/* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /* NOTE: This is an internal header file, included by other STL headers. * You should not attempt to use it directly. */ #ifndef __SGI_STL_INTERNAL_ALGO_H #define __SGI_STL_INTERNAL_ALGO_H #include // See concept_checks.h for the concept-checking macros // __STL_REQUIRES, __STL_CONVERTIBLE, etc. __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma set woff 1209 #endif // __median (an extension, not present in the C++ standard). template inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c) { __STL_REQUIRES(_Tp, _LessThanComparable); if (__a < __b) if (__b < __c) return __b; else if (__a < __c) return __c; else return __a; else if (__a < __c) return __a; else if (__b < __c) return __c; else return __b; } template inline const _Tp& __median(const _Tp& __a, const _Tp& __b, const _Tp& __c, _Compare __comp) { __STL_BINARY_FUNCTION_CHECK(_Compare, bool, _Tp, _Tp); if (__comp(__a, __b)) if (__comp(__b, __c)) return __b; else if (__comp(__a, __c)) return __c; else return __a; else if (__comp(__a, __c)) return __a; else if (__comp(__b, __c)) return __c; else return __b; } // for_each. Apply a function to every element of a range. template _Function for_each(_InputIter __first, _InputIter __last, _Function __f) { __STL_REQUIRES(_InputIter, _InputIterator); for ( ; __first != __last; ++__first) __f(*__first); return __f; } // find and find_if. template inline _InputIter find(_InputIter __first, _InputIter __last, const _Tp& __val, input_iterator_tag) { while (__first != __last && !(*__first == __val)) ++__first; return __first; } template inline _InputIter find_if(_InputIter __first, _InputIter __last, _Predicate __pred, input_iterator_tag) { while (__first != __last && !__pred(*__first)) ++__first; return __first; } #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template _RandomAccessIter find(_RandomAccessIter __first, _RandomAccessIter __last, const _Tp& __val, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIter>::difference_type __trip_count = (__last - __first) >> 2; for ( ; __trip_count > 0 ; --__trip_count) { if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; if (*__first == __val) return __first; ++__first; } switch(__last - __first) { case 3: if (*__first == __val) return __first; ++__first; case 2: if (*__first == __val) return __first; ++__first; case 1: if (*__first == __val) return __first; ++__first; case 0: default: return __last; } } template _RandomAccessIter find_if(_RandomAccessIter __first, _RandomAccessIter __last, _Predicate __pred, random_access_iterator_tag) { typename iterator_traits<_RandomAccessIter>::difference_type __trip_count = (__last - __first) >> 2; for ( ; __trip_count > 0 ; --__trip_count) { if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; if (__pred(*__first)) return __first; ++__first; } switch(__last - __first) { case 3: if (__pred(*__first)) return __first; ++__first; case 2: if (__pred(*__first)) return __first; ++__first; case 1: if (__pred(*__first)) return __first; ++__first; case 0: default: return __last; } } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ template inline _InputIter find(_InputIter __first, _InputIter __last, const _Tp& __val) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_InputIter>::value_type, _Tp); return find(__first, __last, __val, __ITERATOR_CATEGORY(__first)); } template inline _InputIter find_if(_InputIter __first, _InputIter __last, _Predicate __pred) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_InputIter>::value_type); return find_if(__first, __last, __pred, __ITERATOR_CATEGORY(__first)); } // adjacent_find. template _ForwardIter adjacent_find(_ForwardIter __first, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _EqualityComparable); if (__first == __last) return __last; _ForwardIter __next = __first; while(++__next != __last) { if (*__first == *__next) return __first; __first = __next; } return __last; } template _ForwardIter adjacent_find(_ForwardIter __first, _ForwardIter __last, _BinaryPredicate __binary_pred) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); if (__first == __last) return __last; _ForwardIter __next = __first; while(++__next != __last) { if (__binary_pred(*__first, *__next)) return __first; __first = __next; } return __last; } // count and count_if. There are two version of each, one whose return type // type is void and one (present only if we have partial specialization) // whose return type is iterator_traits<_InputIter>::difference_type. The // C++ standard only has the latter version, but the former, which was present // in the HP STL, is retained for backward compatibility. template void count(_InputIter __first, _InputIter __last, const _Tp& __value, _Size& __n) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(typename iterator_traits<_InputIter>::value_type, _EqualityComparable); __STL_REQUIRES(_Tp, _EqualityComparable); for ( ; __first != __last; ++__first) if (*__first == __value) ++__n; } template void count_if(_InputIter __first, _InputIter __last, _Predicate __pred, _Size& __n) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_InputIter>::value_type); for ( ; __first != __last; ++__first) if (__pred(*__first)) ++__n; } #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template typename iterator_traits<_InputIter>::difference_type count(_InputIter __first, _InputIter __last, const _Tp& __value) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(typename iterator_traits<_InputIter>::value_type, _EqualityComparable); __STL_REQUIRES(_Tp, _EqualityComparable); typename iterator_traits<_InputIter>::difference_type __n = 0; for ( ; __first != __last; ++__first) if (*__first == __value) ++__n; return __n; } template typename iterator_traits<_InputIter>::difference_type count_if(_InputIter __first, _InputIter __last, _Predicate __pred) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_InputIter>::value_type); typename iterator_traits<_InputIter>::difference_type __n = 0; for ( ; __first != __last; ++__first) if (__pred(*__first)) ++__n; return __n; } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // search. template _ForwardIter1 search(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2) { __STL_REQUIRES(_ForwardIter1, _ForwardIterator); __STL_REQUIRES(_ForwardIter2, _ForwardIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_ForwardIter1>::value_type, typename iterator_traits<_ForwardIter2>::value_type); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _ForwardIter2 __tmp(__first2); ++__tmp; if (__tmp == __last2) return find(__first1, __last1, *__first2); // General case. _ForwardIter2 __p1, __p; __p1 = __first2; ++__p1; _ForwardIter1 __current = __first1; while (__first1 != __last1) { __first1 = find(__first1, __last1, *__first2); if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (*__current == *__p) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } template _ForwardIter1 search(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2, _BinaryPred __predicate) { __STL_REQUIRES(_ForwardIter1, _ForwardIterator); __STL_REQUIRES(_ForwardIter2, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPred, bool, typename iterator_traits<_ForwardIter1>::value_type, typename iterator_traits<_ForwardIter2>::value_type); // Test for empty ranges if (__first1 == __last1 || __first2 == __last2) return __first1; // Test for a pattern of length 1. _ForwardIter2 __tmp(__first2); ++__tmp; if (__tmp == __last2) { while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; return __first1; } // General case. _ForwardIter2 __p1, __p; __p1 = __first2; ++__p1; _ForwardIter1 __current = __first1; while (__first1 != __last1) { while (__first1 != __last1) { if (__predicate(*__first1, *__first2)) break; ++__first1; } while (__first1 != __last1 && !__predicate(*__first1, *__first2)) ++__first1; if (__first1 == __last1) return __last1; __p = __p1; __current = __first1; if (++__current == __last1) return __last1; while (__predicate(*__current, *__p)) { if (++__p == __last2) return __first1; if (++__current == __last1) return __last1; } ++__first1; } return __first1; } // search_n. Search for __count consecutive copies of __val. template _ForwardIter search_n(_ForwardIter __first, _ForwardIter __last, _Integer __count, const _Tp& __val) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _EqualityComparable); __STL_REQUIRES(_Tp, _EqualityComparable); if (__count <= 0) return __first; else { __first = find(__first, __last, __val); while (__first != __last) { _Integer __n = __count - 1; _ForwardIter __i = __first; ++__i; while (__i != __last && __n != 0 && *__i == __val) { ++__i; --__n; } if (__n == 0) return __first; else __first = find(__i, __last, __val); } return __last; } } template _ForwardIter search_n(_ForwardIter __first, _ForwardIter __last, _Integer __count, const _Tp& __val, _BinaryPred __binary_pred) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPred, bool, typename iterator_traits<_ForwardIter>::value_type, _Tp); if (__count <= 0) return __first; else { while (__first != __last) { if (__binary_pred(*__first, __val)) break; ++__first; } while (__first != __last) { _Integer __n = __count - 1; _ForwardIter __i = __first; ++__i; while (__i != __last && __n != 0 && __binary_pred(*__i, __val)) { ++__i; --__n; } if (__n == 0) return __first; else { while (__i != __last) { if (__binary_pred(*__i, __val)) break; ++__i; } __first = __i; } } return __last; } } // swap_ranges template _ForwardIter2 swap_ranges(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2) { __STL_REQUIRES(_ForwardIter1, _Mutable_ForwardIterator); __STL_REQUIRES(_ForwardIter2, _Mutable_ForwardIterator); __STL_CONVERTIBLE(typename iterator_traits<_ForwardIter1>::value_type, typename iterator_traits<_ForwardIter2>::value_type); __STL_CONVERTIBLE(typename iterator_traits<_ForwardIter2>::value_type, typename iterator_traits<_ForwardIter1>::value_type); for ( ; __first1 != __last1; ++__first1, ++__first2) iter_swap(__first1, __first2); return __first2; } // transform template _OutputIter transform(_InputIter __first, _InputIter __last, _OutputIter __result, _UnaryOperation __unary_op) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); for ( ; __first != __last; ++__first, ++__result) *__result = __unary_op(*__first); return __result; } template _OutputIter transform(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _OutputIter __result, _BinaryOperation __binary_op) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); for ( ; __first1 != __last1; ++__first1, ++__first2, ++__result) *__result = __binary_op(*__first1, *__first2); return __result; } // replace, replace_if, replace_copy, replace_copy_if template void replace(_ForwardIter __first, _ForwardIter __last, const _Tp& __old_value, const _Tp& __new_value) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_ForwardIter>::value_type, _Tp); __STL_CONVERTIBLE(_Tp, typename iterator_traits<_ForwardIter>::value_type); for ( ; __first != __last; ++__first) if (*__first == __old_value) *__first = __new_value; } template void replace_if(_ForwardIter __first, _ForwardIter __last, _Predicate __pred, const _Tp& __new_value) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_CONVERTIBLE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_ForwardIter>::value_type); for ( ; __first != __last; ++__first) if (__pred(*__first)) *__first = __new_value; } template _OutputIter replace_copy(_InputIter __first, _InputIter __last, _OutputIter __result, const _Tp& __old_value, const _Tp& __new_value) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_InputIter>::value_type, _Tp); for ( ; __first != __last; ++__first, ++__result) *__result = *__first == __old_value ? __new_value : *__first; return __result; } template _OutputIter replace_copy_if(_InputIter __first, _InputIter __last, _OutputIter __result, _Predicate __pred, const _Tp& __new_value) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_InputIter>::value_type); for ( ; __first != __last; ++__first, ++__result) *__result = __pred(*__first) ? __new_value : *__first; return __result; } // generate and generate_n template void generate(_ForwardIter __first, _ForwardIter __last, _Generator __gen) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_GENERATOR_CHECK(_Generator, typename iterator_traits<_ForwardIter>::value_type); for ( ; __first != __last; ++__first) *__first = __gen(); } template _OutputIter generate_n(_OutputIter __first, _Size __n, _Generator __gen) { __STL_REQUIRES(_OutputIter, _OutputIterator); for ( ; __n > 0; --__n, ++__first) *__first = __gen(); return __first; } // remove, remove_if, remove_copy, remove_copy_if template _OutputIter remove_copy(_InputIter __first, _InputIter __last, _OutputIter __result, const _Tp& __value) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_InputIter>::value_type, _Tp); for ( ; __first != __last; ++__first) if (!(*__first == __value)) { *__result = *__first; ++__result; } return __result; } template _OutputIter remove_copy_if(_InputIter __first, _InputIter __last, _OutputIter __result, _Predicate __pred) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_InputIter>::value_type); for ( ; __first != __last; ++__first) if (!__pred(*__first)) { *__result = *__first; ++__result; } return __result; } template _ForwardIter remove(_ForwardIter __first, _ForwardIter __last, const _Tp& __value) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_ForwardIter>::value_type, _Tp); __STL_CONVERTIBLE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __first = find(__first, __last, __value); _ForwardIter __i = __first; return __first == __last ? __first : remove_copy(++__i, __last, __first, __value); } template _ForwardIter remove_if(_ForwardIter __first, _ForwardIter __last, _Predicate __pred) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_ForwardIter>::value_type); __first = find_if(__first, __last, __pred); _ForwardIter __i = __first; return __first == __last ? __first : remove_copy_if(++__i, __last, __first, __pred); } // unique and unique_copy template _OutputIter __unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result, _Tp*) { _Tp __value = *__first; *__result = __value; while (++__first != __last) if (!(__value == *__first)) { __value = *__first; *++__result = __value; } return ++__result; } template inline _OutputIter __unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result, output_iterator_tag) { return __unique_copy(__first, __last, __result, __VALUE_TYPE(__first)); } template _ForwardIter __unique_copy(_InputIter __first, _InputIter __last, _ForwardIter __result, forward_iterator_tag) { *__result = *__first; while (++__first != __last) if (!(*__result == *__first)) *++__result = *__first; return ++__result; } template inline _OutputIter unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES(typename iterator_traits<_InputIter>::value_type, _EqualityComparable); if (__first == __last) return __result; return __unique_copy(__first, __last, __result, __ITERATOR_CATEGORY(__result)); } template _OutputIter __unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result, _BinaryPredicate __binary_pred, _Tp*) { __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, _Tp, _Tp); _Tp __value = *__first; *__result = __value; while (++__first != __last) if (!__binary_pred(__value, *__first)) { __value = *__first; *++__result = __value; } return ++__result; } template inline _OutputIter __unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result, _BinaryPredicate __binary_pred, output_iterator_tag) { return __unique_copy(__first, __last, __result, __binary_pred, __VALUE_TYPE(__first)); } template _ForwardIter __unique_copy(_InputIter __first, _InputIter __last, _ForwardIter __result, _BinaryPredicate __binary_pred, forward_iterator_tag) { __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_InputIter>::value_type); *__result = *__first; while (++__first != __last) if (!__binary_pred(*__result, *__first)) *++__result = *__first; return ++__result; } template inline _OutputIter unique_copy(_InputIter __first, _InputIter __last, _OutputIter __result, _BinaryPredicate __binary_pred) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); if (__first == __last) return __result; return __unique_copy(__first, __last, __result, __binary_pred, __ITERATOR_CATEGORY(__result)); } template _ForwardIter unique(_ForwardIter __first, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _EqualityComparable); __first = adjacent_find(__first, __last); return unique_copy(__first, __last, __first); } template _ForwardIter unique(_ForwardIter __first, _ForwardIter __last, _BinaryPredicate __binary_pred) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); __first = adjacent_find(__first, __last, __binary_pred); return unique_copy(__first, __last, __first, __binary_pred); } // reverse and reverse_copy, and their auxiliary functions template void __reverse(_BidirectionalIter __first, _BidirectionalIter __last, bidirectional_iterator_tag) { while (true) if (__first == __last || __first == --__last) return; else iter_swap(__first++, __last); } template void __reverse(_RandomAccessIter __first, _RandomAccessIter __last, random_access_iterator_tag) { while (__first < __last) iter_swap(__first++, --__last); } template inline void reverse(_BidirectionalIter __first, _BidirectionalIter __last) { __STL_REQUIRES(_BidirectionalIter, _Mutable_BidirectionalIterator); __reverse(__first, __last, __ITERATOR_CATEGORY(__first)); } template _OutputIter reverse_copy(_BidirectionalIter __first, _BidirectionalIter __last, _OutputIter __result) { __STL_REQUIRES(_BidirectionalIter, _BidirectionalIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); while (__first != __last) { --__last; *__result = *__last; ++__result; } return __result; } // rotate and rotate_copy, and their auxiliary functions template _EuclideanRingElement __gcd(_EuclideanRingElement __m, _EuclideanRingElement __n) { while (__n != 0) { _EuclideanRingElement __t = __m % __n; __m = __n; __n = __t; } return __m; } template _ForwardIter __rotate(_ForwardIter __first, _ForwardIter __middle, _ForwardIter __last, _Distance*, forward_iterator_tag) { if (__first == __middle) return __last; if (__last == __middle) return __first; _ForwardIter __first2 = __middle; do { swap(*__first++, *__first2++); if (__first == __middle) __middle = __first2; } while (__first2 != __last); _ForwardIter __new_middle = __first; __first2 = __middle; while (__first2 != __last) { swap (*__first++, *__first2++); if (__first == __middle) __middle = __first2; else if (__first2 == __last) __first2 = __middle; } return __new_middle; } template _BidirectionalIter __rotate(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Distance*, bidirectional_iterator_tag) { __STL_REQUIRES(_BidirectionalIter, _Mutable_BidirectionalIterator); if (__first == __middle) return __last; if (__last == __middle) return __first; __reverse(__first, __middle, bidirectional_iterator_tag()); __reverse(__middle, __last, bidirectional_iterator_tag()); while (__first != __middle && __middle != __last) swap (*__first++, *--__last); if (__first == __middle) { __reverse(__middle, __last, bidirectional_iterator_tag()); return __last; } else { __reverse(__first, __middle, bidirectional_iterator_tag()); return __first; } } template _RandomAccessIter __rotate(_RandomAccessIter __first, _RandomAccessIter __middle, _RandomAccessIter __last, _Distance *, _Tp *) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); _Distance __n = __last - __first; _Distance __k = __middle - __first; _Distance __l = __n - __k; _RandomAccessIter __result = __first + (__last - __middle); if (__k == 0) return __last; else if (__k == __l) { swap_ranges(__first, __middle, __middle); return __result; } _Distance __d = __gcd(__n, __k); for (_Distance __i = 0; __i < __d; __i++) { _Tp __tmp = *__first; _RandomAccessIter __p = __first; if (__k < __l) { for (_Distance __j = 0; __j < __l/__d; __j++) { if (__p > __first + __l) { *__p = *(__p - __l); __p -= __l; } *__p = *(__p + __k); __p += __k; } } else { for (_Distance __j = 0; __j < __k/__d - 1; __j ++) { if (__p < __last - __k) { *__p = *(__p + __k); __p += __k; } *__p = * (__p - __l); __p -= __l; } } *__p = __tmp; ++__first; } return __result; } template inline _ForwardIter rotate(_ForwardIter __first, _ForwardIter __middle, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); return __rotate(__first, __middle, __last, __DISTANCE_TYPE(__first), __ITERATOR_CATEGORY(__first)); } template _OutputIter rotate_copy(_ForwardIter __first, _ForwardIter __middle, _ForwardIter __last, _OutputIter __result) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); return copy(__first, __middle, copy(__middle, __last, __result)); } // Return a random number in the range [0, __n). This function encapsulates // whether we're using rand (part of the standard C library) or lrand48 // (not standard, but a much better choice whenever it's available). template inline _Distance __random_number(_Distance __n) { #ifdef __STL_NO_DRAND48 return rand() % __n; #else return lrand48() % __n; #endif } // random_shuffle template inline void random_shuffle(_RandomAccessIter __first, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); if (__first == __last) return; for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i) iter_swap(__i, __first + __random_number((__i - __first) + 1)); } template void random_shuffle(_RandomAccessIter __first, _RandomAccessIter __last, _RandomNumberGenerator& __rand) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); if (__first == __last) return; for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i) iter_swap(__i, __first + __rand((__i - __first) + 1)); } // random_sample and random_sample_n (extensions, not part of the standard). template _OutputIter random_sample_n(_ForwardIter __first, _ForwardIter __last, _OutputIter __out, const _Distance __n) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); _Distance __remaining = 0; distance(__first, __last, __remaining); _Distance __m = min(__n, __remaining); while (__m > 0) { if (__random_number(__remaining) < __m) { *__out = *__first; ++__out; --__m; } --__remaining; ++__first; } return __out; } template _OutputIter random_sample_n(_ForwardIter __first, _ForwardIter __last, _OutputIter __out, const _Distance __n, _RandomNumberGenerator& __rand) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_UNARY_FUNCTION_CHECK(_RandomNumberGenerator, _Distance, _Distance); _Distance __remaining = 0; distance(__first, __last, __remaining); _Distance __m = min(__n, __remaining); while (__m > 0) { if (__rand(__remaining) < __m) { *__out = *__first; ++__out; --__m; } --__remaining; ++__first; } return __out; } template _RandomAccessIter __random_sample(_InputIter __first, _InputIter __last, _RandomAccessIter __out, const _Distance __n) { _Distance __m = 0; _Distance __t = __n; for ( ; __first != __last && __m < __n; ++__m, ++__first) __out[__m] = *__first; while (__first != __last) { ++__t; _Distance __M = __random_number(__t); if (__M < __n) __out[__M] = *__first; ++__first; } return __out + __m; } template _RandomAccessIter __random_sample(_InputIter __first, _InputIter __last, _RandomAccessIter __out, _RandomNumberGenerator& __rand, const _Distance __n) { __STL_UNARY_FUNCTION_CHECK(_RandomNumberGenerator, _Distance, _Distance); _Distance __m = 0; _Distance __t = __n; for ( ; __first != __last && __m < __n; ++__m, ++__first) __out[__m] = *__first; while (__first != __last) { ++__t; _Distance __M = __rand(__t); if (__M < __n) __out[__M] = *__first; ++__first; } return __out + __m; } template inline _RandomAccessIter random_sample(_InputIter __first, _InputIter __last, _RandomAccessIter __out_first, _RandomAccessIter __out_last) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); return __random_sample(__first, __last, __out_first, __out_last - __out_first); } template inline _RandomAccessIter random_sample(_InputIter __first, _InputIter __last, _RandomAccessIter __out_first, _RandomAccessIter __out_last, _RandomNumberGenerator& __rand) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); return __random_sample(__first, __last, __out_first, __rand, __out_last - __out_first); } // partition, stable_partition, and their auxiliary functions template _ForwardIter __partition(_ForwardIter __first, _ForwardIter __last, _Predicate __pred, forward_iterator_tag) { if (__first == __last) return __first; while (__pred(*__first)) if (++__first == __last) return __first; _ForwardIter __next = __first; while (++__next != __last) if (__pred(*__next)) { swap(*__first, *__next); ++__first; } return __first; } template _BidirectionalIter __partition(_BidirectionalIter __first, _BidirectionalIter __last, _Predicate __pred, bidirectional_iterator_tag) { while (true) { while (true) if (__first == __last) return __first; else if (__pred(*__first)) ++__first; else break; --__last; while (true) if (__first == __last) return __first; else if (!__pred(*__last)) --__last; else break; iter_swap(__first, __last); ++__first; } } template inline _ForwardIter partition(_ForwardIter __first, _ForwardIter __last, _Predicate __pred) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_ForwardIter>::value_type); return __partition(__first, __last, __pred, __ITERATOR_CATEGORY(__first)); } template _ForwardIter __inplace_stable_partition(_ForwardIter __first, _ForwardIter __last, _Predicate __pred, _Distance __len) { if (__len == 1) return __pred(*__first) ? __last : __first; _ForwardIter __middle = __first; advance(__middle, __len / 2); return rotate(__inplace_stable_partition(__first, __middle, __pred, __len / 2), __middle, __inplace_stable_partition(__middle, __last, __pred, __len - __len / 2)); } template _ForwardIter __stable_partition_adaptive(_ForwardIter __first, _ForwardIter __last, _Predicate __pred, _Distance __len, _Pointer __buffer, _Distance __buffer_size) { if (__len <= __buffer_size) { _ForwardIter __result1 = __first; _Pointer __result2 = __buffer; for ( ; __first != __last ; ++__first) if (__pred(*__first)) { *__result1 = *__first; ++__result1; } else { *__result2 = *__first; ++__result2; } copy(__buffer, __result2, __result1); return __result1; } else { _ForwardIter __middle = __first; advance(__middle, __len / 2); return rotate(__stable_partition_adaptive( __first, __middle, __pred, __len / 2, __buffer, __buffer_size), __middle, __stable_partition_adaptive( __middle, __last, __pred, __len - __len / 2, __buffer, __buffer_size)); } } template inline _ForwardIter __stable_partition_aux(_ForwardIter __first, _ForwardIter __last, _Predicate __pred, _Tp*, _Distance*) { _Temporary_buffer<_ForwardIter, _Tp> __buf(__first, __last); if (__buf.size() > 0) return __stable_partition_adaptive(__first, __last, __pred, _Distance(__buf.requested_size()), __buf.begin(), __buf.size()); else return __inplace_stable_partition(__first, __last, __pred, _Distance(__buf.requested_size())); } template inline _ForwardIter stable_partition(_ForwardIter __first, _ForwardIter __last, _Predicate __pred) { __STL_REQUIRES(_ForwardIter, _Mutable_ForwardIterator); __STL_UNARY_FUNCTION_CHECK(_Predicate, bool, typename iterator_traits<_ForwardIter>::value_type); if (__first == __last) return __first; else return __stable_partition_aux(__first, __last, __pred, __VALUE_TYPE(__first), __DISTANCE_TYPE(__first)); } template _RandomAccessIter __unguarded_partition(_RandomAccessIter __first, _RandomAccessIter __last, _Tp __pivot) { while (true) { while (*__first < __pivot) ++__first; --__last; while (__pivot < *__last) --__last; if (!(__first < __last)) return __first; iter_swap(__first, __last); ++__first; } } template _RandomAccessIter __unguarded_partition(_RandomAccessIter __first, _RandomAccessIter __last, _Tp __pivot, _Compare __comp) { while (true) { while (__comp(*__first, __pivot)) ++__first; --__last; while (__comp(__pivot, *__last)) --__last; if (!(__first < __last)) return __first; iter_swap(__first, __last); ++__first; } } const int __stl_threshold = 16; // sort() and its auxiliary functions. template void __unguarded_linear_insert(_RandomAccessIter __last, _Tp __val) { _RandomAccessIter __next = __last; --__next; while (__val < *__next) { *__last = *__next; __last = __next; --__next; } *__last = __val; } template void __unguarded_linear_insert(_RandomAccessIter __last, _Tp __val, _Compare __comp) { _RandomAccessIter __next = __last; --__next; while (__comp(__val, *__next)) { *__last = *__next; __last = __next; --__next; } *__last = __val; } template inline void __linear_insert(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*) { _Tp __val = *__last; if (__val < *__first) { copy_backward(__first, __last, __last + 1); *__first = __val; } else __unguarded_linear_insert(__last, __val); } template inline void __linear_insert(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Compare __comp) { _Tp __val = *__last; if (__comp(__val, *__first)) { copy_backward(__first, __last, __last + 1); *__first = __val; } else __unguarded_linear_insert(__last, __val, __comp); } template void __insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last) { if (__first == __last) return; for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i) __linear_insert(__first, __i, __VALUE_TYPE(__first)); } template void __insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { if (__first == __last) return; for (_RandomAccessIter __i = __first + 1; __i != __last; ++__i) __linear_insert(__first, __i, __VALUE_TYPE(__first), __comp); } template void __unguarded_insertion_sort_aux(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*) { for (_RandomAccessIter __i = __first; __i != __last; ++__i) __unguarded_linear_insert(__i, _Tp(*__i)); } template inline void __unguarded_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last) { __unguarded_insertion_sort_aux(__first, __last, __VALUE_TYPE(__first)); } template void __unguarded_insertion_sort_aux(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Compare __comp) { for (_RandomAccessIter __i = __first; __i != __last; ++__i) __unguarded_linear_insert(__i, _Tp(*__i), __comp); } template inline void __unguarded_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { __unguarded_insertion_sort_aux(__first, __last, __VALUE_TYPE(__first), __comp); } template void __final_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last) { if (__last - __first > __stl_threshold) { __insertion_sort(__first, __first + __stl_threshold); __unguarded_insertion_sort(__first + __stl_threshold, __last); } else __insertion_sort(__first, __last); } template void __final_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { if (__last - __first > __stl_threshold) { __insertion_sort(__first, __first + __stl_threshold, __comp); __unguarded_insertion_sort(__first + __stl_threshold, __last, __comp); } else __insertion_sort(__first, __last, __comp); } template inline _Size __lg(_Size __n) { _Size __k; for (__k = 0; __n != 1; __n >>= 1) ++__k; return __k; } template void __introsort_loop(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Size __depth_limit) { while (__last - __first > __stl_threshold) { if (__depth_limit == 0) { partial_sort(__first, __last, __last); return; } --__depth_limit; _RandomAccessIter __cut = __unguarded_partition(__first, __last, _Tp(__median(*__first, *(__first + (__last - __first)/2), *(__last - 1)))); __introsort_loop(__cut, __last, (_Tp*) 0, __depth_limit); __last = __cut; } } template void __introsort_loop(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Size __depth_limit, _Compare __comp) { while (__last - __first > __stl_threshold) { if (__depth_limit == 0) { partial_sort(__first, __last, __last, __comp); return; } --__depth_limit; _RandomAccessIter __cut = __unguarded_partition(__first, __last, _Tp(__median(*__first, *(__first + (__last - __first)/2), *(__last - 1), __comp)), __comp); __introsort_loop(__cut, __last, (_Tp*) 0, __depth_limit, __comp); __last = __cut; } } template inline void sort(_RandomAccessIter __first, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); if (__first != __last) { __introsort_loop(__first, __last, __VALUE_TYPE(__first), __lg(__last - __first) * 2); __final_insertion_sort(__first, __last); } } template inline void sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); if (__first != __last) { __introsort_loop(__first, __last, __VALUE_TYPE(__first), __lg(__last - __first) * 2, __comp); __final_insertion_sort(__first, __last, __comp); } } // stable_sort() and its auxiliary functions. template void __inplace_stable_sort(_RandomAccessIter __first, _RandomAccessIter __last) { if (__last - __first < 15) { __insertion_sort(__first, __last); return; } _RandomAccessIter __middle = __first + (__last - __first) / 2; __inplace_stable_sort(__first, __middle); __inplace_stable_sort(__middle, __last); __merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle); } template void __inplace_stable_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { if (__last - __first < 15) { __insertion_sort(__first, __last, __comp); return; } _RandomAccessIter __middle = __first + (__last - __first) / 2; __inplace_stable_sort(__first, __middle, __comp); __inplace_stable_sort(__middle, __last, __comp); __merge_without_buffer(__first, __middle, __last, __middle - __first, __last - __middle, __comp); } template void __merge_sort_loop(_RandomAccessIter1 __first, _RandomAccessIter1 __last, _RandomAccessIter2 __result, _Distance __step_size) { _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result); __first += __two_step; } __step_size = min(_Distance(__last - __first), __step_size); merge(__first, __first + __step_size, __first + __step_size, __last, __result); } template void __merge_sort_loop(_RandomAccessIter1 __first, _RandomAccessIter1 __last, _RandomAccessIter2 __result, _Distance __step_size, _Compare __comp) { _Distance __two_step = 2 * __step_size; while (__last - __first >= __two_step) { __result = merge(__first, __first + __step_size, __first + __step_size, __first + __two_step, __result, __comp); __first += __two_step; } __step_size = min(_Distance(__last - __first), __step_size); merge(__first, __first + __step_size, __first + __step_size, __last, __result, __comp); } const int __stl_chunk_size = 7; template void __chunk_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Distance __chunk_size) { while (__last - __first >= __chunk_size) { __insertion_sort(__first, __first + __chunk_size); __first += __chunk_size; } __insertion_sort(__first, __last); } template void __chunk_insertion_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Distance __chunk_size, _Compare __comp) { while (__last - __first >= __chunk_size) { __insertion_sort(__first, __first + __chunk_size, __comp); __first += __chunk_size; } __insertion_sort(__first, __last, __comp); } template void __merge_sort_with_buffer(_RandomAccessIter __first, _RandomAccessIter __last, _Pointer __buffer, _Distance*) { _Distance __len = __last - __first; _Pointer __buffer_last = __buffer + __len; _Distance __step_size = __stl_chunk_size; __chunk_insertion_sort(__first, __last, __step_size); while (__step_size < __len) { __merge_sort_loop(__first, __last, __buffer, __step_size); __step_size *= 2; __merge_sort_loop(__buffer, __buffer_last, __first, __step_size); __step_size *= 2; } } template void __merge_sort_with_buffer(_RandomAccessIter __first, _RandomAccessIter __last, _Pointer __buffer, _Distance*, _Compare __comp) { _Distance __len = __last - __first; _Pointer __buffer_last = __buffer + __len; _Distance __step_size = __stl_chunk_size; __chunk_insertion_sort(__first, __last, __step_size, __comp); while (__step_size < __len) { __merge_sort_loop(__first, __last, __buffer, __step_size, __comp); __step_size *= 2; __merge_sort_loop(__buffer, __buffer_last, __first, __step_size, __comp); __step_size *= 2; } } template void __stable_sort_adaptive(_RandomAccessIter __first, _RandomAccessIter __last, _Pointer __buffer, _Distance __buffer_size) { _Distance __len = (__last - __first + 1) / 2; _RandomAccessIter __middle = __first + __len; if (__len > __buffer_size) { __stable_sort_adaptive(__first, __middle, __buffer, __buffer_size); __stable_sort_adaptive(__middle, __last, __buffer, __buffer_size); } else { __merge_sort_with_buffer(__first, __middle, __buffer, (_Distance*)0); __merge_sort_with_buffer(__middle, __last, __buffer, (_Distance*)0); } __merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size); } template void __stable_sort_adaptive(_RandomAccessIter __first, _RandomAccessIter __last, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { _Distance __len = (__last - __first + 1) / 2; _RandomAccessIter __middle = __first + __len; if (__len > __buffer_size) { __stable_sort_adaptive(__first, __middle, __buffer, __buffer_size, __comp); __stable_sort_adaptive(__middle, __last, __buffer, __buffer_size, __comp); } else { __merge_sort_with_buffer(__first, __middle, __buffer, (_Distance*)0, __comp); __merge_sort_with_buffer(__middle, __last, __buffer, (_Distance*)0, __comp); } __merge_adaptive(__first, __middle, __last, _Distance(__middle - __first), _Distance(__last - __middle), __buffer, __buffer_size, __comp); } template inline void __stable_sort_aux(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Distance*) { _Temporary_buffer<_RandomAccessIter, _Tp> buf(__first, __last); if (buf.begin() == 0) __inplace_stable_sort(__first, __last); else __stable_sort_adaptive(__first, __last, buf.begin(), _Distance(buf.size())); } template inline void __stable_sort_aux(_RandomAccessIter __first, _RandomAccessIter __last, _Tp*, _Distance*, _Compare __comp) { _Temporary_buffer<_RandomAccessIter, _Tp> buf(__first, __last); if (buf.begin() == 0) __inplace_stable_sort(__first, __last, __comp); else __stable_sort_adaptive(__first, __last, buf.begin(), _Distance(buf.size()), __comp); } template inline void stable_sort(_RandomAccessIter __first, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); __stable_sort_aux(__first, __last, __VALUE_TYPE(__first), __DISTANCE_TYPE(__first)); } template inline void stable_sort(_RandomAccessIter __first, _RandomAccessIter __last, _Compare __comp) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); __stable_sort_aux(__first, __last, __VALUE_TYPE(__first), __DISTANCE_TYPE(__first), __comp); } // partial_sort, partial_sort_copy, and auxiliary functions. template void __partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle, _RandomAccessIter __last, _Tp*) { make_heap(__first, __middle); for (_RandomAccessIter __i = __middle; __i < __last; ++__i) if (*__i < *__first) __pop_heap(__first, __middle, __i, _Tp(*__i), __DISTANCE_TYPE(__first)); sort_heap(__first, __middle); } template inline void partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); __partial_sort(__first, __middle, __last, __VALUE_TYPE(__first)); } template void __partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle, _RandomAccessIter __last, _Tp*, _Compare __comp) { make_heap(__first, __middle, __comp); for (_RandomAccessIter __i = __middle; __i < __last; ++__i) if (__comp(*__i, *__first)) __pop_heap(__first, __middle, __i, _Tp(*__i), __comp, __DISTANCE_TYPE(__first)); sort_heap(__first, __middle, __comp); } template inline void partial_sort(_RandomAccessIter __first, _RandomAccessIter __middle, _RandomAccessIter __last, _Compare __comp) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); __partial_sort(__first, __middle, __last, __VALUE_TYPE(__first), __comp); } template _RandomAccessIter __partial_sort_copy(_InputIter __first, _InputIter __last, _RandomAccessIter __result_first, _RandomAccessIter __result_last, _Distance*, _Tp*) { if (__result_first == __result_last) return __result_last; _RandomAccessIter __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } make_heap(__result_first, __result_real_last); while (__first != __last) { if (*__first < *__result_first) __adjust_heap(__result_first, _Distance(0), _Distance(__result_real_last - __result_first), _Tp(*__first)); ++__first; } sort_heap(__result_first, __result_real_last); return __result_real_last; } template inline _RandomAccessIter partial_sort_copy(_InputIter __first, _InputIter __last, _RandomAccessIter __result_first, _RandomAccessIter __result_last) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_CONVERTIBLE(typename iterator_traits<_InputIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); __STL_REQUIRES(typename iterator_traits<_InputIter>::value_type, _LessThanComparable); return __partial_sort_copy(__first, __last, __result_first, __result_last, __DISTANCE_TYPE(__result_first), __VALUE_TYPE(__first)); } template _RandomAccessIter __partial_sort_copy(_InputIter __first, _InputIter __last, _RandomAccessIter __result_first, _RandomAccessIter __result_last, _Compare __comp, _Distance*, _Tp*) { if (__result_first == __result_last) return __result_last; _RandomAccessIter __result_real_last = __result_first; while(__first != __last && __result_real_last != __result_last) { *__result_real_last = *__first; ++__result_real_last; ++__first; } make_heap(__result_first, __result_real_last, __comp); while (__first != __last) { if (__comp(*__first, *__result_first)) __adjust_heap(__result_first, _Distance(0), _Distance(__result_real_last - __result_first), _Tp(*__first), __comp); ++__first; } sort_heap(__result_first, __result_real_last, __comp); return __result_real_last; } template inline _RandomAccessIter partial_sort_copy(_InputIter __first, _InputIter __last, _RandomAccessIter __result_first, _RandomAccessIter __result_last, _Compare __comp) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_CONVERTIBLE(typename iterator_traits<_InputIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); return __partial_sort_copy(__first, __last, __result_first, __result_last, __comp, __DISTANCE_TYPE(__result_first), __VALUE_TYPE(__first)); } // nth_element() and its auxiliary functions. template void __nth_element(_RandomAccessIter __first, _RandomAccessIter __nth, _RandomAccessIter __last, _Tp*) { while (__last - __first > 3) { _RandomAccessIter __cut = __unguarded_partition(__first, __last, _Tp(__median(*__first, *(__first + (__last - __first)/2), *(__last - 1)))); if (__cut <= __nth) __first = __cut; else __last = __cut; } __insertion_sort(__first, __last); } template inline void nth_element(_RandomAccessIter __first, _RandomAccessIter __nth, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); __nth_element(__first, __nth, __last, __VALUE_TYPE(__first)); } template void __nth_element(_RandomAccessIter __first, _RandomAccessIter __nth, _RandomAccessIter __last, _Tp*, _Compare __comp) { while (__last - __first > 3) { _RandomAccessIter __cut = __unguarded_partition(__first, __last, _Tp(__median(*__first, *(__first + (__last - __first)/2), *(__last - 1), __comp)), __comp); if (__cut <= __nth) __first = __cut; else __last = __cut; } __insertion_sort(__first, __last, __comp); } template inline void nth_element(_RandomAccessIter __first, _RandomAccessIter __nth, _RandomAccessIter __last, _Compare __comp) { __STL_REQUIRES(_RandomAccessIter, _Mutable_RandomAccessIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); __nth_element(__first, __nth, __last, __VALUE_TYPE(__first), __comp); } // Binary search (lower_bound, upper_bound, equal_range, binary_search). template _ForwardIter __lower_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } template inline _ForwardIter lower_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_REQUIRES(_Tp, _LessThanComparable); return __lower_bound(__first, __last, __val, __DISTANCE_TYPE(__first)); } template _ForwardIter __lower_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else __len = __half; } return __first; } template inline _ForwardIter lower_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, _Tp, _Tp); return __lower_bound(__first, __last, __val, __comp, __DISTANCE_TYPE(__first)); } template _ForwardIter __upper_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (__val < *__middle) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } template inline _ForwardIter upper_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_REQUIRES(_Tp, _LessThanComparable); return __upper_bound(__first, __last, __val, __DISTANCE_TYPE(__first)); } template _ForwardIter __upper_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (__comp(__val, *__middle)) __len = __half; else { __first = __middle; ++__first; __len = __len - __half - 1; } } return __first; } template inline _ForwardIter upper_bound(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, _Tp, _Tp); return __upper_bound(__first, __last, __val, __comp, __DISTANCE_TYPE(__first)); } template pair<_ForwardIter, _ForwardIter> __equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle, __left, __right; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (*__middle < __val) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__val < *__middle) __len = __half; else { __left = lower_bound(__first, __middle, __val); advance(__first, __len); __right = upper_bound(++__middle, __first, __val); return pair<_ForwardIter, _ForwardIter>(__left, __right); } } return pair<_ForwardIter, _ForwardIter>(__first, __first); } template inline pair<_ForwardIter, _ForwardIter> equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_REQUIRES(_Tp, _LessThanComparable); return __equal_range(__first, __last, __val, __DISTANCE_TYPE(__first)); } template pair<_ForwardIter, _ForwardIter> __equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp, _Distance*) { _Distance __len = 0; distance(__first, __last, __len); _Distance __half; _ForwardIter __middle, __left, __right; while (__len > 0) { __half = __len >> 1; __middle = __first; advance(__middle, __half); if (__comp(*__middle, __val)) { __first = __middle; ++__first; __len = __len - __half - 1; } else if (__comp(__val, *__middle)) __len = __half; else { __left = lower_bound(__first, __middle, __val, __comp); advance(__first, __len); __right = upper_bound(++__middle, __first, __val, __comp); return pair<_ForwardIter, _ForwardIter>(__left, __right); } } return pair<_ForwardIter, _ForwardIter>(__first, __first); } template inline pair<_ForwardIter, _ForwardIter> equal_range(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, _Tp, _Tp); return __equal_range(__first, __last, __val, __comp, __DISTANCE_TYPE(__first)); } template bool binary_search(_ForwardIter __first, _ForwardIter __last, const _Tp& __val) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_REQUIRES(_Tp, _LessThanComparable); _ForwardIter __i = lower_bound(__first, __last, __val); return __i != __last && !(__val < *__i); } template bool binary_search(_ForwardIter __first, _ForwardIter __last, const _Tp& __val, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_SAME_TYPE(_Tp, typename iterator_traits<_ForwardIter>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, _Tp, _Tp); _ForwardIter __i = lower_bound(__first, __last, __val, __comp); return __i != __last && !__comp(__val, *__i); } // merge, with and without an explicitly supplied comparison function. template _OutputIter merge(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) { if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } template _OutputIter merge(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter1>::value_type); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; } ++__result; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } // inplace_merge and its auxiliary functions. template void __merge_without_buffer(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Distance __len1, _Distance __len2) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (*__middle < *__first) iter_swap(__first, __middle); return; } _BidirectionalIter __first_cut = __first; _BidirectionalIter __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; advance(__first_cut, __len11); __second_cut = lower_bound(__middle, __last, *__first_cut); distance(__middle, __second_cut, __len22); } else { __len22 = __len2 / 2; advance(__second_cut, __len22); __first_cut = upper_bound(__first, __middle, *__second_cut); distance(__first, __first_cut, __len11); } _BidirectionalIter __new_middle = rotate(__first_cut, __middle, __second_cut); __merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22); __merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22); } template void __merge_without_buffer(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Distance __len1, _Distance __len2, _Compare __comp) { if (__len1 == 0 || __len2 == 0) return; if (__len1 + __len2 == 2) { if (__comp(*__middle, *__first)) iter_swap(__first, __middle); return; } _BidirectionalIter __first_cut = __first; _BidirectionalIter __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; advance(__first_cut, __len11); __second_cut = lower_bound(__middle, __last, *__first_cut, __comp); distance(__middle, __second_cut, __len22); } else { __len22 = __len2 / 2; advance(__second_cut, __len22); __first_cut = upper_bound(__first, __middle, *__second_cut, __comp); distance(__first, __first_cut, __len11); } _BidirectionalIter __new_middle = rotate(__first_cut, __middle, __second_cut); __merge_without_buffer(__first, __first_cut, __new_middle, __len11, __len22, __comp); __merge_without_buffer(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __comp); } template _BidirectionalIter1 __rotate_adaptive(_BidirectionalIter1 __first, _BidirectionalIter1 __middle, _BidirectionalIter1 __last, _Distance __len1, _Distance __len2, _BidirectionalIter2 __buffer, _Distance __buffer_size) { _BidirectionalIter2 __buffer_end; if (__len1 > __len2 && __len2 <= __buffer_size) { __buffer_end = copy(__middle, __last, __buffer); copy_backward(__first, __middle, __last); return copy(__buffer, __buffer_end, __first); } else if (__len1 <= __buffer_size) { __buffer_end = copy(__first, __middle, __buffer); copy(__middle, __last, __first); return copy_backward(__buffer, __buffer_end, __last); } else return rotate(__first, __middle, __last); } template _BidirectionalIter3 __merge_backward(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1, _BidirectionalIter2 __first2, _BidirectionalIter2 __last2, _BidirectionalIter3 __result) { if (__first1 == __last1) return copy_backward(__first2, __last2, __result); if (__first2 == __last2) return copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (*__last2 < *__last1) { *--__result = *__last1; if (__first1 == __last1) return copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return copy_backward(__first1, ++__last1, __result); --__last2; } } } template _BidirectionalIter3 __merge_backward(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1, _BidirectionalIter2 __first2, _BidirectionalIter2 __last2, _BidirectionalIter3 __result, _Compare __comp) { if (__first1 == __last1) return copy_backward(__first2, __last2, __result); if (__first2 == __last2) return copy_backward(__first1, __last1, __result); --__last1; --__last2; while (true) { if (__comp(*__last2, *__last1)) { *--__result = *__last1; if (__first1 == __last1) return copy_backward(__first2, ++__last2, __result); --__last1; } else { *--__result = *__last2; if (__first2 == __last2) return copy_backward(__first1, ++__last1, __result); --__last2; } } } template void __merge_adaptive(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = copy(__first, __middle, __buffer); merge(__buffer, __buffer_end, __middle, __last, __first); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = copy(__middle, __last, __buffer); __merge_backward(__first, __middle, __buffer, __buffer_end, __last); } else { _BidirectionalIter __first_cut = __first; _BidirectionalIter __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; advance(__first_cut, __len11); __second_cut = lower_bound(__middle, __last, *__first_cut); distance(__middle, __second_cut, __len22); } else { __len22 = __len2 / 2; advance(__second_cut, __len22); __first_cut = upper_bound(__first, __middle, *__second_cut); distance(__first, __first_cut, __len11); } _BidirectionalIter __new_middle = __rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); __merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size); __merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size); } } template void __merge_adaptive(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Distance __len1, _Distance __len2, _Pointer __buffer, _Distance __buffer_size, _Compare __comp) { if (__len1 <= __len2 && __len1 <= __buffer_size) { _Pointer __buffer_end = copy(__first, __middle, __buffer); merge(__buffer, __buffer_end, __middle, __last, __first, __comp); } else if (__len2 <= __buffer_size) { _Pointer __buffer_end = copy(__middle, __last, __buffer); __merge_backward(__first, __middle, __buffer, __buffer_end, __last, __comp); } else { _BidirectionalIter __first_cut = __first; _BidirectionalIter __second_cut = __middle; _Distance __len11 = 0; _Distance __len22 = 0; if (__len1 > __len2) { __len11 = __len1 / 2; advance(__first_cut, __len11); __second_cut = lower_bound(__middle, __last, *__first_cut, __comp); distance(__middle, __second_cut, __len22); } else { __len22 = __len2 / 2; advance(__second_cut, __len22); __first_cut = upper_bound(__first, __middle, *__second_cut, __comp); distance(__first, __first_cut, __len11); } _BidirectionalIter __new_middle = __rotate_adaptive(__first_cut, __middle, __second_cut, __len1 - __len11, __len22, __buffer, __buffer_size); __merge_adaptive(__first, __first_cut, __new_middle, __len11, __len22, __buffer, __buffer_size, __comp); __merge_adaptive(__new_middle, __second_cut, __last, __len1 - __len11, __len2 - __len22, __buffer, __buffer_size, __comp); } } template inline void __inplace_merge_aux(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Tp*, _Distance*) { _Distance __len1 = 0; distance(__first, __middle, __len1); _Distance __len2 = 0; distance(__middle, __last, __len2); _Temporary_buffer<_BidirectionalIter, _Tp> __buf(__first, __last); if (__buf.begin() == 0) __merge_without_buffer(__first, __middle, __last, __len1, __len2); else __merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _Distance(__buf.size())); } template inline void __inplace_merge_aux(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Tp*, _Distance*, _Compare __comp) { _Distance __len1 = 0; distance(__first, __middle, __len1); _Distance __len2 = 0; distance(__middle, __last, __len2); _Temporary_buffer<_BidirectionalIter, _Tp> __buf(__first, __last); if (__buf.begin() == 0) __merge_without_buffer(__first, __middle, __last, __len1, __len2, __comp); else __merge_adaptive(__first, __middle, __last, __len1, __len2, __buf.begin(), _Distance(__buf.size()), __comp); } template inline void inplace_merge(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last) { __STL_REQUIRES(_BidirectionalIter, _Mutable_BidirectionalIterator); __STL_REQUIRES(typename iterator_traits<_BidirectionalIter>::value_type, _LessThanComparable); if (__first == __middle || __middle == __last) return; __inplace_merge_aux(__first, __middle, __last, __VALUE_TYPE(__first), __DISTANCE_TYPE(__first)); } template inline void inplace_merge(_BidirectionalIter __first, _BidirectionalIter __middle, _BidirectionalIter __last, _Compare __comp) { __STL_REQUIRES(_BidirectionalIter, _Mutable_BidirectionalIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_BidirectionalIter>::value_type, typename iterator_traits<_BidirectionalIter>::value_type); if (__first == __middle || __middle == __last) return; __inplace_merge_aux(__first, __middle, __last, __VALUE_TYPE(__first), __DISTANCE_TYPE(__first), __comp); } // Set algorithms: includes, set_union, set_intersection, set_difference, // set_symmetric_difference. All of these algorithms have the precondition // that their input ranges are sorted and the postcondition that their output // ranges are sorted. template bool includes(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) if (*__first2 < *__first1) return false; else if(*__first1 < *__first2) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } template bool includes(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first2, *__first1)) return false; else if(__comp(*__first1, *__first2)) ++__first1; else ++__first1, ++__first2; return __first2 == __last2; } template _OutputIter set_union(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) { if (*__first1 < *__first2) { *__result = *__first1; ++__first1; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } template _OutputIter set_union(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); while (__first1 != __last1 && __first2 != __last2) { if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; } else { *__result = *__first1; ++__first1; ++__first2; } ++__result; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } template _OutputIter set_intersection(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) ++__first1; else if (*__first2 < *__first1) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } template _OutputIter set_intersection(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) ++__first1; else if (__comp(*__first2, *__first1)) ++__first2; else { *__result = *__first1; ++__first1; ++__first2; ++__result; } return __result; } template _OutputIter set_difference(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) ++__first2; else { ++__first1; ++__first2; } return copy(__first1, __last1, __result); } template _OutputIter set_difference(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) ++__first2; else { ++__first1; ++__first2; } return copy(__first1, __last1, __result); } template _OutputIter set_symmetric_difference(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_REQUIRES(typename iterator_traits<_InputIter1>::value_type, _LessThanComparable); while (__first1 != __last1 && __first2 != __last2) if (*__first1 < *__first2) { *__result = *__first1; ++__first1; ++__result; } else if (*__first2 < *__first1) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } template _OutputIter set_symmetric_difference(_InputIter1 __first1, _InputIter1 __last1, _InputIter2 __first2, _InputIter2 __last2, _OutputIter __result, _Compare __comp) { __STL_REQUIRES(_InputIter1, _InputIterator); __STL_REQUIRES(_InputIter2, _InputIterator); __STL_REQUIRES(_OutputIter, _OutputIterator); __STL_REQUIRES_SAME_TYPE( typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_InputIter1>::value_type, typename iterator_traits<_InputIter2>::value_type); while (__first1 != __last1 && __first2 != __last2) if (__comp(*__first1, *__first2)) { *__result = *__first1; ++__first1; ++__result; } else if (__comp(*__first2, *__first1)) { *__result = *__first2; ++__first2; ++__result; } else { ++__first1; ++__first2; } return copy(__first2, __last2, copy(__first1, __last1, __result)); } // min_element and max_element, with and without an explicitly supplied // comparison function. template _ForwardIter max_element(_ForwardIter __first, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _LessThanComparable); if (__first == __last) return __first; _ForwardIter __result = __first; while (++__first != __last) if (*__result < *__first) __result = __first; return __result; } template _ForwardIter max_element(_ForwardIter __first, _ForwardIter __last, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); if (__first == __last) return __first; _ForwardIter __result = __first; while (++__first != __last) if (__comp(*__result, *__first)) __result = __first; return __result; } template _ForwardIter min_element(_ForwardIter __first, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _LessThanComparable); if (__first == __last) return __first; _ForwardIter __result = __first; while (++__first != __last) if (*__first < *__result) __result = __first; return __result; } template _ForwardIter min_element(_ForwardIter __first, _ForwardIter __last, _Compare __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); if (__first == __last) return __first; _ForwardIter __result = __first; while (++__first != __last) if (__comp(*__first, *__result)) __result = __first; return __result; } // next_permutation and prev_permutation, with and without an explicitly // supplied comparison function. template bool next_permutation(_BidirectionalIter __first, _BidirectionalIter __last) { __STL_REQUIRES(_BidirectionalIter, _BidirectionalIterator); __STL_REQUIRES(typename iterator_traits<_BidirectionalIter>::value_type, _LessThanComparable); if (__first == __last) return false; _BidirectionalIter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIter __ii = __i; --__i; if (*__i < *__ii) { _BidirectionalIter __j = __last; while (!(*__i < *--__j)) {} iter_swap(__i, __j); reverse(__ii, __last); return true; } if (__i == __first) { reverse(__first, __last); return false; } } } template bool next_permutation(_BidirectionalIter __first, _BidirectionalIter __last, _Compare __comp) { __STL_REQUIRES(_BidirectionalIter, _BidirectionalIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_BidirectionalIter>::value_type, typename iterator_traits<_BidirectionalIter>::value_type); if (__first == __last) return false; _BidirectionalIter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIter __ii = __i; --__i; if (__comp(*__i, *__ii)) { _BidirectionalIter __j = __last; while (!__comp(*__i, *--__j)) {} iter_swap(__i, __j); reverse(__ii, __last); return true; } if (__i == __first) { reverse(__first, __last); return false; } } } template bool prev_permutation(_BidirectionalIter __first, _BidirectionalIter __last) { __STL_REQUIRES(_BidirectionalIter, _BidirectionalIterator); __STL_REQUIRES(typename iterator_traits<_BidirectionalIter>::value_type, _LessThanComparable); if (__first == __last) return false; _BidirectionalIter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIter __ii = __i; --__i; if (*__ii < *__i) { _BidirectionalIter __j = __last; while (!(*--__j < *__i)) {} iter_swap(__i, __j); reverse(__ii, __last); return true; } if (__i == __first) { reverse(__first, __last); return false; } } } template bool prev_permutation(_BidirectionalIter __first, _BidirectionalIter __last, _Compare __comp) { __STL_REQUIRES(_BidirectionalIter, _BidirectionalIterator); __STL_BINARY_FUNCTION_CHECK(_Compare, bool, typename iterator_traits<_BidirectionalIter>::value_type, typename iterator_traits<_BidirectionalIter>::value_type); if (__first == __last) return false; _BidirectionalIter __i = __first; ++__i; if (__i == __last) return false; __i = __last; --__i; for(;;) { _BidirectionalIter __ii = __i; --__i; if (__comp(*__ii, *__i)) { _BidirectionalIter __j = __last; while (!__comp(*--__j, *__i)) {} iter_swap(__i, __j); reverse(__ii, __last); return true; } if (__i == __first) { reverse(__first, __last); return false; } } } // find_first_of, with and without an explicitly supplied comparison function. template _InputIter find_first_of(_InputIter __first1, _InputIter __last1, _ForwardIter __first2, _ForwardIter __last2) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_InputIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); for ( ; __first1 != __last1; ++__first1) for (_ForwardIter __iter = __first2; __iter != __last2; ++__iter) if (*__first1 == *__iter) return __first1; return __last1; } template _InputIter find_first_of(_InputIter __first1, _InputIter __last1, _ForwardIter __first2, _ForwardIter __last2, _BinaryPredicate __comp) { __STL_REQUIRES(_InputIter, _InputIterator); __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, typename iterator_traits<_InputIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); for ( ; __first1 != __last1; ++__first1) for (_ForwardIter __iter = __first2; __iter != __last2; ++__iter) if (__comp(*__first1, *__iter)) return __first1; return __last1; } // find_end, with and without an explicitly supplied comparison function. // Search [first2, last2) as a subsequence in [first1, last1), and return // the *last* possible match. Note that find_end for bidirectional iterators // is much faster than for forward iterators. // find_end for forward iterators. template _ForwardIter1 __find_end(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2, forward_iterator_tag, forward_iterator_tag) { if (__first2 == __last2) return __last1; else { _ForwardIter1 __result = __last1; while (1) { _ForwardIter1 __new_result = search(__first1, __last1, __first2, __last2); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } template _ForwardIter1 __find_end(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2, forward_iterator_tag, forward_iterator_tag, _BinaryPredicate __comp) { if (__first2 == __last2) return __last1; else { _ForwardIter1 __result = __last1; while (1) { _ForwardIter1 __new_result = search(__first1, __last1, __first2, __last2, __comp); if (__new_result == __last1) return __result; else { __result = __new_result; __first1 = __new_result; ++__first1; } } } } // find_end for bidirectional iterators. Requires partial specialization. #ifdef __STL_CLASS_PARTIAL_SPECIALIZATION template _BidirectionalIter1 __find_end(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1, _BidirectionalIter2 __first2, _BidirectionalIter2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag) { __STL_REQUIRES(_BidirectionalIter1, _BidirectionalIterator); __STL_REQUIRES(_BidirectionalIter2, _BidirectionalIterator); typedef reverse_iterator<_BidirectionalIter1> _RevIter1; typedef reverse_iterator<_BidirectionalIter2> _RevIter2; _RevIter1 __rlast1(__first1); _RevIter2 __rlast2(__first2); _RevIter1 __rresult = search(_RevIter1(__last1), __rlast1, _RevIter2(__last2), __rlast2); if (__rresult == __rlast1) return __last1; else { _BidirectionalIter1 __result = __rresult.base(); advance(__result, -distance(__first2, __last2)); return __result; } } template _BidirectionalIter1 __find_end(_BidirectionalIter1 __first1, _BidirectionalIter1 __last1, _BidirectionalIter2 __first2, _BidirectionalIter2 __last2, bidirectional_iterator_tag, bidirectional_iterator_tag, _BinaryPredicate __comp) { __STL_REQUIRES(_BidirectionalIter1, _BidirectionalIterator); __STL_REQUIRES(_BidirectionalIter2, _BidirectionalIterator); typedef reverse_iterator<_BidirectionalIter1> _RevIter1; typedef reverse_iterator<_BidirectionalIter2> _RevIter2; _RevIter1 __rlast1(__first1); _RevIter2 __rlast2(__first2); _RevIter1 __rresult = search(_RevIter1(__last1), __rlast1, _RevIter2(__last2), __rlast2, __comp); if (__rresult == __rlast1) return __last1; else { _BidirectionalIter1 __result = __rresult.base(); advance(__result, -distance(__first2, __last2)); return __result; } } #endif /* __STL_CLASS_PARTIAL_SPECIALIZATION */ // Dispatching functions for find_end. template inline _ForwardIter1 find_end(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2) { __STL_REQUIRES(_ForwardIter1, _ForwardIterator); __STL_REQUIRES(_ForwardIter2, _ForwardIterator); __STL_REQUIRES_BINARY_OP(_OP_EQUAL, bool, typename iterator_traits<_ForwardIter1>::value_type, typename iterator_traits<_ForwardIter2>::value_type); return __find_end(__first1, __last1, __first2, __last2, __ITERATOR_CATEGORY(__first1), __ITERATOR_CATEGORY(__first2)); } template inline _ForwardIter1 find_end(_ForwardIter1 __first1, _ForwardIter1 __last1, _ForwardIter2 __first2, _ForwardIter2 __last2, _BinaryPredicate __comp) { __STL_REQUIRES(_ForwardIter1, _ForwardIterator); __STL_REQUIRES(_ForwardIter2, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_BinaryPredicate, bool, typename iterator_traits<_ForwardIter1>::value_type, typename iterator_traits<_ForwardIter2>::value_type); return __find_end(__first1, __last1, __first2, __last2, __ITERATOR_CATEGORY(__first1), __ITERATOR_CATEGORY(__first2), __comp); } // is_heap, a predicate testing whether or not a range is // a heap. This function is an extension, not part of the C++ // standard. template bool __is_heap(_RandomAccessIter __first, _Distance __n) { _Distance __parent = 0; for (_Distance __child = 1; __child < __n; ++__child) { if (__first[__parent] < __first[__child]) return false; if ((__child & 1) == 0) ++__parent; } return true; } template bool __is_heap(_RandomAccessIter __first, _StrictWeakOrdering __comp, _Distance __n) { _Distance __parent = 0; for (_Distance __child = 1; __child < __n; ++__child) { if (__comp(__first[__parent], __first[__child])) return false; if ((__child & 1) == 0) ++__parent; } return true; } template inline bool is_heap(_RandomAccessIter __first, _RandomAccessIter __last) { __STL_REQUIRES(_RandomAccessIter, _RandomAccessIterator); __STL_REQUIRES(typename iterator_traits<_RandomAccessIter>::value_type, _LessThanComparable); return __is_heap(__first, __last - __first); } template inline bool is_heap(_RandomAccessIter __first, _RandomAccessIter __last, _StrictWeakOrdering __comp) { __STL_REQUIRES(_RandomAccessIter, _RandomAccessIterator); __STL_BINARY_FUNCTION_CHECK(_StrictWeakOrdering, bool, typename iterator_traits<_RandomAccessIter>::value_type, typename iterator_traits<_RandomAccessIter>::value_type); return __is_heap(__first, __comp, __last - __first); } // is_sorted, a predicated testing whether a range is sorted in // nondescending order. This is an extension, not part of the C++ // standard. template bool is_sorted(_ForwardIter __first, _ForwardIter __last) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_REQUIRES(typename iterator_traits<_ForwardIter>::value_type, _LessThanComparable); if (__first == __last) return true; _ForwardIter __next = __first; for (++__next; __next != __last; __first = __next, ++__next) { if (*__next < *__first) return false; } return true; } template bool is_sorted(_ForwardIter __first, _ForwardIter __last, _StrictWeakOrdering __comp) { __STL_REQUIRES(_ForwardIter, _ForwardIterator); __STL_BINARY_FUNCTION_CHECK(_StrictWeakOrdering, bool, typename iterator_traits<_ForwardIter>::value_type, typename iterator_traits<_ForwardIter>::value_type); if (__first == __last) return true; _ForwardIter __next = __first; for (++__next; __next != __last; __first = __next, ++__next) { if (__comp(*__next, *__first)) return false; } return true; } #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32) #pragma reset woff 1209 #endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_ALGO_H */ // Local Variables: // mode:C++ // End: