// Bits and pieces used in algorithms -*- C++ -*- // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006 // Free Software Foundation, Inc. // // This file is part of the GNU ISO C++ Library. This library is free // software; you can redistribute it and/or modify it under the // terms of the GNU General Public License as published by the // Free Software Foundation; either version 2, or (at your option) // any later version. // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License along // with this library; see the file COPYING. If not, write to the Free // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, // USA. // As a special exception, you may use this file as part of a free software // library without restriction. Specifically, if other files instantiate // templates or use macros or inline functions from this file, or you compile // this file and link it with other files to produce an executable, this // file does not by itself cause the resulting executable to be covered by // the GNU General Public License. This exception does not however // invalidate any other reasons why the executable file might be covered by // the GNU General Public License. /* * * Copyright (c) 1994 * Hewlett-Packard Company * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Hewlett-Packard Company makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. * * * Copyright (c) 1996-1998 * Silicon Graphics Computer Systems, Inc. * * Permission to use, copy, modify, distribute and sell this software * and its documentation for any purpose is hereby granted without fee, * provided that the above copyright notice appear in all copies and * that both that copyright notice and this permission notice appear * in supporting documentation. Silicon Graphics makes no * representations about the suitability of this software for any * purpose. It is provided "as is" without express or implied warranty. */ /** @file stl_algobase.h * This is an internal header file, included by other library headers. * You should not attempt to use it directly. */ #ifndef _ALGOBASE_H #define _ALGOBASE_H 1 #include #include #include #include #include #include #include #include #include #include #include #include #include #include _GLIBCXX_BEGIN_NAMESPACE(std) /** * @brief Swaps two values. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return Nothing. * * This is the simple classic generic implementation. It will work on * any type which has a copy constructor and an assignment operator. */ template inline void swap(_Tp& __a, _Tp& __b) { // concept requirements __glibcxx_function_requires(_SGIAssignableConcept<_Tp>) _Tp __tmp = __a; __a = __b; __b = __tmp; } // See http://gcc.gnu.org/ml/libstdc++/2004-08/msg00167.html: in a // nutshell, we are partially implementing the resolution of DR 187, // when it's safe, i.e., the value_types are equal. template struct __iter_swap { template static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; _ValueType1 __tmp = *__a; *__a = *__b; *__b = __tmp; } }; template<> struct __iter_swap { template static void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { swap(*__a, *__b); } }; /** * @brief Swaps the contents of two iterators. * @param a An iterator. * @param b Another iterator. * @return Nothing. * * This function swaps the values pointed to by two iterators, not the * iterators themselves. */ template inline void iter_swap(_ForwardIterator1 __a, _ForwardIterator2 __b) { typedef typename iterator_traits<_ForwardIterator1>::value_type _ValueType1; typedef typename iterator_traits<_ForwardIterator2>::value_type _ValueType2; // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator1>) __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator2>) __glibcxx_function_requires(_ConvertibleConcept<_ValueType1, _ValueType2>) __glibcxx_function_requires(_ConvertibleConcept<_ValueType2, _ValueType1>) typedef typename iterator_traits<_ForwardIterator1>::reference _ReferenceType1; typedef typename iterator_traits<_ForwardIterator2>::reference _ReferenceType2; std::__iter_swap<__are_same<_ValueType1, _ValueType2>::__value && __are_same<_ValueType1 &, _ReferenceType1>::__value && __are_same<_ValueType2 &, _ReferenceType2>::__value>:: iter_swap(__a, __b); } #undef min #undef max /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The lesser of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __b < __a ? __b : __a; if (__b < __a) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @return The greater of the parameters. * * This is the simple classic generic implementation. It will work on * temporary expressions, since they are only evaluated once, unlike a * preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b) { // concept requirements __glibcxx_function_requires(_LessThanComparableConcept<_Tp>) //return __a < __b ? __b : __a; if (__a < __b) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The lesser of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template inline const _Tp& min(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__b, __a) ? __b : __a; if (__comp(__b, __a)) return __b; return __a; } /** * @brief This does what you think it does. * @param a A thing of arbitrary type. * @param b Another thing of arbitrary type. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return The greater of the parameters. * * This will work on temporary expressions, since they are only evaluated * once, unlike a preprocessor macro. */ template inline const _Tp& max(const _Tp& __a, const _Tp& __b, _Compare __comp) { //return __comp(__a, __b) ? __b : __a; if (__comp(__a, __b)) return __b; return __a; } // All of these auxiliary structs serve two purposes. (1) Replace // calls to copy with memmove whenever possible. (Memmove, not memcpy, // because the input and output ranges are permitted to overlap.) // (2) If we're using random access iterators, then write the loop as // a for loop with an explicit count. template struct __copy { template static _OI copy(_II __first, _II __last, _OI __result) { for (; __first != __last; ++__result, ++__first) *__result = *__first; return __result; } }; template struct __copy<_BoolType, random_access_iterator_tag> { template static _OI copy(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::difference_type _Distance; for(_Distance __n = __last - __first; __n > 0; --__n) { *__result = *__first; ++__first; ++__result; } return __result; } }; template<> struct __copy { template static _Tp* copy(const _Tp* __first, const _Tp* __last, _Tp* __result) { std::memmove(__result, __first, sizeof(_Tp) * (__last - __first)); return __result + (__last - __first); } }; template inline _OI __copy_aux(_II __first, _II __last, _OI __result) { typedef typename iterator_traits<_II>::value_type _ValueTypeI; typedef typename iterator_traits<_OI>::value_type _ValueTypeO; typedef typename iterator_traits<_II>::iterator_category _Category; const bool __simple = (__is_scalar<_ValueTypeI>::__value && __is_pointer<_II>::__value && __is_pointer<_OI>::__value && __are_same<_ValueTypeI, _ValueTypeO>::__value); return std::__copy<__simple, _Category>::copy(__first, __last, __result); } // Helpers for streambuf iterators (either istream or ostream). template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type __copy_aux(_CharT*, _CharT*, ostreambuf_iterator<_CharT>); template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type __copy_aux(const _CharT*, const _CharT*, ostreambuf_iterator<_CharT>); template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, _CharT*>::__type __copy_aux(istreambuf_iterator<_CharT>, istreambuf_iterator<_CharT>, _CharT*); template struct __copy_normal { template static _OI __copy_n(_II __first, _II __last, _OI __result) { return std::__copy_aux(__first, __last, __result); } }; template<> struct __copy_normal { template static _OI __copy_n(_II __first, _II __last, _OI __result) { return std::__copy_aux(__first.base(), __last.base(), __result); } }; template<> struct __copy_normal { template static _OI __copy_n(_II __first, _II __last, _OI __result) { return _OI(std::__copy_aux(__first, __last, __result.base())); } }; template<> struct __copy_normal { template static _OI __copy_n(_II __first, _II __last, _OI __result) { return _OI(std::__copy_aux(__first.base(), __last.base(), __result.base())); } }; /** * @brief Copies the range [first,last) into result. * @param first An input iterator. * @param last An input iterator. * @param result An output iterator. * @return result + (first - last) * * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). Result may not be contained within * [first,last); the copy_backward function should be used instead. * * Note that the end of the output range is permitted to be contained * within [first,last). */ template inline _OutputIterator copy(_InputIterator __first, _InputIterator __last, _OutputIterator __result) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator>) __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, typename iterator_traits<_InputIterator>::value_type>) __glibcxx_requires_valid_range(__first, __last); const bool __in = __is_normal_iterator<_InputIterator>::__value; const bool __out = __is_normal_iterator<_OutputIterator>::__value; return std::__copy_normal<__in, __out>::__copy_n(__first, __last, __result); } // Overload for streambuf iterators. template typename __gnu_cxx::__enable_if<__is_char<_CharT>::__value, ostreambuf_iterator<_CharT> >::__type copy(istreambuf_iterator<_CharT>, istreambuf_iterator<_CharT>, ostreambuf_iterator<_CharT>); template struct __copy_backward { template static _BI2 __copy_b(_BI1 __first, _BI1 __last, _BI2 __result) { while (__first != __last) *--__result = *--__last; return __result; } }; template struct __copy_backward<_BoolType, random_access_iterator_tag> { template static _BI2 __copy_b(_BI1 __first, _BI1 __last, _BI2 __result) { typename iterator_traits<_BI1>::difference_type __n; for (__n = __last - __first; __n > 0; --__n) *--__result = *--__last; return __result; } }; template<> struct __copy_backward { template static _Tp* __copy_b(const _Tp* __first, const _Tp* __last, _Tp* __result) { const ptrdiff_t _Num = __last - __first; std::memmove(__result - _Num, __first, sizeof(_Tp) * _Num); return __result - _Num; } }; template inline _BI2 __copy_backward_aux(_BI1 __first, _BI1 __last, _BI2 __result) { typedef typename iterator_traits<_BI1>::value_type _ValueType1; typedef typename iterator_traits<_BI2>::value_type _ValueType2; typedef typename iterator_traits<_BI1>::iterator_category _Category; const bool __simple = (__is_scalar<_ValueType1>::__value && __is_pointer<_BI1>::__value && __is_pointer<_BI2>::__value && __are_same<_ValueType1, _ValueType2>::__value); return std::__copy_backward<__simple, _Category>::__copy_b(__first, __last, __result); } template struct __copy_backward_normal { template static _BI2 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result) { return std::__copy_backward_aux(__first, __last, __result); } }; template<> struct __copy_backward_normal { template static _BI2 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result) { return std::__copy_backward_aux(__first.base(), __last.base(), __result); } }; template<> struct __copy_backward_normal { template static _BI2 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_backward_aux(__first, __last, __result.base())); } }; template<> struct __copy_backward_normal { template static _BI2 __copy_b_n(_BI1 __first, _BI1 __last, _BI2 __result) { return _BI2(std::__copy_backward_aux(__first.base(), __last.base(), __result.base())); } }; /** * @brief Copies the range [first,last) into result. * @param first A bidirectional iterator. * @param last A bidirectional iterator. * @param result A bidirectional iterator. * @return result - (first - last) * * The function has the same effect as copy, but starts at the end of the * range and works its way to the start, returning the start of the result. * This inline function will boil down to a call to @c memmove whenever * possible. Failing that, if random access iterators are passed, then the * loop count will be known (and therefore a candidate for compiler * optimizations such as unrolling). * * Result may not be in the range [first,last). Use copy instead. Note * that the start of the output range may overlap [first,last). */ template inline _BI2 copy_backward(_BI1 __first, _BI1 __last, _BI2 __result) { // concept requirements __glibcxx_function_requires(_BidirectionalIteratorConcept<_BI1>) __glibcxx_function_requires(_Mutable_BidirectionalIteratorConcept<_BI2>) __glibcxx_function_requires(_ConvertibleConcept< typename iterator_traits<_BI1>::value_type, typename iterator_traits<_BI2>::value_type>) __glibcxx_requires_valid_range(__first, __last); const bool __bi1 = __is_normal_iterator<_BI1>::__value; const bool __bi2 = __is_normal_iterator<_BI2>::__value; return std::__copy_backward_normal<__bi1, __bi2>::__copy_b_n(__first, __last, __result); } template struct __fill { template static void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { for (; __first != __last; ++__first) *__first = __value; } }; template<> struct __fill { template static void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { const _Tp __tmp = __value; for (; __first != __last; ++__first) *__first = __tmp; } }; /** * @brief Fills the range [first,last) with copies of value. * @param first A forward iterator. * @param last A forward iterator. * @param value A reference-to-const of arbitrary type. * @return Nothing. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template void fill(_ForwardIterator __first, _ForwardIterator __last, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_Mutable_ForwardIteratorConcept< _ForwardIterator>) __glibcxx_requires_valid_range(__first, __last); const bool __scalar = __is_scalar<_Tp>::__value; std::__fill<__scalar>::fill(__first, __last, __value); } // Specialization: for one-byte types we can use memset. inline void fill(unsigned char* __first, unsigned char* __last, const unsigned char& __c) { __glibcxx_requires_valid_range(__first, __last); const unsigned char __tmp = __c; std::memset(__first, __tmp, __last - __first); } inline void fill(signed char* __first, signed char* __last, const signed char& __c) { __glibcxx_requires_valid_range(__first, __last); const signed char __tmp = __c; std::memset(__first, static_cast(__tmp), __last - __first); } inline void fill(char* __first, char* __last, const char& __c) { __glibcxx_requires_valid_range(__first, __last); const char __tmp = __c; std::memset(__first, static_cast(__tmp), __last - __first); } template struct __fill_n { template static _OutputIterator fill_n(_OutputIterator __first, _Size __n, const _Tp& __value) { for (; __n > 0; --__n, ++__first) *__first = __value; return __first; } }; template<> struct __fill_n { template static _OutputIterator fill_n(_OutputIterator __first, _Size __n, const _Tp& __value) { const _Tp __tmp = __value; for (; __n > 0; --__n, ++__first) *__first = __tmp; return __first; } }; /** * @brief Fills the range [first,first+n) with copies of value. * @param first An output iterator. * @param n The count of copies to perform. * @param value A reference-to-const of arbitrary type. * @return The iterator at first+n. * * This function fills a range with copies of the same value. For one-byte * types filling contiguous areas of memory, this becomes an inline call to * @c memset. */ template _OutputIterator fill_n(_OutputIterator __first, _Size __n, const _Tp& __value) { // concept requirements __glibcxx_function_requires(_OutputIteratorConcept<_OutputIterator, _Tp>) const bool __scalar = __is_scalar<_Tp>::__value; return std::__fill_n<__scalar>::fill_n(__first, __n, __value); } template inline unsigned char* fill_n(unsigned char* __first, _Size __n, const unsigned char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } template inline signed char* fill_n(char* __first, _Size __n, const signed char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } template inline char* fill_n(char* __first, _Size __n, const char& __c) { std::fill(__first, __first + __n, __c); return __first + __n; } /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using @c == and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && *__first1 == *__first2) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } /** * @brief Finds the places in ranges which don't match. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A pair of iterators pointing to the first mismatch. * * This compares the elements of two ranges using the binary_pred * parameter, and returns a pair * of iterators. The first iterator points into the first range, the * second iterator points into the second range, and the elements pointed * to by the iterators are not equal. */ template pair<_InputIterator1, _InputIterator2> mismatch(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); while (__first1 != __last1 && __binary_pred(*__first1, *__first2)) { ++__first1; ++__first2; } return pair<_InputIterator1, _InputIterator2>(__first1, __first2); } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @return A boolean true or false. * * This compares the elements of two ranges using @c == and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template inline bool equal(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_EqualOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, ++__first2) if (!(*__first1 == *__first2)) return false; return true; } /** * @brief Tests a range for element-wise equality. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param binary_pred A binary predicate @link s20_3_1_base functor@endlink. * @return A boolean true or false. * * This compares the elements of two ranges using the binary_pred * parameter, and returns true or * false depending on whether all of the corresponding elements of the * ranges are equal. */ template inline bool equal(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _BinaryPredicate __binary_pred) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); for (; __first1 != __last1; ++__first1, ++__first2) if (!__binary_pred(*__first1, *__first2)) return false; return true; } /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @return A boolean true or false. * * "Returns true if the sequence of elements defined by the range * [first1,last1) is lexicographically less than the sequence of elements * defined by the range [first2,last2). Returns false otherwise." * (Quoted from [25.3.8]/1.) If the iterators are all character pointers, * then this is an inline call to @c memcmp. */ template bool lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator1>::value_type, typename iterator_traits<_InputIterator2>::value_type>) __glibcxx_function_requires(_LessThanOpConcept< typename iterator_traits<_InputIterator2>::value_type, typename iterator_traits<_InputIterator1>::value_type>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) { if (*__first1 < *__first2) return true; if (*__first2 < *__first1) return false; } return __first1 == __last1 && __first2 != __last2; } /** * @brief Performs "dictionary" comparison on ranges. * @param first1 An input iterator. * @param last1 An input iterator. * @param first2 An input iterator. * @param last2 An input iterator. * @param comp A @link s20_3_3_comparisons comparison functor@endlink. * @return A boolean true or false. * * The same as the four-parameter @c lexigraphical_compare, but uses the * comp parameter instead of @c <. */ template bool lexicographical_compare(_InputIterator1 __first1, _InputIterator1 __last1, _InputIterator2 __first2, _InputIterator2 __last2, _Compare __comp) { // concept requirements __glibcxx_function_requires(_InputIteratorConcept<_InputIterator1>) __glibcxx_function_requires(_InputIteratorConcept<_InputIterator2>) __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); for (; __first1 != __last1 && __first2 != __last2; ++__first1, ++__first2) { if (__comp(*__first1, *__first2)) return true; if (__comp(*__first2, *__first1)) return false; } return __first1 == __last1 && __first2 != __last2; } inline bool lexicographical_compare(const unsigned char* __first1, const unsigned char* __last1, const unsigned char* __first2, const unsigned char* __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); const size_t __len1 = __last1 - __first1; const size_t __len2 = __last2 - __first2; const int __result = std::memcmp(__first1, __first2, std::min(__len1, __len2)); return __result != 0 ? __result < 0 : __len1 < __len2; } inline bool lexicographical_compare(const char* __first1, const char* __last1, const char* __first2, const char* __last2) { __glibcxx_requires_valid_range(__first1, __last1); __glibcxx_requires_valid_range(__first2, __last2); #if CHAR_MAX == SCHAR_MAX return std::lexicographical_compare((const signed char*) __first1, (const signed char*) __last1, (const signed char*) __first2, (const signed char*) __last2); #else /* CHAR_MAX == SCHAR_MAX */ return std::lexicographical_compare((const unsigned char*) __first1, (const unsigned char*) __last1, (const unsigned char*) __first2, (const unsigned char*) __last2); #endif /* CHAR_MAX == SCHAR_MAX */ } _GLIBCXX_END_NAMESPACE #endif