// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/sys" "unsafe" ) // Should be a built-in for unsafe.Pointer? //go:nosplit func add(p unsafe.Pointer, x uintptr) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // getg returns the pointer to the current g. // The compiler rewrites calls to this function into instructions // that fetch the g directly (from TLS or from the dedicated register). func getg() *g // mcall switches from the g to the g0 stack and invokes fn(g), // where g is the goroutine that made the call. // mcall saves g's current PC/SP in g->sched so that it can be restored later. // It is up to fn to arrange for that later execution, typically by recording // g in a data structure, causing something to call ready(g) later. // mcall returns to the original goroutine g later, when g has been rescheduled. // fn must not return at all; typically it ends by calling schedule, to let the m // run other goroutines. // // mcall can only be called from g stacks (not g0, not gsignal). // // This must NOT be go:noescape: if fn is a stack-allocated closure, // fn puts g on a run queue, and g executes before fn returns, the // closure will be invalidated while it is still executing. func mcall(fn func(*g)) // systemstack runs fn on a system stack. // // It is common to use a func literal as the argument, in order // to share inputs and outputs with the code around the call // to system stack: // // ... set up y ... // systemstack(func() { // x = bigcall(y) // }) // ... use x ... // // For the gc toolchain this permits running a function that requires // additional stack space in a context where the stack can not be // split. We don't really need additional stack space in gccgo, since // stack splitting is handled separately. But to keep things looking // the same, we do switch to the g0 stack here if necessary. func systemstack(fn func()) { gp := getg() mp := gp.m if gp == mp.g0 || gp == mp.gsignal { fn() } else if gp == mp.curg { fn1 := func(origg *g) { fn() gogo(origg) } mcall(*(*func(*g))(noescape(unsafe.Pointer(&fn1)))) } else { badsystemstack() } } var badsystemstackMsg = "fatal: systemstack called from unexpected goroutine" //go:nosplit //go:nowritebarrierrec func badsystemstack() { sp := stringStructOf(&badsystemstackMsg) write(2, sp.str, int32(sp.len)) } // memclrNoHeapPointers clears n bytes starting at ptr. // // Usually you should use typedmemclr. memclrNoHeapPointers should be // used only when the caller knows that *ptr contains no heap pointers // because either: // // *ptr is initialized memory and its type is pointer-free, or // // *ptr is uninitialized memory (e.g., memory that's being reused // for a new allocation) and hence contains only "junk". // // memclrNoHeapPointers ensures that if ptr is pointer-aligned, and n // is a multiple of the pointer size, then any pointer-aligned, // pointer-sized portion is cleared atomically. Despite the function // name, this is necessary because this function is the underlying // implementation of typedmemclr and memclrHasPointers. See the doc of // memmove for more details. // // The (CPU-specific) implementations of this function are in memclr_*.s. // //go:noescape func memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) //go:linkname reflect_memclrNoHeapPointers reflect.memclrNoHeapPointers func reflect_memclrNoHeapPointers(ptr unsafe.Pointer, n uintptr) { memclrNoHeapPointers(ptr, n) } //go:noescape func memmove(to, from unsafe.Pointer, n uintptr) //go:linkname reflect_memmove reflect.memmove func reflect_memmove(to, from unsafe.Pointer, n uintptr) { memmove(to, from, n) } //go:noescape //extern __builtin_memcmp func memcmp(a, b unsafe.Pointer, size uintptr) int32 // exported value for testing var hashLoad = float32(loadFactorNum) / float32(loadFactorDen) //go:nosplit func fastrand() uint32 { mp := getg().m // Implement xorshift64+: 2 32-bit xorshift sequences added together. // Shift triplet [17,7,16] was calculated as indicated in Marsaglia's // Xorshift paper: https://www.jstatsoft.org/article/view/v008i14/xorshift.pdf // This generator passes the SmallCrush suite, part of TestU01 framework: // http://simul.iro.umontreal.ca/testu01/tu01.html s1, s0 := mp.fastrand[0], mp.fastrand[1] s1 ^= s1 << 17 s1 = s1 ^ s0 ^ s1>>7 ^ s0>>16 mp.fastrand[0], mp.fastrand[1] = s0, s1 return s0 + s1 } //go:nosplit func fastrandn(n uint32) uint32 { // This is similar to fastrand() % n, but faster. // See https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/ return uint32(uint64(fastrand()) * uint64(n) >> 32) } //go:linkname sync_fastrand sync.fastrand func sync_fastrand() uint32 { return fastrand() } //go:linkname net_fastrand net.fastrand func net_fastrand() uint32 { return fastrand() } //go:linkname os_fastrand os.fastrand func os_fastrand() uint32 { return fastrand() } // in internal/bytealg/equal_*.s //go:noescape func memequal(a, b unsafe.Pointer, size uintptr) bool // noescape hides a pointer from escape analysis. noescape is // the identity function but escape analysis doesn't think the // output depends on the input. noescape is inlined and currently // compiles down to zero instructions. // USE CAREFULLY! //go:nosplit func noescape(p unsafe.Pointer) unsafe.Pointer { x := uintptr(p) return unsafe.Pointer(x ^ 0) } //go:noescape func jmpdefer(fv *funcval, argp uintptr) func exit1(code int32) func setg(gg *g) //extern __builtin_trap func breakpoint() func asminit() {} //go:noescape func reflectcall(fntype *functype, fn *funcval, isInterface, isMethod bool, params, results *unsafe.Pointer) func procyield(cycles uint32) type neverCallThisFunction struct{} // goexit is the return stub at the top of every goroutine call stack. // Each goroutine stack is constructed as if goexit called the // goroutine's entry point function, so that when the entry point // function returns, it will return to goexit, which will call goexit1 // to perform the actual exit. // // This function must never be called directly. Call goexit1 instead. // gentraceback assumes that goexit terminates the stack. A direct // call on the stack will cause gentraceback to stop walking the stack // prematurely and if there is leftover state it may panic. func goexit(neverCallThisFunction) // publicationBarrier performs a store/store barrier (a "publication" // or "export" barrier). Some form of synchronization is required // between initializing an object and making that object accessible to // another processor. Without synchronization, the initialization // writes and the "publication" write may be reordered, allowing the // other processor to follow the pointer and observe an uninitialized // object. In general, higher-level synchronization should be used, // such as locking or an atomic pointer write. publicationBarrier is // for when those aren't an option, such as in the implementation of // the memory manager. // // There's no corresponding barrier for the read side because the read // side naturally has a data dependency order. All architectures that // Go supports or seems likely to ever support automatically enforce // data dependency ordering. func publicationBarrier() // getcallerpc returns the program counter (PC) of its caller's caller. // getcallersp returns the stack pointer (SP) of its caller's caller. // The implementation may be a compiler intrinsic; there is not // necessarily code implementing this on every platform. // // For example: // // func f(arg1, arg2, arg3 int) { // pc := getcallerpc() // sp := getcallersp() // } // // These two lines find the PC and SP immediately following // the call to f (where f will return). // // The call to getcallerpc and getcallersp must be done in the // frame being asked about. // // The result of getcallersp is correct at the time of the return, // but it may be invalidated by any subsequent call to a function // that might relocate the stack in order to grow or shrink it. // A general rule is that the result of getcallersp should be used // immediately and can only be passed to nosplit functions. //go:noescape func getcallerpc() uintptr //go:noescape func getcallersp() uintptr // implemented as an intrinsic on all platforms // getsp returns the stack pointer (SP) of the caller of getsp. //go:noinline func getsp() uintptr { return getcallersp() } func asmcgocall(fn, arg unsafe.Pointer) int32 { throw("asmcgocall") return 0 } // alignUp rounds n up to a multiple of a. a must be a power of 2. func alignUp(n, a uintptr) uintptr { return (n + a - 1) &^ (a - 1) } // alignDown rounds n down to a multiple of a. a must be a power of 2. func alignDown(n, a uintptr) uintptr { return n &^ (a - 1) } // divRoundUp returns ceil(n / a). func divRoundUp(n, a uintptr) uintptr { // a is generally a power of two. This will get inlined and // the compiler will optimize the division. return (n + a - 1) / a } // checkASM returns whether assembly runtime checks have passed. func checkASM() bool { return true } //extern __go_syscall6 func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr // For gccgo, to communicate from the C code to the Go code. //go:linkname setIsCgo func setIsCgo() { iscgo = true } // For gccgo, to communicate from the C code to the Go code. //go:linkname setSupportAES func setSupportAES(v bool) { support_aes = v } // Here for gccgo. func errno() int // For gccgo these are written in C. func entersyscall() func entersyscallblock() // Get signal trampoline, written in C. func getSigtramp() uintptr // The sa_handler field is generally hidden in a union, so use C accessors. //go:noescape func getSigactionHandler(*_sigaction) uintptr //go:noescape func setSigactionHandler(*_sigaction, uintptr) // Get signal code, written in C. //go:noescape func getSiginfoCode(*_siginfo_t) uintptr // Retrieve fields from the siginfo_t and ucontext_t pointers passed // to a signal handler using C, as they are often hidden in a union. // Returns and, if available, PC where signal occurred. func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr) // Implemented in C for gccgo. func dumpregs(*_siginfo_t, unsafe.Pointer) // Implemented in C for gccgo. func setRandomNumber(uint32) // Called by gccgo's proc.c. //go:linkname allocg func allocg() *g { return new(g) } // Throw and rethrow an exception. func throwException() func rethrowException() // Fetch the size and required alignment of the _Unwind_Exception type // used by the stack unwinder. func unwindExceptionSize() uintptr const uintptrMask = 1<<(8*sys.PtrSize) - 1 type bitvector struct { n int32 // # of bits bytedata *uint8 } // ptrbit returns the i'th bit in bv. // ptrbit is less efficient than iterating directly over bitvector bits, // and should only be used in non-performance-critical code. // See adjustpointers for an example of a high-efficiency walk of a bitvector. func (bv *bitvector) ptrbit(i uintptr) uint8 { b := *(addb(bv.bytedata, i/8)) return (b >> (i % 8)) & 1 } // bool2int returns 0 if x is false or 1 if x is true. func bool2int(x bool) int { if x { return 1 } return 0 } // abort crashes the runtime in situations where even throw might not // work. In general it should do something a debugger will recognize // (e.g., an INT3 on x86). A crash in abort is recognized by the // signal handler, which will attempt to tear down the runtime // immediately. func abort() // usestackmaps is true if stack map (precise stack scan) is enabled. var usestackmaps bool // probestackmaps detects whether there are stack maps. func probestackmaps() bool // For the math/bits packages for gccgo. //go:linkname getDivideError func getDivideError() error { return divideError } // For the math/bits packages for gccgo. //go:linkname getOverflowError func getOverflowError() error { return overflowError }