/* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* Long double expansions are Copyright (C) 2001 Stephen L. Moshier and are incorporated herein by permission of the author. The author reserves the right to distribute this material elsewhere under different copying permissions. These modifications are distributed here under the following terms: This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* __quadmath_kernel_tanq( x, y, k ) * kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854 * Input x is assumed to be bounded by ~pi/4 in magnitude. * Input y is the tail of x. * Input k indicates whether tan (if k=1) or * -1/tan (if k= -1) is returned. * * Algorithm * 1. Since tan(-x) = -tan(x), we need only to consider positive x. * 2. if x < 2^-57, return x with inexact if x!=0. * 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2) * on [0,0.67433]. * * Note: tan(x+y) = tan(x) + tan'(x)*y * ~ tan(x) + (1+x*x)*y * Therefore, for better accuracy in computing tan(x+y), let * r = x^3 * R(x^2) * then * tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y)) * * 4. For x in [0.67433,pi/4], let y = pi/4 - x, then * tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y)) * = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y))) */ #include "quadmath-imp.h" static const __float128 one = 1.0Q, pio4hi = 7.8539816339744830961566084581987569936977E-1Q, pio4lo = 2.1679525325309452561992610065108379921906E-35Q, /* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2) 0 <= x <= 0.6743316650390625 Peak relative error 8.0e-36 */ TH = 3.333333333333333333333333333333333333333E-1Q, T0 = -1.813014711743583437742363284336855889393E7Q, T1 = 1.320767960008972224312740075083259247618E6Q, T2 = -2.626775478255838182468651821863299023956E4Q, T3 = 1.764573356488504935415411383687150199315E2Q, T4 = -3.333267763822178690794678978979803526092E-1Q, U0 = -1.359761033807687578306772463253710042010E8Q, U1 = 6.494370630656893175666729313065113194784E7Q, U2 = -4.180787672237927475505536849168729386782E6Q, U3 = 8.031643765106170040139966622980914621521E4Q, U4 = -5.323131271912475695157127875560667378597E2Q; /* 1.000000000000000000000000000000000000000E0 */ static __float128 __quadmath_kernel_tanq (__float128 x, __float128 y, int iy) { __float128 z, r, v, w, s; int32_t ix, sign = 1; ieee854_float128 u, u1; u.value = x; ix = u.words32.w0 & 0x7fffffff; if (ix < 0x3fc60000) /* x < 2**-57 */ { if ((int) x == 0) { /* generate inexact */ if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3 | (iy + 1)) == 0) return one / fabsq (x); else if (iy == 1) { math_check_force_underflow (x); return x; } else return -one / x; } } if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */ { if ((u.words32.w0 & 0x80000000) != 0) { x = -x; y = -y; sign = -1; } else sign = 1; z = pio4hi - x; w = pio4lo - y; x = z + w; y = 0.0; } z = x * x; r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4))); v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z)))); r = r / v; s = z * x; r = y + z * (s * r + y); r += TH * s; w = x + r; if (ix >= 0x3ffe5942) { v = (__float128) iy; w = (v - 2.0Q * (x - (w * w / (w + v) - r))); if (sign < 0) w = -w; return w; } if (iy == 1) return w; else { /* if allow error up to 2 ulp, simply return -1.0/(x+r) here */ /* compute -1.0/(x+r) accurately */ u1.value = w; u1.words32.w2 = 0; u1.words32.w3 = 0; v = r - (u1.value - x); /* u1+v = r+x */ z = -1.0 / w; u.value = z; u.words32.w2 = 0; u.words32.w3 = 0; s = 1.0 + u.value * u1.value; return u.value + z * (s + u.value * v); } } /* tanq.c -- __float128 version of s_tan.c. * Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz. */ /* @(#)s_tan.c 5.1 93/09/24 */ /* * ==================================================== * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. * * Developed at SunPro, a Sun Microsystems, Inc. business. * Permission to use, copy, modify, and distribute this * software is freely granted, provided that this notice * is preserved. * ==================================================== */ /* tanl(x) * Return tangent function of x. * * kernel function: * __quadmath_kernel_tanq ... tangent function on [-pi/4,pi/4] * __quadmath_rem_pio2q ... argument reduction routine * * Method. * Let S,C and T denote the sin, cos and tan respectively on * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 * in [-pi/4 , +pi/4], and let n = k mod 4. * We have * * n sin(x) cos(x) tan(x) * ---------------------------------------------------------- * 0 S C T * 1 C -S -1/T * 2 -S -C T * 3 -C S -1/T * ---------------------------------------------------------- * * Special cases: * Let trig be any of sin, cos, or tan. * trig(+-INF) is NaN, with signals; * trig(NaN) is that NaN; * * Accuracy: * TRIG(x) returns trig(x) nearly rounded */ __float128 tanq (__float128 x) { __float128 y[2],z=0.0Q; int64_t n, ix; /* High word of x. */ GET_FLT128_MSW64(ix,x); /* |x| ~< pi/4 */ ix &= 0x7fffffffffffffffLL; if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1); /* tanl(Inf or NaN) is NaN */ else if (ix>=0x7fff000000000000LL) { if (ix == 0x7fff000000000000LL) { GET_FLT128_LSW64(n,x); } return x-x; /* NaN */ } /* argument reduction needed */ else { n = __quadmath_rem_pio2q(x,y); /* 1 -- n even, -1 -- n odd */ return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1)); } }