/* GNU Objective-C Runtime API. Copyright (C) 1993, 1995, 1996, 1997, 2002, 2004 Free Software Foundation, Inc. This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* As a special exception, if you link this library with files compiled with GCC to produce an executable, this does not cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __objc_api_INCLUDE_GNU #define __objc_api_INCLUDE_GNU #include "objc.h" #include "hash.h" #include "thr.h" #include "objc-decls.h" #include #include #ifdef __cplusplus extern "C" { #endif /* __cplusplus */ /* For functions which return Method_t */ #define METHOD_NULL (Method_t)0 /* Boolean typedefs */ /* Method descriptor returned by introspective Object methods. This is really just the first part of the more complete objc_method structure defined below and used internally by the runtime. */ struct objc_method_description { SEL name; /* this is a selector, not a string */ char *types; /* type encoding */ }; /* Filer types used to describe Ivars and Methods. */ #define _C_ID '@' #define _C_CLASS '#' #define _C_SEL ':' #define _C_CHR 'c' #define _C_UCHR 'C' #define _C_SHT 's' #define _C_USHT 'S' #define _C_INT 'i' #define _C_UINT 'I' #define _C_LNG 'l' #define _C_ULNG 'L' #define _C_LNG_LNG 'q' #define _C_ULNG_LNG 'Q' #define _C_FLT 'f' #define _C_DBL 'd' #define _C_BFLD 'b' #define _C_BOOL 'B' #define _C_VOID 'v' #define _C_UNDEF '?' #define _C_PTR '^' #define _C_CHARPTR '*' #define _C_ATOM '%' #define _C_ARY_B '[' #define _C_ARY_E ']' #define _C_UNION_B '(' #define _C_UNION_E ')' #define _C_STRUCT_B '{' #define _C_STRUCT_E '}' #define _C_VECTOR '!' #define _C_COMPLEX 'j' /* Error handling Call objc_error() or objc_verror() to record an error; this error routine will generally exit the program but not necessarily if the user has installed his own error handler. Call objc_set_error_handler to assign your own function for handling errors. The function should return YES if it is ok to continue execution, or return NO or just abort if the program should be stopped. The default error handler is just to print a message on stderr. The error handler function should be of type objc_error_handler The first parameter is an object instance of relevance. The second parameter is an error code. The third parameter is a format string in the printf style. The fourth parameter is a variable list of arguments. */ extern void objc_error(id object, int code, const char* fmt, ...); extern void objc_verror(id object, int code, const char* fmt, va_list ap); typedef BOOL (*objc_error_handler)(id, int code, const char *fmt, va_list ap); extern objc_error_handler objc_set_error_handler(objc_error_handler func); /* Error codes These are used by the runtime library, and your error handling may use them to determine if the error is hard or soft thus whether execution can continue or abort. */ #define OBJC_ERR_UNKNOWN 0 /* Generic error */ #define OBJC_ERR_OBJC_VERSION 1 /* Incorrect runtime version */ #define OBJC_ERR_GCC_VERSION 2 /* Incorrect compiler version */ #define OBJC_ERR_MODULE_SIZE 3 /* Bad module size */ #define OBJC_ERR_PROTOCOL_VERSION 4 /* Incorrect protocol version */ #define OBJC_ERR_MEMORY 10 /* Out of memory */ #define OBJC_ERR_RECURSE_ROOT 20 /* Attempt to archive the root object more than once. */ #define OBJC_ERR_BAD_DATA 21 /* Didn't read expected data */ #define OBJC_ERR_BAD_KEY 22 /* Bad key for object */ #define OBJC_ERR_BAD_CLASS 23 /* Unknown class */ #define OBJC_ERR_BAD_TYPE 24 /* Bad type specification */ #define OBJC_ERR_NO_READ 25 /* Cannot read stream */ #define OBJC_ERR_NO_WRITE 26 /* Cannot write stream */ #define OBJC_ERR_STREAM_VERSION 27 /* Incorrect stream version */ #define OBJC_ERR_BAD_OPCODE 28 /* Bad opcode */ #define OBJC_ERR_UNIMPLEMENTED 30 /* Method is not implemented */ #define OBJC_ERR_BAD_STATE 40 /* Bad thread state */ /* Set this variable nonzero to print a line describing each message that is sent. (this is currently disabled) */ extern BOOL objc_trace; /* For every class which happens to have statically allocated instances in this module, one OBJC_STATIC_INSTANCES is allocated by the compiler. INSTANCES is NULL terminated and points to all statically allocated instances of this class. */ struct objc_static_instances { char *class_name; #ifdef __cplusplus id instances[1]; #else id instances[0]; #endif }; /* Whereas a Module (defined further down) is the root (typically) of a file, a Symtab is the root of the class and category definitions within the module. A Symtab contains a variable length array of pointers to classes and categories defined in the module. */ typedef struct objc_symtab { unsigned long sel_ref_cnt; /* Unknown. */ SEL refs; /* Unknown. */ unsigned short cls_def_cnt; /* Number of classes compiled (defined) in the module. */ unsigned short cat_def_cnt; /* Number of categories compiled (defined) in the module. */ void *defs[1]; /* Variable array of pointers. cls_def_cnt of type Class followed by cat_def_cnt of type Category_t, followed by a NULL terminated array of objc_static_instances. */ } Symtab, *Symtab_t; /* ** The compiler generates one of these structures for each module that ** composes the executable (eg main.m). ** ** This data structure is the root of the definition tree for the module. ** ** A collect program runs between ld stages and creates a ObjC ctor array. ** That array holds a pointer to each module structure of the executable. */ typedef struct objc_module { unsigned long version; /* Compiler revision. */ unsigned long size; /* sizeof(Module). */ const char* name; /* Name of the file where the module was generated. The name includes the path. */ Symtab_t symtab; /* Pointer to the Symtab of the module. The Symtab holds an array of pointers to the classes and categories defined in the module. */ } Module, *Module_t; /* ** The compiler generates one of these structures for a class that has ** instance variables defined in its specification. */ typedef struct objc_ivar { const char* ivar_name; /* Name of the instance variable as entered in the class definition. */ const char* ivar_type; /* Description of the Ivar's type. Useful for debuggers. */ int ivar_offset; /* Byte offset from the base address of the instance structure to the variable. */ } *Ivar_t; typedef struct objc_ivar_list { int ivar_count; /* Number of structures (Ivar) contained in the list. One structure per instance variable defined in the class. */ struct objc_ivar ivar_list[1]; /* Variable length structure. */ } IvarList, *IvarList_t; /* ** The compiler generates one (or more) of these structures for a class that ** has methods defined in its specification. ** ** The implementation of a class can be broken into separate pieces in a file ** and categories can break them across modules. To handle this problem is a ** singly linked list of methods. */ typedef struct objc_method { SEL method_name; /* This variable is the method's name. It is a char*. The unique integer passed to objc_msg_send is a char* too. It is compared against method_name using strcmp. */ const char* method_types; /* Description of the method's parameter list. Useful for debuggers. */ IMP method_imp; /* Address of the method in the executable. */ } Method, *Method_t; typedef struct objc_method_list { struct objc_method_list* method_next; /* This variable is used to link a method list to another. It is a singly linked list. */ int method_count; /* Number of methods defined in this structure. */ Method method_list[1]; /* Variable length structure. */ } MethodList, *MethodList_t; struct objc_protocol_list { struct objc_protocol_list *next; size_t count; Protocol *list[1]; }; /* ** This is used to assure consistent access to the info field of ** classes */ #ifndef HOST_BITS_PER_LONG #define HOST_BITS_PER_LONG (sizeof(long)*8) #endif #define __CLS_INFO(cls) ((cls)->info) #define __CLS_ISINFO(cls, mask) ((__CLS_INFO(cls)&mask)==mask) #define __CLS_SETINFO(cls, mask) (__CLS_INFO(cls) |= mask) /* The structure is of type MetaClass */ #define _CLS_META 0x2L #define CLS_ISMETA(cls) ((cls)&&__CLS_ISINFO(cls, _CLS_META)) /* The structure is of type Class */ #define _CLS_CLASS 0x1L #define CLS_ISCLASS(cls) ((cls)&&__CLS_ISINFO(cls, _CLS_CLASS)) /* ** The class is initialized within the runtime. This means that ** it has had correct super and sublinks assigned */ #define _CLS_RESOLV 0x8L #define CLS_ISRESOLV(cls) __CLS_ISINFO(cls, _CLS_RESOLV) #define CLS_SETRESOLV(cls) __CLS_SETINFO(cls, _CLS_RESOLV) /* ** The class has been send a +initialize message or a such is not ** defined for this class */ #define _CLS_INITIALIZED 0x04L #define CLS_ISINITIALIZED(cls) __CLS_ISINFO(cls, _CLS_INITIALIZED) #define CLS_SETINITIALIZED(cls) __CLS_SETINFO(cls, _CLS_INITIALIZED) /* ** The class number of this class. This must be the same for both the ** class and its meta class object */ #define CLS_GETNUMBER(cls) (__CLS_INFO(cls) >> (HOST_BITS_PER_LONG/2)) #define CLS_SETNUMBER(cls, num) \ ({ (cls)->info <<= (HOST_BITS_PER_LONG/2); \ (cls)->info >>= (HOST_BITS_PER_LONG/2); \ __CLS_SETINFO(cls, (((unsigned long)num) << (HOST_BITS_PER_LONG/2))); }) /* ** The compiler generates one of these structures for each category. A class ** may have many categories and contain both instance and factory methods. */ typedef struct objc_category { const char* category_name; /* Name of the category. Name contained in the () of the category definition. */ const char* class_name; /* Name of the class to which the category belongs. */ MethodList_t instance_methods; /* Linked list of instance methods defined in the category. NULL indicates no instance methods defined. */ MethodList_t class_methods; /* Linked list of factory methods defined in the category. NULL indicates no class methods defined. */ struct objc_protocol_list *protocols; /* List of Protocols conformed to */ } Category, *Category_t; /* ** Structure used when a message is send to a class's super class. The ** compiler generates one of these structures and passes it to ** objc_msg_super. */ typedef struct objc_super { id self; /* Id of the object sending the message. */ #ifdef __cplusplus Class super_class; #else Class class; /* Object's super class. */ #endif } Super, *Super_t; IMP objc_msg_lookup_super(Super_t super, SEL sel); retval_t objc_msg_sendv(id, SEL, arglist_t); /* ** This is a hook which is called by objc_lookup_class and ** objc_get_class if the runtime is not able to find the class. ** This may e.g. try to load in the class using dynamic loading. ** The function is guaranteed to be passed a non-NULL name string. */ objc_EXPORT Class (*_objc_lookup_class)(const char *name); /* ** This is a hook which is called by __objc_exec_class every time a class ** or a category is loaded into the runtime. This may e.g. help a ** dynamic loader determine the classes that have been loaded when ** an object file is dynamically linked in. */ objc_EXPORT void (*_objc_load_callback)(Class _class, Category* category); /* ** Hook functions for allocating, copying and disposing of instances */ objc_EXPORT id (*_objc_object_alloc)(Class _class); objc_EXPORT id (*_objc_object_copy)(id object); objc_EXPORT id (*_objc_object_dispose)(id object); /* ** Standard functions for memory allocation and disposal. ** Users should use these functions in their ObjC programs so ** that they work properly with garbage collectors as well as ** can take advantage of the exception/error handling available. */ void * objc_malloc(size_t size); void * objc_atomic_malloc(size_t size); void * objc_valloc(size_t size); void * objc_realloc(void *mem, size_t size); void * objc_calloc(size_t nelem, size_t size); void objc_free(void *mem); /* ** Hook functions for memory allocation and disposal. ** This makes it easy to substitute garbage collection systems ** such as Boehm's GC by assigning these function pointers ** to the GC's allocation routines. By default these point ** to the ANSI standard malloc, realloc, free, etc. ** ** Users should call the normal objc routines above for ** memory allocation and disposal within their programs. */ objc_EXPORT void *(*_objc_malloc)(size_t); objc_EXPORT void *(*_objc_atomic_malloc)(size_t); objc_EXPORT void *(*_objc_valloc)(size_t); objc_EXPORT void *(*_objc_realloc)(void *, size_t); objc_EXPORT void *(*_objc_calloc)(size_t, size_t); objc_EXPORT void (*_objc_free)(void *); /* ** Hooks for method forwarding. This makes it easy to substitute a ** library, such as ffcall, that implements closures, thereby avoiding ** gcc's __builtin_apply problems. __objc_msg_forward2's result will ** be preferred over that of __objc_msg_forward if both are set and ** return non-NULL. */ objc_EXPORT IMP (*__objc_msg_forward)(SEL); objc_EXPORT IMP (*__objc_msg_forward2)(id, SEL); Method_t class_get_class_method(MetaClass _class, SEL aSel); Method_t class_get_instance_method(Class _class, SEL aSel); Class class_pose_as(Class impostor, Class superclass); Class objc_get_class(const char *name); Class objc_lookup_class(const char *name); Class objc_next_class(void **enum_state); const char *sel_get_name(SEL selector); const char *sel_get_type(SEL selector); SEL sel_get_uid(const char *name); SEL sel_get_any_uid(const char *name); SEL sel_get_any_typed_uid(const char *name); SEL sel_get_typed_uid(const char *name, const char*); SEL sel_register_name(const char *name); SEL sel_register_typed_name(const char *name, const char*type); BOOL sel_is_mapped (SEL aSel); extern id class_create_instance(Class _class); static inline const char * class_get_class_name(Class _class) { return CLS_ISCLASS(_class)?_class->name:((_class==Nil)?"Nil":0); } static inline long class_get_instance_size(Class _class) { return CLS_ISCLASS(_class)?_class->instance_size:0; } static inline MetaClass class_get_meta_class(Class _class) { return CLS_ISCLASS(_class)?_class->class_pointer:Nil; } static inline Class class_get_super_class(Class _class) { return CLS_ISCLASS(_class)?_class->super_class:Nil; } static inline int class_get_version(Class _class) { return CLS_ISCLASS(_class)?_class->version:-1; } static inline BOOL class_is_class(Class _class) { return CLS_ISCLASS(_class); } static inline BOOL class_is_meta_class(Class _class) { return CLS_ISMETA(_class); } static inline void class_set_version(Class _class, long version) { if (CLS_ISCLASS(_class)) _class->version = version; } static inline void * class_get_gc_object_type (Class _class) { return CLS_ISCLASS(_class) ? _class->gc_object_type : NULL; } /* Mark the instance variable as innaccessible to the garbage collector */ extern void class_ivar_set_gcinvisible (Class _class, const char* ivarname, BOOL gcInvisible); static inline IMP method_get_imp(Method_t method) { return (method!=METHOD_NULL)?method->method_imp:(IMP)0; } IMP get_imp (Class _class, SEL sel); /* Redefine on NeXTSTEP so as not to conflict with system function */ #ifdef __NeXT__ #define object_copy gnu_object_copy #define object_dispose gnu_object_dispose #endif id object_copy(id object); id object_dispose(id object); static inline Class object_get_class(id object) { return ((object!=nil) ? (CLS_ISCLASS(object->class_pointer) ? object->class_pointer : (CLS_ISMETA(object->class_pointer) ? (Class)object : Nil)) : Nil); } static inline const char * object_get_class_name(id object) { return ((object!=nil)?(CLS_ISCLASS(object->class_pointer) ?object->class_pointer->name :((Class)object)->name) :"Nil"); } static inline MetaClass object_get_meta_class(id object) { return ((object!=nil)?(CLS_ISCLASS(object->class_pointer) ?object->class_pointer->class_pointer :(CLS_ISMETA(object->class_pointer) ?object->class_pointer :Nil)) :Nil); } static inline Class object_get_super_class (id object) { return ((object!=nil)?(CLS_ISCLASS(object->class_pointer) ?object->class_pointer->super_class :(CLS_ISMETA(object->class_pointer) ?((Class)object)->super_class :Nil)) :Nil); } static inline BOOL object_is_class (id object) { return ((object != nil) && CLS_ISMETA (object->class_pointer)); } static inline BOOL object_is_instance (id object) { return ((object != nil) && CLS_ISCLASS (object->class_pointer)); } static inline BOOL object_is_meta_class (id object) { return ((object != nil) && !object_is_instance (object) && !object_is_class (object)); } struct sarray* objc_get_uninstalled_dtable(void); #ifdef __cplusplus } #endif /* __cplusplus */ #endif /* not __objc_api_INCLUDE_GNU */