// Copyright 2015 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Code to check that pointer writes follow the cgo rules. // These functions are invoked via the write barrier when debug.cgocheck > 1. package runtime import ( "runtime/internal/sys" "unsafe" ) const cgoWriteBarrierFail = "Go pointer stored into non-Go memory" // cgoCheckWriteBarrier is called whenever a pointer is stored into memory. // It throws if the program is storing a Go pointer into non-Go memory. //go:nosplit //go:nowritebarrier func cgoCheckWriteBarrier(dst *uintptr, src uintptr) { if !cgoIsGoPointer(unsafe.Pointer(src)) { return } if cgoIsGoPointer(unsafe.Pointer(dst)) { return } // If we are running on the system stack then dst might be an // address on the stack, which is OK. g := getg() if g == g.m.g0 || g == g.m.gsignal { return } // Allocating memory can write to various mfixalloc structs // that look like they are non-Go memory. if g.m.mallocing != 0 { return } systemstack(func() { println("write of Go pointer", hex(src), "to non-Go memory", hex(uintptr(unsafe.Pointer(dst)))) throw(cgoWriteBarrierFail) }) } // cgoCheckMemmove is called when moving a block of memory. // dst and src point off bytes into the value to copy. // size is the number of bytes to copy. // It throws if the program is copying a block that contains a Go pointer // into non-Go memory. //go:nosplit //go:nowritebarrier func cgoCheckMemmove(typ *_type, dst, src unsafe.Pointer, off, size uintptr) { if typ.kind&kindNoPointers != 0 { return } if !cgoIsGoPointer(src) { return } if cgoIsGoPointer(dst) { return } cgoCheckTypedBlock(typ, src, off, size) } // cgoCheckSliceCopy is called when copying n elements of a slice from // src to dst. typ is the element type of the slice. // It throws if the program is copying slice elements that contain Go pointers // into non-Go memory. //go:nosplit //go:nowritebarrier func cgoCheckSliceCopy(typ *_type, dst, src slice, n int) { if typ.kind&kindNoPointers != 0 { return } if !cgoIsGoPointer(src.array) { return } if cgoIsGoPointer(dst.array) { return } p := src.array for i := 0; i < n; i++ { cgoCheckTypedBlock(typ, p, 0, typ.size) p = add(p, typ.size) } } // cgoCheckTypedBlock checks the block of memory at src, for up to size bytes, // and throws if it finds a Go pointer. The type of the memory is typ, // and src is off bytes into that type. //go:nosplit //go:nowritebarrier func cgoCheckTypedBlock(typ *_type, src unsafe.Pointer, off, size uintptr) { // Anything past typ.ptrdata is not a pointer. if typ.ptrdata <= off { return } if ptrdataSize := typ.ptrdata - off; size > ptrdataSize { size = ptrdataSize } if typ.kind&kindGCProg == 0 { cgoCheckBits(src, typ.gcdata, off, size) return } // The type has a GC program. Try to find GC bits somewhere else. roots := gcRoots for roots != nil { for i := 0; i < roots.count; i++ { pr := roots.roots[i] addr := uintptr(pr.decl) if cgoInRange(src, addr, addr+pr.size) { doff := uintptr(src) - addr cgoCheckBits(add(src, -doff), pr.gcdata, off+doff, size) return } } roots = roots.next } aoff := uintptr(src) - mheap_.arena_start idx := aoff >> _PageShift s := mheap_.spans[idx] if s.state == _MSpanStack { // There are no heap bits for value stored on the stack. // For a channel receive src might be on the stack of some // other goroutine, so we can't unwind the stack even if // we wanted to. // We can't expand the GC program without extra storage // space we can't easily get. // Fortunately we have the type information. systemstack(func() { cgoCheckUsingType(typ, src, off, size) }) return } // src must be in the regular heap. hbits := heapBitsForAddr(uintptr(src)) for i := uintptr(0); i < off+size; i += sys.PtrSize { bits := hbits.bits() if i >= off && bits&bitPointer != 0 { v := *(*unsafe.Pointer)(add(src, i)) if cgoIsGoPointer(v) { systemstack(func() { throw(cgoWriteBarrierFail) }) } } hbits = hbits.next() } } // cgoCheckBits checks the block of memory at src, for up to size // bytes, and throws if it finds a Go pointer. The gcbits mark each // pointer value. The src pointer is off bytes into the gcbits. //go:nosplit //go:nowritebarrier func cgoCheckBits(src unsafe.Pointer, gcbits *byte, off, size uintptr) { skipMask := off / sys.PtrSize / 8 skipBytes := skipMask * sys.PtrSize * 8 ptrmask := addb(gcbits, skipMask) src = add(src, skipBytes) off -= skipBytes size += off var bits uint32 for i := uintptr(0); i < size; i += sys.PtrSize { if i&(sys.PtrSize*8-1) == 0 { bits = uint32(*ptrmask) ptrmask = addb(ptrmask, 1) } else { bits >>= 1 } if off > 0 { off -= sys.PtrSize } else { if bits&1 != 0 { v := *(*unsafe.Pointer)(add(src, i)) if cgoIsGoPointer(v) { systemstack(func() { throw(cgoWriteBarrierFail) }) } } } } } // cgoCheckUsingType is like cgoCheckTypedBlock, but is a last ditch // fall back to look for pointers in src using the type information. // We only use this when looking at a value on the stack when the type // uses a GC program, because otherwise it's more efficient to use the // GC bits. This is called on the system stack. //go:nowritebarrier //go:systemstack func cgoCheckUsingType(typ *_type, src unsafe.Pointer, off, size uintptr) { if typ.kind&kindNoPointers != 0 { return } // Anything past typ.ptrdata is not a pointer. if typ.ptrdata <= off { return } if ptrdataSize := typ.ptrdata - off; size > ptrdataSize { size = ptrdataSize } if typ.kind&kindGCProg == 0 { cgoCheckBits(src, typ.gcdata, off, size) return } switch typ.kind & kindMask { default: throw("can't happen") case kindArray: at := (*arraytype)(unsafe.Pointer(typ)) for i := uintptr(0); i < at.len; i++ { if off < at.elem.size { cgoCheckUsingType(at.elem, src, off, size) } src = add(src, at.elem.size) skipped := off if skipped > at.elem.size { skipped = at.elem.size } checked := at.elem.size - skipped off -= skipped if size <= checked { return } size -= checked } case kindStruct: st := (*structtype)(unsafe.Pointer(typ)) for _, f := range st.fields { if off < f.typ.size { cgoCheckUsingType(f.typ, src, off, size) } src = add(src, f.typ.size) skipped := off if skipped > f.typ.size { skipped = f.typ.size } checked := f.typ.size - skipped off -= skipped if size <= checked { return } size -= checked } } }