//===-- sanitizer_linux_libcdep.cc ----------------------------------------===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is shared between AddressSanitizer and ThreadSanitizer // run-time libraries and implements linux-specific functions from // sanitizer_libc.h. //===----------------------------------------------------------------------===// #include "sanitizer_platform.h" #if SANITIZER_FREEBSD || SANITIZER_LINUX #include "sanitizer_common.h" #include "sanitizer_flags.h" #include "sanitizer_linux.h" #include "sanitizer_placement_new.h" #include "sanitizer_procmaps.h" #include "sanitizer_stacktrace.h" #include "sanitizer_atomic.h" #include #include #include #include #if SANITIZER_FREEBSD #define _GNU_SOURCE // to declare _Unwind_Backtrace() from #endif #include #if SANITIZER_FREEBSD #include #define pthread_getattr_np pthread_attr_get_np #endif #if SANITIZER_LINUX #include #endif #if !SANITIZER_ANDROID #include #include #include #endif namespace __sanitizer { // This function is defined elsewhere if we intercepted pthread_attr_getstack. extern "C" { SANITIZER_WEAK_ATTRIBUTE int real_pthread_attr_getstack(void *attr, void **addr, size_t *size); } // extern "C" static int my_pthread_attr_getstack(void *attr, void **addr, size_t *size) { if (real_pthread_attr_getstack) return real_pthread_attr_getstack((pthread_attr_t *)attr, addr, size); return pthread_attr_getstack((pthread_attr_t *)attr, addr, size); } SANITIZER_WEAK_ATTRIBUTE int real_sigaction(int signum, const void *act, void *oldact); int internal_sigaction(int signum, const void *act, void *oldact) { if (real_sigaction) return real_sigaction(signum, act, oldact); return sigaction(signum, (struct sigaction *)act, (struct sigaction *)oldact); } void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top, uptr *stack_bottom) { CHECK(stack_top); CHECK(stack_bottom); if (at_initialization) { // This is the main thread. Libpthread may not be initialized yet. struct rlimit rl; CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0); // Find the mapping that contains a stack variable. MemoryMappingLayout proc_maps(/*cache_enabled*/true); uptr start, end, offset; uptr prev_end = 0; while (proc_maps.Next(&start, &end, &offset, 0, 0, /* protection */0)) { if ((uptr)&rl < end) break; prev_end = end; } CHECK((uptr)&rl >= start && (uptr)&rl < end); // Get stacksize from rlimit, but clip it so that it does not overlap // with other mappings. uptr stacksize = rl.rlim_cur; if (stacksize > end - prev_end) stacksize = end - prev_end; // When running with unlimited stack size, we still want to set some limit. // The unlimited stack size is caused by 'ulimit -s unlimited'. // Also, for some reason, GNU make spawns subprocesses with unlimited stack. if (stacksize > kMaxThreadStackSize) stacksize = kMaxThreadStackSize; *stack_top = end; *stack_bottom = end - stacksize; return; } pthread_attr_t attr; pthread_attr_init(&attr); CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0); uptr stacksize = 0; void *stackaddr = 0; my_pthread_attr_getstack(&attr, &stackaddr, (size_t*)&stacksize); pthread_attr_destroy(&attr); CHECK_LE(stacksize, kMaxThreadStackSize); // Sanity check. *stack_top = (uptr)stackaddr + stacksize; *stack_bottom = (uptr)stackaddr; } bool SetEnv(const char *name, const char *value) { void *f = dlsym(RTLD_NEXT, "setenv"); if (f == 0) return false; typedef int(*setenv_ft)(const char *name, const char *value, int overwrite); setenv_ft setenv_f; CHECK_EQ(sizeof(setenv_f), sizeof(f)); internal_memcpy(&setenv_f, &f, sizeof(f)); return IndirectExternCall(setenv_f)(name, value, 1) == 0; } bool SanitizerSetThreadName(const char *name) { #ifdef PR_SET_NAME return 0 == prctl(PR_SET_NAME, (unsigned long)name, 0, 0, 0); // NOLINT #else return false; #endif } bool SanitizerGetThreadName(char *name, int max_len) { #ifdef PR_GET_NAME char buff[17]; if (prctl(PR_GET_NAME, (unsigned long)buff, 0, 0, 0)) // NOLINT return false; internal_strncpy(name, buff, max_len); name[max_len] = 0; return true; #else return false; #endif } //------------------------- SlowUnwindStack ----------------------------------- typedef struct { uptr absolute_pc; uptr stack_top; uptr stack_size; } backtrace_frame_t; extern "C" { typedef void *(*acquire_my_map_info_list_func)(); typedef void (*release_my_map_info_list_func)(void *map); typedef sptr (*unwind_backtrace_signal_arch_func)( void *siginfo, void *sigcontext, void *map_info_list, backtrace_frame_t *backtrace, uptr ignore_depth, uptr max_depth); acquire_my_map_info_list_func acquire_my_map_info_list; release_my_map_info_list_func release_my_map_info_list; unwind_backtrace_signal_arch_func unwind_backtrace_signal_arch; } // extern "C" #if SANITIZER_ANDROID void SanitizerInitializeUnwinder() { void *p = dlopen("libcorkscrew.so", RTLD_LAZY); if (!p) { VReport(1, "Failed to open libcorkscrew.so. You may see broken stack traces " "in SEGV reports."); return; } acquire_my_map_info_list = (acquire_my_map_info_list_func)(uptr)dlsym(p, "acquire_my_map_info_list"); release_my_map_info_list = (release_my_map_info_list_func)(uptr)dlsym(p, "release_my_map_info_list"); unwind_backtrace_signal_arch = (unwind_backtrace_signal_arch_func)(uptr)dlsym( p, "unwind_backtrace_signal_arch"); if (!acquire_my_map_info_list || !release_my_map_info_list || !unwind_backtrace_signal_arch) { VReport(1, "Failed to find one of the required symbols in libcorkscrew.so. " "You may see broken stack traces in SEGV reports."); acquire_my_map_info_list = NULL; unwind_backtrace_signal_arch = NULL; release_my_map_info_list = NULL; } } #endif #ifdef __arm__ #define UNWIND_STOP _URC_END_OF_STACK #define UNWIND_CONTINUE _URC_NO_REASON #else #define UNWIND_STOP _URC_NORMAL_STOP #define UNWIND_CONTINUE _URC_NO_REASON #endif uptr Unwind_GetIP(struct _Unwind_Context *ctx) { #ifdef __arm__ uptr val; _Unwind_VRS_Result res = _Unwind_VRS_Get(ctx, _UVRSC_CORE, 15 /* r15 = PC */, _UVRSD_UINT32, &val); CHECK(res == _UVRSR_OK && "_Unwind_VRS_Get failed"); // Clear the Thumb bit. return val & ~(uptr)1; #else return _Unwind_GetIP(ctx); #endif } struct UnwindTraceArg { StackTrace *stack; uptr max_depth; }; _Unwind_Reason_Code Unwind_Trace(struct _Unwind_Context *ctx, void *param) { UnwindTraceArg *arg = (UnwindTraceArg*)param; CHECK_LT(arg->stack->size, arg->max_depth); uptr pc = Unwind_GetIP(ctx); arg->stack->trace[arg->stack->size++] = pc; if (arg->stack->size == arg->max_depth) return UNWIND_STOP; return UNWIND_CONTINUE; } void StackTrace::SlowUnwindStack(uptr pc, uptr max_depth) { CHECK_GE(max_depth, 2); size = 0; UnwindTraceArg arg = {this, Min(max_depth + 1, kStackTraceMax)}; _Unwind_Backtrace(Unwind_Trace, &arg); // We need to pop a few frames so that pc is on top. uptr to_pop = LocatePcInTrace(pc); // trace[0] belongs to the current function so we always pop it. if (to_pop == 0) to_pop = 1; PopStackFrames(to_pop); trace[0] = pc; } void StackTrace::SlowUnwindStackWithContext(uptr pc, void *context, uptr max_depth) { CHECK_GE(max_depth, 2); if (!unwind_backtrace_signal_arch) { SlowUnwindStack(pc, max_depth); return; } void *map = acquire_my_map_info_list(); CHECK(map); InternalScopedBuffer frames(kStackTraceMax); // siginfo argument appears to be unused. sptr res = unwind_backtrace_signal_arch(/* siginfo */ NULL, context, map, frames.data(), /* ignore_depth */ 0, max_depth); release_my_map_info_list(map); if (res < 0) return; CHECK_LE((uptr)res, kStackTraceMax); size = 0; // +2 compensate for libcorkscrew unwinder returning addresses of call // instructions instead of raw return addresses. for (sptr i = 0; i < res; ++i) trace[size++] = frames[i].absolute_pc + 2; } #if !SANITIZER_FREEBSD static uptr g_tls_size; #endif #ifdef __i386__ # define DL_INTERNAL_FUNCTION __attribute__((regparm(3), stdcall)) #else # define DL_INTERNAL_FUNCTION #endif void InitTlsSize() { #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID typedef void (*get_tls_func)(size_t*, size_t*) DL_INTERNAL_FUNCTION; get_tls_func get_tls; void *get_tls_static_info_ptr = dlsym(RTLD_NEXT, "_dl_get_tls_static_info"); CHECK_EQ(sizeof(get_tls), sizeof(get_tls_static_info_ptr)); internal_memcpy(&get_tls, &get_tls_static_info_ptr, sizeof(get_tls_static_info_ptr)); CHECK_NE(get_tls, 0); size_t tls_size = 0; size_t tls_align = 0; IndirectExternCall(get_tls)(&tls_size, &tls_align); g_tls_size = tls_size; #endif // !SANITIZER_FREEBSD && !SANITIZER_ANDROID } #if (defined(__x86_64__) || defined(__i386__)) && SANITIZER_LINUX // sizeof(struct thread) from glibc. static atomic_uintptr_t kThreadDescriptorSize; uptr ThreadDescriptorSize() { char buf[64]; uptr val = atomic_load(&kThreadDescriptorSize, memory_order_relaxed); if (val) return val; #ifdef _CS_GNU_LIBC_VERSION uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf)); if (len < sizeof(buf) && internal_strncmp(buf, "glibc 2.", 8) == 0) { char *end; int minor = internal_simple_strtoll(buf + 8, &end, 10); if (end != buf + 8 && (*end == '\0' || *end == '.')) { /* sizeof(struct thread) values from various glibc versions. */ if (SANITIZER_X32) val = 1728; // Assume only one particular version for x32. else if (minor <= 3) val = FIRST_32_SECOND_64(1104, 1696); else if (minor == 4) val = FIRST_32_SECOND_64(1120, 1728); else if (minor == 5) val = FIRST_32_SECOND_64(1136, 1728); else if (minor <= 9) val = FIRST_32_SECOND_64(1136, 1712); else if (minor == 10) val = FIRST_32_SECOND_64(1168, 1776); else if (minor <= 12) val = FIRST_32_SECOND_64(1168, 2288); else val = FIRST_32_SECOND_64(1216, 2304); } if (val) atomic_store(&kThreadDescriptorSize, val, memory_order_relaxed); return val; } #endif return 0; } // The offset at which pointer to self is located in the thread descriptor. const uptr kThreadSelfOffset = FIRST_32_SECOND_64(8, 16); uptr ThreadSelfOffset() { return kThreadSelfOffset; } uptr ThreadSelf() { uptr descr_addr; # if defined(__i386__) asm("mov %%gs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # elif defined(__x86_64__) asm("mov %%fs:%c1,%0" : "=r"(descr_addr) : "i"(kThreadSelfOffset)); # else # error "unsupported CPU arch" # endif return descr_addr; } #endif // (defined(__x86_64__) || defined(__i386__)) && SANITIZER_LINUX #if SANITIZER_FREEBSD static void **ThreadSelfSegbase() { void **segbase = 0; # if defined(__i386__) // sysarch(I386_GET_GSBASE, segbase); __asm __volatile("mov %%gs:0, %0" : "=r" (segbase)); # elif defined(__x86_64__) // sysarch(AMD64_GET_FSBASE, segbase); __asm __volatile("movq %%fs:0, %0" : "=r" (segbase)); # else # error "unsupported CPU arch for FreeBSD platform" # endif return segbase; } uptr ThreadSelf() { return (uptr)ThreadSelfSegbase()[2]; } #endif // SANITIZER_FREEBSD static void GetTls(uptr *addr, uptr *size) { #if SANITIZER_LINUX # if defined(__x86_64__) || defined(__i386__) *addr = ThreadSelf(); *size = GetTlsSize(); *addr -= *size; *addr += ThreadDescriptorSize(); # else *addr = 0; *size = 0; # endif #elif SANITIZER_FREEBSD void** segbase = ThreadSelfSegbase(); *addr = 0; *size = 0; if (segbase != 0) { // tcbalign = 16 // tls_size = round(tls_static_space, tcbalign); // dtv = segbase[1]; // dtv[2] = segbase - tls_static_space; void **dtv = (void**) segbase[1]; *addr = (uptr) dtv[2]; *size = (*addr == 0) ? 0 : ((uptr) segbase[0] - (uptr) dtv[2]); } #else # error "Unknown OS" #endif } uptr GetTlsSize() { #if SANITIZER_FREEBSD uptr addr, size; GetTls(&addr, &size); return size; #else return g_tls_size; #endif } void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size, uptr *tls_addr, uptr *tls_size) { GetTls(tls_addr, tls_size); uptr stack_top, stack_bottom; GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom); *stk_addr = stack_bottom; *stk_size = stack_top - stack_bottom; if (!main) { // If stack and tls intersect, make them non-intersecting. if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) { CHECK_GT(*tls_addr + *tls_size, *stk_addr); CHECK_LE(*tls_addr + *tls_size, *stk_addr + *stk_size); *stk_size -= *tls_size; *tls_addr = *stk_addr + *stk_size; } } } void AdjustStackSize(void *attr_) { pthread_attr_t *attr = (pthread_attr_t *)attr_; uptr stackaddr = 0; size_t stacksize = 0; my_pthread_attr_getstack(attr, (void**)&stackaddr, &stacksize); // GLibC will return (0 - stacksize) as the stack address in the case when // stacksize is set, but stackaddr is not. bool stack_set = (stackaddr != 0) && (stackaddr + stacksize != 0); // We place a lot of tool data into TLS, account for that. const uptr minstacksize = GetTlsSize() + 128*1024; if (stacksize < minstacksize) { if (!stack_set) { if (stacksize != 0) { VPrintf(1, "Sanitizer: increasing stacksize %zu->%zu\n", stacksize, minstacksize); pthread_attr_setstacksize(attr, minstacksize); } } else { Printf("Sanitizer: pre-allocated stack size is insufficient: " "%zu < %zu\n", stacksize, minstacksize); Printf("Sanitizer: pthread_create is likely to fail.\n"); } } } #if SANITIZER_ANDROID uptr GetListOfModules(LoadedModule *modules, uptr max_modules, string_predicate_t filter) { MemoryMappingLayout memory_mapping(false); return memory_mapping.DumpListOfModules(modules, max_modules, filter); } #else // SANITIZER_ANDROID # if !SANITIZER_FREEBSD typedef ElfW(Phdr) Elf_Phdr; # endif struct DlIteratePhdrData { LoadedModule *modules; uptr current_n; bool first; uptr max_n; string_predicate_t filter; }; static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) { DlIteratePhdrData *data = (DlIteratePhdrData*)arg; if (data->current_n == data->max_n) return 0; InternalScopedBuffer module_name(kMaxPathLength); module_name.data()[0] = '\0'; if (data->first) { data->first = false; // First module is the binary itself. ReadBinaryName(module_name.data(), module_name.size()); } else if (info->dlpi_name) { internal_strncpy(module_name.data(), info->dlpi_name, module_name.size()); } if (module_name.data()[0] == '\0') return 0; if (data->filter && !data->filter(module_name.data())) return 0; void *mem = &data->modules[data->current_n]; LoadedModule *cur_module = new(mem) LoadedModule(module_name.data(), info->dlpi_addr); data->current_n++; for (int i = 0; i < info->dlpi_phnum; i++) { const Elf_Phdr *phdr = &info->dlpi_phdr[i]; if (phdr->p_type == PT_LOAD) { uptr cur_beg = info->dlpi_addr + phdr->p_vaddr; uptr cur_end = cur_beg + phdr->p_memsz; cur_module->addAddressRange(cur_beg, cur_end); } } return 0; } uptr GetListOfModules(LoadedModule *modules, uptr max_modules, string_predicate_t filter) { CHECK(modules); DlIteratePhdrData data = {modules, 0, true, max_modules, filter}; dl_iterate_phdr(dl_iterate_phdr_cb, &data); return data.current_n; } #endif // SANITIZER_ANDROID uptr indirect_call_wrapper; void SetIndirectCallWrapper(uptr wrapper) { CHECK(!indirect_call_wrapper); CHECK(wrapper); indirect_call_wrapper = wrapper; } } // namespace __sanitizer #endif // SANITIZER_FREEBSD || SANITIZER_LINUX