//===-- sanitizer_atomic_clang.h --------------------------------*- C++ -*-===// // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file is a part of ThreadSanitizer/AddressSanitizer runtime. // Not intended for direct inclusion. Include sanitizer_atomic.h. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_ATOMIC_CLANG_H #define SANITIZER_ATOMIC_CLANG_H #if defined(__i386__) || defined(__x86_64__) # include "sanitizer_atomic_clang_x86.h" #else # include "sanitizer_atomic_clang_other.h" #endif namespace __sanitizer { // We would like to just use compiler builtin atomic operations // for loads and stores, but they are mostly broken in clang: // - they lead to vastly inefficient code generation // (http://llvm.org/bugs/show_bug.cgi?id=17281) // - 64-bit atomic operations are not implemented on x86_32 // (http://llvm.org/bugs/show_bug.cgi?id=15034) // - they are not implemented on ARM // error: undefined reference to '__atomic_load_4' // See http://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html // for mappings of the memory model to different processors. INLINE void atomic_signal_fence(memory_order) { __asm__ __volatile__("" ::: "memory"); } INLINE void atomic_thread_fence(memory_order) { __sync_synchronize(); } template INLINE typename T::Type atomic_fetch_add(volatile T *a, typename T::Type v, memory_order mo) { (void)mo; DCHECK(!((uptr)a % sizeof(*a))); return __sync_fetch_and_add(&a->val_dont_use, v); } template INLINE typename T::Type atomic_fetch_sub(volatile T *a, typename T::Type v, memory_order mo) { (void)mo; DCHECK(!((uptr)a % sizeof(*a))); return __sync_fetch_and_add(&a->val_dont_use, -v); } template INLINE typename T::Type atomic_exchange(volatile T *a, typename T::Type v, memory_order mo) { DCHECK(!((uptr)a % sizeof(*a))); if (mo & (memory_order_release | memory_order_acq_rel | memory_order_seq_cst)) __sync_synchronize(); v = __sync_lock_test_and_set(&a->val_dont_use, v); if (mo == memory_order_seq_cst) __sync_synchronize(); return v; } template INLINE bool atomic_compare_exchange_strong(volatile T *a, typename T::Type *cmp, typename T::Type xchg, memory_order mo) { typedef typename T::Type Type; Type cmpv = *cmp; Type prev; #if defined(_MIPS_SIM) && _MIPS_SIM == _ABIO32 if (sizeof(*a) == 8) { Type volatile *val_ptr = const_cast(&a->val_dont_use); prev = __mips_sync_val_compare_and_swap( reinterpret_cast(val_ptr), (u64)cmpv, (u64)xchg); } else { prev = __sync_val_compare_and_swap(&a->val_dont_use, cmpv, xchg); } #else prev = __sync_val_compare_and_swap(&a->val_dont_use, cmpv, xchg); #endif if (prev == cmpv) return true; *cmp = prev; return false; } template INLINE bool atomic_compare_exchange_weak(volatile T *a, typename T::Type *cmp, typename T::Type xchg, memory_order mo) { return atomic_compare_exchange_strong(a, cmp, xchg, mo); } } // namespace __sanitizer #undef ATOMIC_ORDER #endif // SANITIZER_ATOMIC_CLANG_H