// Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // Garbage collector: finalizers and block profiling. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // finblock is allocated from non-GC'd memory, so any heap pointers // must be specially handled. // //go:notinheap type finblock struct { alllink *finblock next *finblock cnt uint32 _ int32 fin [(_FinBlockSize - 2*sys.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer } var finlock mutex // protects the following variables var fing *g // goroutine that runs finalizers var finq *finblock // list of finalizers that are to be executed var finc *finblock // cache of free blocks var finptrmask [_FinBlockSize / sys.PtrSize / 8]byte var fingwait bool var fingwake bool var allfin *finblock // list of all blocks // NOTE: Layout known to queuefinalizer. type finalizer struct { fn *funcval // function to call (may be a heap pointer) arg unsafe.Pointer // ptr to object (may be a heap pointer) ft *functype // type of fn (unlikely, but may be a heap pointer) ot *ptrtype // type of ptr to object (may be a heap pointer) } func queuefinalizer(p unsafe.Pointer, fn *funcval, ft *functype, ot *ptrtype) { lock(&finlock) if finq == nil || finq.cnt == uint32(len(finq.fin)) { if finc == nil { finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gc_sys)) finc.alllink = allfin allfin = finc if finptrmask[0] == 0 { // Build pointer mask for Finalizer array in block. // We allocate values of type finalizer in // finblock values. Since these values are // allocated by persistentalloc, they require // special scanning during GC. finptrmask is a // pointer mask to use while scanning. // Since all the values in finalizer are // pointers, just turn all bits on. for i := range finptrmask { finptrmask[i] = 0xff } } } block := finc finc = block.next block.next = finq finq = block } f := &finq.fin[finq.cnt] atomic.Xadd(&finq.cnt, +1) // Sync with markroots f.fn = fn f.ft = ft f.ot = ot f.arg = p fingwake = true unlock(&finlock) } //go:nowritebarrier func iterate_finq(callback func(*funcval, unsafe.Pointer, *functype, *ptrtype)) { for fb := allfin; fb != nil; fb = fb.alllink { for i := uint32(0); i < fb.cnt; i++ { f := &fb.fin[i] callback(f.fn, f.arg, f.ft, f.ot) } } } func wakefing() *g { var res *g lock(&finlock) if fingwait && fingwake { fingwait = false fingwake = false res = fing } unlock(&finlock) return res } var ( fingCreate uint32 ) func createfing() { // start the finalizer goroutine exactly once if fingCreate == 0 && atomic.Cas(&fingCreate, 0, 1) { expectSystemGoroutine() go runfinq() } } // This is the goroutine that runs all of the finalizers func runfinq() { setSystemGoroutine() var ( ef eface ifac iface ) gp := getg() for { lock(&finlock) fb := finq finq = nil if fb == nil { fing = gp fingwait = true goparkunlock(&finlock, "finalizer wait", traceEvGoBlock, 1) continue } unlock(&finlock) for fb != nil { for i := fb.cnt; i > 0; i-- { f := &fb.fin[i-1] if f.ft == nil { throw("missing type in runfinq") } fint := f.ft.in[0] var param unsafe.Pointer switch fint.kind & kindMask { case kindPtr: // direct use of pointer param = unsafe.Pointer(&f.arg) case kindInterface: ityp := (*interfacetype)(unsafe.Pointer(fint)) if len(ityp.methods) == 0 { // set up with empty interface ef._type = &f.ot.typ ef.data = f.arg param = unsafe.Pointer(&ef) } else { // convert to interface with methods // this conversion is guaranteed to succeed - we checked in SetFinalizer ifac.tab = getitab(fint, &f.ot.typ, true) ifac.data = f.arg param = unsafe.Pointer(&ifac) } default: throw("bad kind in runfinq") } // This is not a system goroutine while // running the actual finalizer. // This matters because we want this // goroutine to appear in a stack dump // if the finalizer crashes. // The gc toolchain handles this using // a global variable fingRunning, // but we don't need that. gp.isSystemGoroutine = false reflectcall(f.ft, f.fn, false, false, ¶m, nil) gp.isSystemGoroutine = true // Drop finalizer queue heap references // before hiding them from markroot. // This also ensures these will be // clear if we reuse the finalizer. f.fn = nil f.arg = nil f.ot = nil atomic.Store(&fb.cnt, i-1) } next := fb.next lock(&finlock) fb.next = finc finc = fb unlock(&finlock) fb = next } } } // SetFinalizer sets the finalizer associated with obj to the provided // finalizer function. When the garbage collector finds an unreachable block // with an associated finalizer, it clears the association and runs // finalizer(obj) in a separate goroutine. This makes obj reachable again, // but now without an associated finalizer. Assuming that SetFinalizer // is not called again, the next time the garbage collector sees // that obj is unreachable, it will free obj. // // SetFinalizer(obj, nil) clears any finalizer associated with obj. // // The argument obj must be a pointer to an object allocated by calling // new, by taking the address of a composite literal, or by taking the // address of a local variable. // The argument finalizer must be a function that takes a single argument // to which obj's type can be assigned, and can have arbitrary ignored return // values. If either of these is not true, SetFinalizer may abort the // program. // // Finalizers are run in dependency order: if A points at B, both have // finalizers, and they are otherwise unreachable, only the finalizer // for A runs; once A is freed, the finalizer for B can run. // If a cyclic structure includes a block with a finalizer, that // cycle is not guaranteed to be garbage collected and the finalizer // is not guaranteed to run, because there is no ordering that // respects the dependencies. // // The finalizer for obj is scheduled to run at some arbitrary time after // obj becomes unreachable. // There is no guarantee that finalizers will run before a program exits, // so typically they are useful only for releasing non-memory resources // associated with an object during a long-running program. // For example, an os.File object could use a finalizer to close the // associated operating system file descriptor when a program discards // an os.File without calling Close, but it would be a mistake // to depend on a finalizer to flush an in-memory I/O buffer such as a // bufio.Writer, because the buffer would not be flushed at program exit. // // It is not guaranteed that a finalizer will run if the size of *obj is // zero bytes. // // It is not guaranteed that a finalizer will run for objects allocated // in initializers for package-level variables. Such objects may be // linker-allocated, not heap-allocated. // // A finalizer may run as soon as an object becomes unreachable. // In order to use finalizers correctly, the program must ensure that // the object is reachable until it is no longer required. // Objects stored in global variables, or that can be found by tracing // pointers from a global variable, are reachable. For other objects, // pass the object to a call of the KeepAlive function to mark the // last point in the function where the object must be reachable. // // For example, if p points to a struct that contains a file descriptor d, // and p has a finalizer that closes that file descriptor, and if the last // use of p in a function is a call to syscall.Write(p.d, buf, size), then // p may be unreachable as soon as the program enters syscall.Write. The // finalizer may run at that moment, closing p.d, causing syscall.Write // to fail because it is writing to a closed file descriptor (or, worse, // to an entirely different file descriptor opened by a different goroutine). // To avoid this problem, call runtime.KeepAlive(p) after the call to // syscall.Write. // // A single goroutine runs all finalizers for a program, sequentially. // If a finalizer must run for a long time, it should do so by starting // a new goroutine. func SetFinalizer(obj interface{}, finalizer interface{}) { if debug.sbrk != 0 { // debug.sbrk never frees memory, so no finalizers run // (and we don't have the data structures to record them). return } e := efaceOf(&obj) etyp := e._type if etyp == nil { throw("runtime.SetFinalizer: first argument is nil") } if etyp.kind&kindMask != kindPtr { throw("runtime.SetFinalizer: first argument is " + *etyp.string + ", not pointer") } ot := (*ptrtype)(unsafe.Pointer(etyp)) if ot.elem == nil { throw("nil elem type!") } // find the containing object _, base, _ := findObject(e.data) if base == nil { // 0-length objects are okay. if e.data == unsafe.Pointer(&zerobase) { return } // Global initializers might be linker-allocated. // var Foo = &Object{} // func main() { // runtime.SetFinalizer(Foo, nil) // } // The relevant segments are: noptrdata, data, bss, noptrbss. // We cannot assume they are in any order or even contiguous, // due to external linking. // // For gccgo we have no reliable way to detect them, // so we just return. return } if e.data != base { // As an implementation detail we allow to set finalizers for an inner byte // of an object if it could come from tiny alloc (see mallocgc for details). if ot.elem == nil || ot.elem.kind&kindNoPointers == 0 || ot.elem.size >= maxTinySize { throw("runtime.SetFinalizer: pointer not at beginning of allocated block") } } f := efaceOf(&finalizer) ftyp := f._type if ftyp == nil { // switch to system stack and remove finalizer systemstack(func() { removefinalizer(e.data) }) return } if ftyp.kind&kindMask != kindFunc { throw("runtime.SetFinalizer: second argument is " + *ftyp.string + ", not a function") } ft := (*functype)(unsafe.Pointer(ftyp)) if ft.dotdotdot { throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string + " because dotdotdot") } if len(ft.in) != 1 { throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string) } fint := ft.in[0] switch { case fint == etyp: // ok - same type goto okarg case fint.kind&kindMask == kindPtr: if (fint.uncommontype == nil || etyp.uncommontype == nil) && (*ptrtype)(unsafe.Pointer(fint)).elem == ot.elem { // ok - not same type, but both pointers, // one or the other is unnamed, and same element type, so assignable. goto okarg } case fint.kind&kindMask == kindInterface: ityp := (*interfacetype)(unsafe.Pointer(fint)) if len(ityp.methods) == 0 { // ok - satisfies empty interface goto okarg } if getitab(fint, etyp, true) == nil { goto okarg } } throw("runtime.SetFinalizer: cannot pass " + *etyp.string + " to finalizer " + *ftyp.string) okarg: // make sure we have a finalizer goroutine createfing() systemstack(func() { data := f.data if !isDirectIface(ftyp) { data = *(*unsafe.Pointer)(data) } if !addfinalizer(e.data, (*funcval)(data), ft, ot) { throw("runtime.SetFinalizer: finalizer already set") } }) } // Look up pointer v in heap. Return the span containing the object, // the start of the object, and the size of the object. If the object // does not exist, return nil, nil, 0. func findObject(v unsafe.Pointer) (s *mspan, x unsafe.Pointer, n uintptr) { c := gomcache() c.local_nlookup++ if sys.PtrSize == 4 && c.local_nlookup >= 1<<30 { // purge cache stats to prevent overflow lock(&mheap_.lock) purgecachedstats(c) unlock(&mheap_.lock) } // find span arena_start := mheap_.arena_start arena_used := mheap_.arena_used if uintptr(v) < arena_start || uintptr(v) >= arena_used { return } p := uintptr(v) >> pageShift q := p - arena_start>>pageShift s = mheap_.spans[q] if s == nil { return } x = unsafe.Pointer(s.base()) if uintptr(v) < uintptr(x) || uintptr(v) >= uintptr(unsafe.Pointer(s.limit)) || s.state != mSpanInUse { s = nil x = nil return } n = s.elemsize if s.sizeclass != 0 { x = add(x, (uintptr(v)-uintptr(x))/n*n) } return } // Mark KeepAlive as noinline so that the current compiler will ensure // that the argument is alive at the point of the function call. // If it were inlined, it would disappear, and there would be nothing // keeping the argument alive. Perhaps a future compiler will recognize // runtime.KeepAlive specially and do something more efficient. //go:noinline // KeepAlive marks its argument as currently reachable. // This ensures that the object is not freed, and its finalizer is not run, // before the point in the program where KeepAlive is called. // // A very simplified example showing where KeepAlive is required: // type File struct { d int } // d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0) // // ... do something if err != nil ... // p := &File{d} // runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) }) // var buf [10]byte // n, err := syscall.Read(p.d, buf[:]) // // Ensure p is not finalized until Read returns. // runtime.KeepAlive(p) // // No more uses of p after this point. // // Without the KeepAlive call, the finalizer could run at the start of // syscall.Read, closing the file descriptor before syscall.Read makes // the actual system call. func KeepAlive(interface{}) {}