/* Generic implementation of the RESHAPE intrinsic Copyright 2002, 2006, 2007 Free Software Foundation, Inc. Contributed by Paul Brook This file is part of the GNU Fortran 95 runtime library (libgfortran). Libgfortran is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. In addition to the permissions in the GNU General Public License, the Free Software Foundation gives you unlimited permission to link the compiled version of this file into combinations with other programs, and to distribute those combinations without any restriction coming from the use of this file. (The General Public License restrictions do apply in other respects; for example, they cover modification of the file, and distribution when not linked into a combine executable.) Ligbfortran is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with libgfortran; see the file COPYING. If not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "libgfortran.h" #include #include #include typedef GFC_ARRAY_DESCRIPTOR(1, index_type) shape_type; typedef GFC_ARRAY_DESCRIPTOR(GFC_MAX_DIMENSIONS, char) parray; static void reshape_internal (parray *ret, parray *source, shape_type *shape, parray *pad, shape_type *order, index_type size) { /* r.* indicates the return array. */ index_type rcount[GFC_MAX_DIMENSIONS]; index_type rextent[GFC_MAX_DIMENSIONS]; index_type rstride[GFC_MAX_DIMENSIONS]; index_type rstride0; index_type rdim; index_type rsize; index_type rs; index_type rex; char * restrict rptr; /* s.* indicates the source array. */ index_type scount[GFC_MAX_DIMENSIONS]; index_type sextent[GFC_MAX_DIMENSIONS]; index_type sstride[GFC_MAX_DIMENSIONS]; index_type sstride0; index_type sdim; index_type ssize; const char *sptr; /* p.* indicates the pad array. */ index_type pcount[GFC_MAX_DIMENSIONS]; index_type pextent[GFC_MAX_DIMENSIONS]; index_type pstride[GFC_MAX_DIMENSIONS]; index_type pdim; index_type psize; const char *pptr; const char *src; int n; int dim; int sempty, pempty, shape_empty; index_type shape_data[GFC_MAX_DIMENSIONS]; rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1; if (rdim != GFC_DESCRIPTOR_RANK(ret)) runtime_error("rank of return array incorrect in RESHAPE intrinsic"); shape_empty = 0; for (n = 0; n < rdim; n++) { shape_data[n] = shape->data[n * shape->dim[0].stride]; if (shape_data[n] <= 0) { shape_data[n] = 0; shape_empty = 1; } } if (ret->data == NULL) { rdim = shape->dim[0].ubound - shape->dim[0].lbound + 1; rs = 1; for (n = 0; n < rdim; n++) { ret->dim[n].lbound = 0; rex = shape_data[n]; ret->dim[n].ubound = rex - 1; ret->dim[n].stride = rs; rs *= rex; } ret->offset = 0; ret->data = internal_malloc_size ( rs * size ); ret->dtype = (source->dtype & ~GFC_DTYPE_RANK_MASK) | rdim; } if (shape_empty) return; rsize = 1; for (n = 0; n < rdim; n++) { if (order) dim = order->data[n * order->dim[0].stride] - 1; else dim = n; rcount[n] = 0; rstride[n] = ret->dim[dim].stride; rextent[n] = ret->dim[dim].ubound + 1 - ret->dim[dim].lbound; if (rextent[n] != shape_data[dim]) runtime_error ("shape and target do not conform"); if (rsize == rstride[n]) rsize *= rextent[n]; else rsize = 0; if (rextent[n] <= 0) return; } sdim = GFC_DESCRIPTOR_RANK (source); ssize = 1; sempty = 0; for (n = 0; n < sdim; n++) { scount[n] = 0; sstride[n] = source->dim[n].stride; sextent[n] = source->dim[n].ubound + 1 - source->dim[n].lbound; if (sextent[n] <= 0) { sempty = 1; sextent[n] = 0; } if (ssize == sstride[n]) ssize *= sextent[n]; else ssize = 0; } if (pad) { pdim = GFC_DESCRIPTOR_RANK (pad); psize = 1; pempty = 0; for (n = 0; n < pdim; n++) { pcount[n] = 0; pstride[n] = pad->dim[n].stride; pextent[n] = pad->dim[n].ubound + 1 - pad->dim[n].lbound; if (pextent[n] <= 0) { pempty = 1; pextent[n] = 0; } if (psize == pstride[n]) psize *= pextent[n]; else psize = 0; } pptr = pad->data; } else { pdim = 0; psize = 1; pempty = 1; pptr = NULL; } if (rsize != 0 && ssize != 0 && psize != 0) { rsize *= size; ssize *= size; psize *= size; reshape_packed (ret->data, rsize, source->data, ssize, pad ? pad->data : NULL, psize); return; } rptr = ret->data; src = sptr = source->data; rstride0 = rstride[0] * size; sstride0 = sstride[0] * size; if (sempty && pempty) abort (); if (sempty) { /* Switch immediately to the pad array. */ src = pptr; sptr = NULL; sdim = pdim; for (dim = 0; dim < pdim; dim++) { scount[dim] = pcount[dim]; sextent[dim] = pextent[dim]; sstride[dim] = pstride[dim]; sstride0 = sstride[0] * size; } } while (rptr) { /* Select between the source and pad arrays. */ memcpy(rptr, src, size); /* Advance to the next element. */ rptr += rstride0; src += sstride0; rcount[0]++; scount[0]++; /* Advance to the next destination element. */ n = 0; while (rcount[n] == rextent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ rcount[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ rptr -= rstride[n] * rextent[n] * size; n++; if (n == rdim) { /* Break out of the loop. */ rptr = NULL; break; } else { rcount[n]++; rptr += rstride[n] * size; } } /* Advance to the next source element. */ n = 0; while (scount[n] == sextent[n]) { /* When we get to the end of a dimension, reset it and increment the next dimension. */ scount[n] = 0; /* We could precalculate these products, but this is a less frequently used path so probably not worth it. */ src -= sstride[n] * sextent[n] * size; n++; if (n == sdim) { if (sptr && pad) { /* Switch to the pad array. */ sptr = NULL; sdim = pdim; for (dim = 0; dim < pdim; dim++) { scount[dim] = pcount[dim]; sextent[dim] = pextent[dim]; sstride[dim] = pstride[dim]; sstride0 = sstride[0] * size; } } /* We now start again from the beginning of the pad array. */ src = pptr; break; } else { scount[n]++; src += sstride[n] * size; } } } } extern void reshape (parray *, parray *, shape_type *, parray *, shape_type *); export_proto(reshape); void reshape (parray *ret, parray *source, shape_type *shape, parray *pad, shape_type *order) { reshape_internal (ret, source, shape, pad, order, GFC_DESCRIPTOR_SIZE (source)); } extern void reshape_char (parray *, gfc_charlen_type, parray *, shape_type *, parray *, shape_type *, gfc_charlen_type, gfc_charlen_type); export_proto(reshape_char); void reshape_char (parray *ret, gfc_charlen_type ret_length __attribute__((unused)), parray *source, shape_type *shape, parray *pad, shape_type *order, gfc_charlen_type source_length, gfc_charlen_type pad_length __attribute__((unused))) { reshape_internal (ret, source, shape, pad, order, source_length); } extern void reshape_char4 (parray *, gfc_charlen_type, parray *, shape_type *, parray *, shape_type *, gfc_charlen_type, gfc_charlen_type); export_proto(reshape_char4); void reshape_char4 (parray *ret, gfc_charlen_type ret_length __attribute__((unused)), parray *source, shape_type *shape, parray *pad, shape_type *order, gfc_charlen_type source_length, gfc_charlen_type pad_length __attribute__((unused))) { reshape_internal (ret, source, shape, pad, order, source_length * sizeof (gfc_char4_t)); }