; char * dummy_name = NULL; unit_delim tmp_delim; /* Set the delimiter for namelist output. */ tmp_delim = current_unit->flags.delim; current_unit->flags.delim = DELIM_NONE; switch (tmp_delim) { case (DELIM_QUOTE): nml_delim = "\""; break; case (DELIM_APOSTROPHE): nml_delim = "'"; break; default: nml_delim = NULL; } write_character ("&",1); /* Write namelist name in upper case - f95 std. */ for (i = 0 ;i < ioparm.namelist_name_len ;i++ ) { c = toupper (ioparm.namelist_name[i]); write_character (&c ,1); } if (ionml != NULL) { t1 = ionml; while (t1 != NULL) { t2 = t1; t1 = nml_write_obj (t2, dummy_offset, dummy, dummy_name); } } write_character (" /\n", 4); /* Recover the original delimiter. */ current_unit->flags.delim = tmp_delim; } #undef NML_DIGITS