// prims.cc - Code for core of runtime environment. /* Copyright (C) 1998, 1999, 2000 Free Software Foundation This file is part of libgcj. This software is copyrighted work licensed under the terms of the Libgcj License. Please consult the file "LIBGCJ_LICENSE" for details. */ #include #include #include #include #include #include #ifdef HAVE_UNISTD_H #include #endif #include #include #include #include #ifndef DISABLE_GETENV_PROPERTIES #include #include #define PROCESS_GCJ_PROPERTIES process_gcj_properties() #else #define PROCESS_GCJ_PROPERTIES #endif // DISABLE_GETENV_PROPERTIES #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef USE_LTDL #include #endif #define ObjectClass _CL_Q34java4lang6Object extern java::lang::Class ObjectClass; // We allocate a single OutOfMemoryError exception which we keep // around for use if we run out of memory. static java::lang::OutOfMemoryError *no_memory; // Largest representable size_t. #define SIZE_T_MAX ((size_t) (~ (size_t) 0)) // Properties set at compile time. const char **_Jv_Compiler_Properties; #ifndef DISABLE_GETENV_PROPERTIES // Property key/value pairs. property_pair *_Jv_Environment_Properties; #endif // The name of this executable. static char * _Jv_execName; #ifdef HANDLE_SEGV static java::lang::NullPointerException *nullp; SIGNAL_HANDLER (catch_segv) { MAKE_THROW_FRAME; nullp->fillInStackTrace (); _Jv_Throw (nullp); } #endif static java::lang::ArithmeticException *arithexception; #ifdef HANDLE_FPE SIGNAL_HANDLER (catch_fpe) { #ifdef HANDLE_DIVIDE_OVERFLOW HANDLE_DIVIDE_OVERFLOW; #else MAKE_THROW_FRAME; #endif arithexception->fillInStackTrace (); _Jv_Throw (arithexception); } #endif jboolean _Jv_equalUtf8Consts (Utf8Const* a, Utf8Const *b) { register int len; register _Jv_ushort *aptr, *bptr; if (a == b) return true; if (a->hash != b->hash) return false; len = a->length; if (b->length != len) return false; aptr = (_Jv_ushort *)a->data; bptr = (_Jv_ushort *)b->data; len = (len + 1) >> 1; while (--len >= 0) if (*aptr++ != *bptr++) return false; return true; } /* True iff A is equal to STR. HASH is STR->hashCode(). */ jboolean _Jv_equal (Utf8Const* a, jstring str, jint hash) { if (a->hash != (_Jv_ushort) hash) return false; jint len = str->length(); jint i = 0; jchar *sptr = _Jv_GetStringChars (str); register unsigned char* ptr = (unsigned char*) a->data; register unsigned char* limit = ptr + a->length; for (;; i++, sptr++) { int ch = UTF8_GET (ptr, limit); if (i == len) return ch < 0; if (ch != *sptr) return false; } return true; } /* Like _Jv_equal, but stop after N characters. */ jboolean _Jv_equaln (Utf8Const *a, jstring str, jint n) { jint len = str->length(); jint i = 0; jchar *sptr = _Jv_GetStringChars (str); register unsigned char* ptr = (unsigned char*) a->data; register unsigned char* limit = ptr + a->length; for (; n-- > 0; i++, sptr++) { int ch = UTF8_GET (ptr, limit); if (i == len) return ch < 0; if (ch != *sptr) return false; } return true; } /* Count the number of Unicode chars encoded in a given Ut8 string. */ int _Jv_strLengthUtf8(char* str, int len) { register unsigned char* ptr; register unsigned char* limit; int str_length; ptr = (unsigned char*) str; limit = ptr + len; str_length = 0; for (; ptr < limit; str_length++) { if (UTF8_GET (ptr, limit) < 0) { return (-1); } } return (str_length); } /* Calculate a hash value for a string encoded in Utf8 format. * This returns the same hash value as specified or java.lang.String.hashCode. */ static jint hashUtf8String (char* str, int len) { register unsigned char* ptr = (unsigned char*) str; register unsigned char* limit = ptr + len; jint hash = 0; for (; ptr < limit;) { int ch = UTF8_GET (ptr, limit); /* Updated specification from http://www.javasoft.com/docs/books/jls/clarify.html. */ hash = (31 * hash) + ch; } return hash; } _Jv_Utf8Const * _Jv_makeUtf8Const (char* s, int len) { if (len < 0) len = strlen (s); Utf8Const* m = (Utf8Const*) _Jv_AllocBytes (sizeof(Utf8Const) + len + 1); if (! m) JvThrow (no_memory); memcpy (m->data, s, len); m->data[len] = 0; m->length = len; m->hash = hashUtf8String (s, len) & 0xFFFF; return (m); } _Jv_Utf8Const * _Jv_makeUtf8Const (jstring string) { jint hash = string->hashCode (); jint len = _Jv_GetStringUTFLength (string); Utf8Const* m = (Utf8Const*) _Jv_AllocBytesChecked (sizeof(Utf8Const) + len + 1); m->hash = hash; m->length = len; _Jv_GetStringUTFRegion (string, 0, string->length (), m->data); m->data[len] = 0; return m; } #ifdef DEBUG void _Jv_Abort (const char *function, const char *file, int line, const char *message) #else void _Jv_Abort (const char *, const char *, int, const char *message) #endif { #ifdef DEBUG fprintf (stderr, "libgcj failure: %s\n in function %s, file %s, line %d\n", message, function, file, line); #else java::io::PrintStream *err = java::lang::System::err; err->print(JvNewStringLatin1 ("libgcj failure: ")); err->println(JvNewStringLatin1 (message)); err->flush(); #endif abort (); } static void fail_on_finalization (jobject) { JvFail ("object was finalized"); } void _Jv_GCWatch (jobject obj) { _Jv_RegisterFinalizer (obj, fail_on_finalization); } void _Jv_ThrowBadArrayIndex(jint bad_index) { JvThrow (new java::lang::ArrayIndexOutOfBoundsException (java::lang::String::valueOf(bad_index))); } // Allocate some unscanned memory and throw an exception if no memory. void * _Jv_AllocBytesChecked (jsize size) { void *r = _Jv_AllocBytes (size); if (! r) _Jv_Throw (no_memory); return r; } // Allocate a new object of class C. SIZE is the size of the object // to allocate. You might think this is redundant, but it isn't; some // classes, such as String, aren't of fixed size. jobject _Jv_AllocObject (jclass c, jint size) { _Jv_InitClass (c); jobject obj = (jobject) _Jv_AllocObj (size); if (! obj) JvThrow (no_memory); *((_Jv_VTable **) obj) = c->vtable; // If this class has inherited finalize from Object, then don't // bother registering a finalizer. We know that finalize() is the // very first method after the dummy entry. If this turns out to be // unreliable, a more robust implementation can be written. Such an // implementation would look for Object.finalize in Object's method // table at startup, and then use that information to find the // appropriate index in the method vector. if (c->vtable->method[1] != ObjectClass.vtable->method[1]) _Jv_RegisterFinalizer (obj, _Jv_FinalizeObject); return obj; } // Allocate a new array of Java objects. Each object is of type // `elementClass'. `init' is used to initialize each slot in the // array. jobjectArray _Jv_NewObjectArray (jsize count, jclass elementClass, jobject init) { if (count < 0) JvThrow (new java::lang::NegativeArraySizeException); JvAssert (! elementClass->isPrimitive ()); jobjectArray obj = NULL; size_t size = (size_t) _Jv_GetArrayElementFromElementType (obj, elementClass); // Check for overflow. if ((size_t) count > (SIZE_T_MAX - size) / sizeof (jobject)) JvThrow (no_memory); size += count * sizeof (jobject); // FIXME: second argument should be "current loader" // jclass clas = _Jv_FindArrayClass (elementClass, 0); obj = (jobjectArray) _Jv_AllocArray (size); if (! obj) JvThrow (no_memory); obj->length = count; jobject* ptr = elements(obj); // We know the allocator returns zeroed memory. So don't bother // zeroing it again. if (init) { while (--count >= 0) *ptr++ = init; } // Set the vtbl last to avoid problems if the GC happens during the // window in this function between the allocation and this // assignment. *((_Jv_VTable **) obj) = clas->vtable; return obj; } // Allocate a new array of primitives. ELTYPE is the type of the // element, COUNT is the size of the array. jobject _Jv_NewPrimArray (jclass eltype, jint count) { int elsize = eltype->size(); if (count < 0) JvThrow (new java::lang::NegativeArraySizeException ()); JvAssert (eltype->isPrimitive ()); jobject dummy = NULL; size_t size = (size_t) _Jv_GetArrayElementFromElementType (dummy, eltype); // Check for overflow. if ((size_t) count > (SIZE_T_MAX - size) / elsize) JvThrow (no_memory); __JArray *arr = (__JArray*) _Jv_AllocObj (size + elsize * count); if (! arr) JvThrow (no_memory); arr->length = count; // Note that we assume we are given zeroed memory by the allocator. jclass klass = _Jv_FindArrayClass (eltype, 0); // Set the vtbl last to avoid problems if the GC happens during the // window in this function between the allocation and this // assignment. *((_Jv_VTable **) arr) = klass->vtable; return arr; } jobject _Jv_NewArray (jint type, jint size) { switch (type) { case 4: return JvNewBooleanArray (size); case 5: return JvNewCharArray (size); case 6: return JvNewFloatArray (size); case 7: return JvNewDoubleArray (size); case 8: return JvNewByteArray (size); case 9: return JvNewShortArray (size); case 10: return JvNewIntArray (size); case 11: return JvNewLongArray (size); } JvFail ("newarray - bad type code"); return NULL; // Placate compiler. } jobject _Jv_NewMultiArray (jclass type, jint dimensions, jint *sizes) { JvAssert (type->isArray()); jclass element_type = type->getComponentType(); jobject result; if (element_type->isPrimitive()) result = _Jv_NewPrimArray (element_type, sizes[0]); else result = _Jv_NewObjectArray (sizes[0], element_type, NULL); if (dimensions > 1) { JvAssert (! element_type->isPrimitive()); JvAssert (element_type->isArray()); jobject *contents = elements ((jobjectArray) result); for (int i = 0; i < sizes[0]; ++i) contents[i] = _Jv_NewMultiArray (element_type, dimensions - 1, sizes + 1); } return result; } jobject _Jv_NewMultiArray (jclass array_type, jint dimensions, ...) { va_list args; jint sizes[dimensions]; va_start (args, dimensions); for (int i = 0; i < dimensions; ++i) { jint size = va_arg (args, jint); sizes[i] = size; } va_end (args); return _Jv_NewMultiArray (array_type, dimensions, sizes); } class _Jv_PrimClass : public java::lang::Class { public: // FIXME: calling convention is weird. If we use the natural types // then the compiler will complain because they aren't Java types. _Jv_PrimClass (jobject cname, jbyte sig, jint len) { using namespace java::lang::reflect; // We must initialize every field of the class. We do this in // the same order they are declared in Class.h. next = NULL; name = _Jv_makeUtf8Const ((char *) cname, -1); accflags = Modifier::PUBLIC | Modifier::FINAL; superclass = NULL; constants.size = 0; constants.tags = NULL; constants.data = NULL; methods = NULL; method_count = sig; vtable_method_count = 0; fields = NULL; size_in_bytes = len; field_count = 0; static_field_count = 0; vtable = JV_PRIMITIVE_VTABLE; interfaces = NULL; loader = NULL; interface_count = 0; state = JV_STATE_NOTHING; thread = NULL; } }; #define DECLARE_PRIM_TYPE(NAME, SIG, LEN) \ _Jv_PrimClass _Jv_##NAME##Class((jobject) #NAME, (jbyte) SIG, (jint) LEN) DECLARE_PRIM_TYPE(byte, 'B', 1); DECLARE_PRIM_TYPE(short, 'S', 2); DECLARE_PRIM_TYPE(int, 'I', 4); DECLARE_PRIM_TYPE(long, 'J', 8); DECLARE_PRIM_TYPE(boolean, 'Z', 1); DECLARE_PRIM_TYPE(char, 'C', 2); DECLARE_PRIM_TYPE(float, 'F', 4); DECLARE_PRIM_TYPE(double, 'D', 8); DECLARE_PRIM_TYPE(void, 'V', 0); jclass _Jv_FindClassFromSignature (char *sig, java::lang::ClassLoader *loader) { switch (*sig) { case 'B': return JvPrimClass (byte); case 'S': return JvPrimClass (short); case 'I': return JvPrimClass (int); case 'J': return JvPrimClass (long); case 'Z': return JvPrimClass (boolean); case 'C': return JvPrimClass (char); case 'F': return JvPrimClass (float); case 'D': return JvPrimClass (double); case 'V': return JvPrimClass (void); case 'L': { int i; for (i = 1; sig[i] && sig[i] != ';'; ++i) ; _Jv_Utf8Const *name = _Jv_makeUtf8Const (&sig[1], i - 1); return _Jv_FindClass (name, loader); } case '[': return _Jv_FindArrayClass (_Jv_FindClassFromSignature (&sig[1], loader), loader); } JvFail ("couldn't understand class signature"); return NULL; // Placate compiler. } JArray * JvConvertArgv (int argc, const char **argv) { if (argc < 0) argc = 0; jobjectArray ar = JvNewObjectArray(argc, &StringClass, NULL); jobject* ptr = elements(ar); for (int i = 0; i < argc; i++) { const char *arg = argv[i]; // FIXME - should probably use JvNewStringUTF. *ptr++ = JvNewStringLatin1(arg, strlen(arg)); } return (JArray*) ar; } // FIXME: These variables are static so that they will be // automatically scanned by the Boehm collector. This is needed // because with qthreads the collector won't scan the initial stack -- // it will only scan the qthreads stacks. // Command line arguments. static jobject arg_vec; // The primary threadgroup. static java::lang::ThreadGroup *main_group; // The primary thread. static java::lang::Thread *main_thread; char * _Jv_ThisExecutable (void) { return _Jv_execName; } void _Jv_ThisExecutable (const char *name) { if (name) { _Jv_execName = new char[strlen (name) + 1]; strcpy (_Jv_execName, name); } } static void main_init () { INIT_SEGV; #ifdef HANDLE_FPE INIT_FPE; #else arithexception = new java::lang::ArithmeticException (JvNewStringLatin1 ("/ by zero")); #endif no_memory = new java::lang::OutOfMemoryError; #ifdef USE_LTDL LTDL_SET_PRELOADED_SYMBOLS (); #endif // FIXME: we only want this on POSIX systems. struct sigaction act; act.sa_handler = SIG_IGN; sigemptyset (&act.sa_mask); act.sa_flags = 0; sigaction (SIGPIPE, &act, NULL); _Jv_JNI_Init (); } #ifndef DISABLE_GETENV_PROPERTIES static char * next_property_key (char *s, size_t *length) { size_t l = 0; JvAssert (s); // Skip over whitespace while (isspace (*s)) s++; // If we've reached the end, return NULL. Also return NULL if for // some reason we've come across a malformed property string. if (*s == 0 || *s == ':' || *s == '=') return NULL; // Determine the length of the property key. while (s[l] != 0 && ! isspace (s[l]) && s[l] != ':' && s[l] != '=') { if (s[l] == '\\' && s[l+1] != 0) l++; l++; } *length = l; return s; } static char * next_property_value (char *s, size_t *length) { size_t l = 0; JvAssert (s); while (isspace (*s)) s++; if (*s == ':' || *s == '=') s++; while (isspace (*s)) s++; // If we've reached the end, return NULL. if (*s == 0) return NULL; // Determine the length of the property value. while (s[l] != 0 && ! isspace (s[l]) && s[l] != ':' && s[l] != '=') { if (s[l] == '\\' && s[l+1] != 0) l += 2; else l++; } *length = l; return s; } static void process_gcj_properties () { char *props = getenv("GCJ_PROPERTIES"); char *p = props; size_t length; size_t property_count = 0; if (NULL == props) return; // Whip through props quickly in order to count the number of // property values. while (p && (p = next_property_key (p, &length))) { // Skip to the end of the key p += length; p = next_property_value (p, &length); if (p) p += length; property_count++; } // Allocate an array of property value/key pairs. _Jv_Environment_Properties = (property_pair *) malloc (sizeof(property_pair) * (property_count + 1)); // Go through the properties again, initializing _Jv_Properties // along the way. p = props; property_count = 0; while (p && (p = next_property_key (p, &length))) { _Jv_Environment_Properties[property_count].key = p; _Jv_Environment_Properties[property_count].key_length = length; // Skip to the end of the key p += length; p = next_property_value (p, &length); _Jv_Environment_Properties[property_count].value = p; _Jv_Environment_Properties[property_count].value_length = length; if (p) p += length; property_count++; } memset ((void *) &_Jv_Environment_Properties[property_count], 0, sizeof (property_pair)); { size_t i = 0; // Null terminate the strings. while (_Jv_Environment_Properties[i].key) { _Jv_Environment_Properties[i].key[_Jv_Environment_Properties[i].key_length] = 0; _Jv_Environment_Properties[i++].value[_Jv_Environment_Properties[i].value_length] = 0; } } } #endif // DISABLE_GETENV_PROPERTIES void JvRunMain (jclass klass, int argc, const char **argv) { PROCESS_GCJ_PROPERTIES; main_init (); #ifdef HAVE_PROC_SELF_EXE char exec_name[20]; sprintf (exec_name, "/proc/%d/exe", getpid ()); _Jv_ThisExecutable (exec_name); #else _Jv_ThisExecutable (argv[0]); #endif arg_vec = JvConvertArgv (argc - 1, argv + 1); main_group = new java::lang::ThreadGroup (23); main_thread = new gnu::gcj::runtime::FirstThread (main_group, klass, arg_vec); main_thread->start(); _Jv_ThreadWait (); java::lang::Runtime::getRuntime ()->exit (0); } void _Jv_RunMain (const char *class_name, int argc, const char **argv) { PROCESS_GCJ_PROPERTIES; main_init (); #ifdef HAVE_PROC_SELF_EXE char exec_name[20]; sprintf (exec_name, "/proc/%d/exe", getpid ()); _Jv_ThisExecutable (exec_name); #endif arg_vec = JvConvertArgv (argc - 1, argv + 1); main_group = new java::lang::ThreadGroup (23); main_thread = new gnu::gcj::runtime::FirstThread (main_group, JvNewStringLatin1 (class_name), arg_vec); main_thread->start(); _Jv_ThreadWait (); java::lang::Runtime::getRuntime ()->exit (0); } // Parse a string and return a heap size. static size_t parse_heap_size (const char *spec) { char *end; unsigned long val = strtoul (spec, &end, 10); if (*end == 'k' || *end == 'K') val *= 1024; else if (*end == 'm' || *end == 'M') val *= 1048576; return (size_t) val; } // Set the initial heap size. This might be ignored by the GC layer. // This must be called before _Jv_RunMain. void _Jv_SetInitialHeapSize (const char *arg) { size_t size = parse_heap_size (arg); _Jv_GCSetInitialHeapSize (size); } // Set the maximum heap size. This might be ignored by the GC layer. // This must be called before _Jv_RunMain. void _Jv_SetMaximumHeapSize (const char *arg) { size_t size = parse_heap_size (arg); _Jv_GCSetMaximumHeapSize (size); } void * _Jv_Malloc (jsize size) { if (size == 0) size = 1; void *ptr = malloc ((size_t) size); if (ptr == NULL) JvThrow (no_memory); return ptr; } void * _Jv_Realloc (void *ptr, jsize size) { if (size == 0) size = 1; ptr = realloc (ptr, (size_t) size); if (ptr == NULL) JvThrow (no_memory); return ptr; } void * _Jv_MallocUnchecked (jsize size) { if (size == 0) size = 1; return malloc ((size_t) size); } void _Jv_Free (void* ptr) { return free (ptr); } // In theory, these routines can be #ifdef'd away on machines which // support divide overflow signals. However, we never know if some // code might have been compiled with "-fuse-divide-subroutine", so we // always include them in libgcj. jint _Jv_divI (jint dividend, jint divisor) { if (divisor == 0) _Jv_Throw (arithexception); if (dividend == (jint) 0x80000000L && divisor == -1) return dividend; return dividend / divisor; } jint _Jv_remI (jint dividend, jint divisor) { if (divisor == 0) _Jv_Throw (arithexception); if (dividend == (jint) 0x80000000L && divisor == -1) return 0; return dividend % divisor; } jlong _Jv_divJ (jlong dividend, jlong divisor) { if (divisor == 0) _Jv_Throw (arithexception); if (dividend == (jlong) 0x8000000000000000LL && divisor == -1) return dividend; return dividend / divisor; } jlong _Jv_remJ (jlong dividend, jlong divisor) { if (divisor == 0) _Jv_Throw (arithexception); if (dividend == (jlong) 0x8000000000000000LL && divisor == -1) return 0; return dividend % divisor; }