/* Target Definitions for ft32. Copyright (C) 2015 Free Software Foundation, Inc. Contributed by FTDI This file is part of GCC. GCC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3, or (at your option) any later version. GCC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GCC; see the file COPYING3. If not see . */ #ifndef GCC_FT32_H #define GCC_FT32_H #undef STARTFILE_SPEC #define STARTFILE_SPEC "crt0%O%s %{msim:crti.o%s} %{!msim:crti-hw.o%s} crtbegin.o%s" /* Provide an ENDFILE_SPEC appropriate for svr4. Here we tack on our own magical crtend.o file (see crtstuff.c) which provides part of the support for getting C++ file-scope static object constructed before entering `main', followed by the normal svr3/svr4 "finalizer" file, which is either `gcrtn.o' or `crtn.o'. */ #undef ENDFILE_SPEC #define ENDFILE_SPEC "crtend.o%s crtn.o%s" /* Provide a LIB_SPEC appropriate for svr4. Here we tack on the default standard C library (unless we are building a shared library) and the simulator BSP code. */ #undef LIB_SPEC #define LIB_SPEC "%{!shared:%{!symbolic:-lc}} \ %{msim:-Tsim.ld}" #undef LINK_SPEC #define LINK_SPEC "%{h*} %{v:-V} \ %{static:-Bstatic} %{shared:-shared} %{symbolic:-Bsymbolic}" /* Layout of Source Language Data Types */ #define INT_TYPE_SIZE 32 #define SHORT_TYPE_SIZE 16 #define LONG_TYPE_SIZE 32 #define LONG_LONG_TYPE_SIZE 64 #define FLOAT_TYPE_SIZE 32 #define DOUBLE_TYPE_SIZE 64 #define LONG_DOUBLE_TYPE_SIZE 64 #define DEFAULT_SIGNED_CHAR 1 #undef SIZE_TYPE #define SIZE_TYPE "unsigned int" #undef PTRDIFF_TYPE #define PTRDIFF_TYPE "int" #undef WCHAR_TYPE #define WCHAR_TYPE "long int" #undef WCHAR_TYPE_SIZE #define WCHAR_TYPE_SIZE BITS_PER_WORD #define REGISTER_NAMES { \ "$fp", "$sp", "$r0", "$r1", \ "$r2", "$r3", "$r4", "$r5", \ "$r6", "$r7", "$r8", "$r9", \ "$r10", "$r11", "$r12", "$r13", \ "$r14", "$r15", "$r16", "$r17", "$r18", "$r19", "$r20", "$r21", "$r22", "$r23", "$r24", "$r25", "$r26", "$r27", "$r28", "$cc", \ "?fp", "?ap", "$pc", "?cc" } #define FT32_FP 0 #define FT32_SP 1 #define FT32_R0 2 #define FT32_R1 3 #define FT32_R2 4 #define FT32_R3 5 #define FT32_R4 6 #define FT32_R5 7 #define FT32_R6 8 #define FT32_R7 9 #define FT32_R8 10 #define FT32_R9 11 #define FT32_R10 12 #define FT32_R11 13 #define FT32_R12 14 #define FT32_R13 15 #define FT32_R14 16 #define FT32_R15 17 #define FT32_R16 18 #define FT32_R17 19 #define FT32_R18 20 #define FT32_R19 21 #define FT32_R20 22 #define FT32_R21 23 #define FT32_R22 24 #define FT32_R23 25 #define FT32_R24 26 #define FT32_R25 27 #define FT32_R26 28 #define FT32_R27 29 #define FT32_R28 30 #define FT32_R29 31 #define FT32_QAP (32 + 1) #define FT32_PC (32 + 2) #define FT32_CC (32 + 3) #define FIRST_PSEUDO_REGISTER (32 + 4) enum reg_class { NO_REGS, GENERAL_REGS, SPECIAL_REGS, CC_REGS, ALL_REGS, LIM_REG_CLASSES }; #define REG_CLASS_CONTENTS \ { { 0x00000000, 0x00000000 }, /* Empty */ \ { 0xFFFFFFFF, 0x00000003 }, /* $fp, $sp, $r0 to $r13, ?fp */ \ { 0x00000000, 0x00000004 }, /* $pc */ \ { 0x00000000, 0x00000008 }, /* ?cc */ \ { 0xFFFFFFFF, 0x0000000F } /* All registers */ \ } #define N_REG_CLASSES LIM_REG_CLASSES #define REG_CLASS_NAMES {\ "NO_REGS", \ "GENERAL_REGS", \ "SPECIAL_REGS", \ "CC_REGS", \ "ALL_REGS" } #define FIXED_REGISTERS /* fp sp r0 r1 */ { 1, 1, 0, 0, \ /* r2 r3 r4 r5 */ 0, 0, 0, 0, \ /* r6 r7 r8 r9 */ 0, 0, 0, 0, \ /* r10 r11 r12 r13 */ 0, 0, 0, 0, \ /* r14 r15 r16 r17 */ 0, 0, 0, 0, \ /* r18 r19 r20 r21 */ 0, 0, 0, 0, \ /* r22 r23 r24 r25 */ 0, 0, 0, 0, \ /* r26 r27 r28 r29 */ 0, 0, 1, 1, \ /* r30 r31 */ 1, 1, 1, 1 } #define CALL_USED_REGISTERS \ /* fp sp r0 r1 */ { 1, 1, 1, 1, \ /* r2 r3 r4 r5 */ 1, 1, 1, 1, \ /* r6 r7 r8 r9 */ 1, 1, 1, 1, \ /* r10 r11 r12 r13 */ 1, 1, 1, 0, \ /* r14 r15 r16 r17 */ 0, 0, 0, 0, \ /* r18 r19 r20 r21 */ 0, 0, 0, 0, \ /* r22 r23 r24 r25 */ 0, 0, 0, 0, \ /* r26 r27 r28 r29 */ 0, 0, 1, 1, \ /* r30 r31 */ 1, 1, 1, 1 } /* We can't copy to or from our CC register. */ #define AVOID_CCMODE_COPIES 1 /* A C expression that is nonzero if it is permissible to store a value of mode MODE in hard register number REGNO (or in several registers starting with that one). All gstore registers are equivalent, so we can set this to 1. */ #define HARD_REGNO_MODE_OK(R,M) 1 /* A C expression whose value is a register class containing hard register REGNO. */ #define REGNO_REG_CLASS(R) ((R < FT32_PC) ? GENERAL_REGS : \ (R == FT32_CC ? CC_REGS : SPECIAL_REGS)) /* A C expression for the number of consecutive hard registers, starting at register number REGNO, required to hold a value of mode MODE. */ #define HARD_REGNO_NREGS(REGNO, MODE) \ ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \ / UNITS_PER_WORD) /* A C expression that is nonzero if a value of mode MODE1 is accessible in mode MODE2 without copying. */ #define MODES_TIEABLE_P(MODE1, MODE2) 1 /* The Overall Framework of an Assembler File */ #undef ASM_SPEC #define ASM_COMMENT_START "#" #define ASM_APP_ON "" #define ASM_APP_OFF "" #define FILE_ASM_OP "\t.file\n" /* Switch to the text or data segment. */ #define TEXT_SECTION_ASM_OP "\t.text" #define DATA_SECTION_ASM_OP "\t.data" /* Assembler Commands for Alignment */ #define ASM_OUTPUT_ALIGN(STREAM,POWER) \ fprintf (STREAM, "\t.p2align\t%d\n", POWER); /* A C compound statement to output to stdio stream STREAM the assembler syntax for an instruction operand X. */ #define PRINT_OPERAND(STREAM, X, CODE) ft32_print_operand (STREAM, X, CODE) #define PRINT_OPERAND_ADDRESS(STREAM ,X) ft32_print_operand_address (STREAM, X) /* Output and Generation of Labels */ #define GLOBAL_ASM_OP "\t.global\t" #define JUMP_TABLES_IN_TEXT_SECTION 1 /* This is how to output an element of a case-vector that is absolute. */ #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \ fprintf (FILE, "\tjmp\t.L%d\n", VALUE); \ /* Passing Arguments in Registers */ /* A C type for declaring a variable that is used as the first argument of `FUNCTION_ARG' and other related values. */ #define CUMULATIVE_ARGS unsigned int /* If defined, the maximum amount of space required for outgoing arguments will be computed and placed into the variable `current_function_outgoing_args_size'. No space will be pushed onto the stack for each call; instead, the function prologue should increase the stack frame size by this amount. */ #define ACCUMULATE_OUTGOING_ARGS 1 /* A C statement (sans semicolon) for initializing the variable CUM for the state at the beginning of the argument list. For ft32, the first arg is passed in register 2 (aka $r0). */ #define INIT_CUMULATIVE_ARGS(CUM,FNTYPE,LIBNAME,FNDECL,N_NAMED_ARGS) \ (CUM = FT32_R0) /* How Scalar Function Values Are Returned */ /* STACK AND CALLING */ /* Define this macro if pushing a word onto the stack moves the stack pointer to a smaller address. */ #define STACK_GROWS_DOWNWARD #define INITIAL_FRAME_POINTER_OFFSET(DEPTH) (DEPTH) = 0 /* Offset from the frame pointer to the first local variable slot to be allocated. */ #define STARTING_FRAME_OFFSET 0 /* Define this if the above stack space is to be considered part of the space allocated by the caller. */ #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1 /* #define STACK_PARMS_IN_REG_PARM_AREA */ /* Define this if it is the responsibility of the caller to allocate the area reserved for arguments passed in registers. */ #define REG_PARM_STACK_SPACE(FNDECL) (6 * UNITS_PER_WORD) /* Offset from the argument pointer register to the first argument's address. On some machines it may depend on the data type of the function. */ #define FIRST_PARM_OFFSET(F) 0 /* Define this macro to nonzero value if the addresses of local variable slots are at negative offsets from the frame pointer. */ #define FRAME_GROWS_DOWNWARD 1 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function, the stack pointer does not matter. The value is tested only in functions that have frame pointers. No definition is equivalent to always zero. */ #define EXIT_IGNORE_STACK 0 /* Define this macro as a C expression that is nonzero for registers that are used by the epilogue or the return pattern. The stack and frame pointer registers are already assumed to be used as needed. */ #define EPILOGUE_USES(R) (R == FT32_R5) /* A C expression whose value is RTL representing the location of the incoming return address at the beginning of any function, before the prologue. */ #define INCOMING_RETURN_ADDR_RTX \ gen_frame_mem (Pmode, \ plus_constant (Pmode, stack_pointer_rtx, 333 * UNITS_PER_WORD)) #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) \ ((COUNT) == 0 \ ? gen_rtx_MEM (Pmode, gen_rtx_PLUS (Pmode, arg_pointer_rtx, GEN_INT (-4))) \ : NULL_RTX) /* Describe how we implement __builtin_eh_return. */ #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N+2) : INVALID_REGNUM) /* Store the return handler into the call frame. */ #define EH_RETURN_HANDLER_RTX \ gen_frame_mem (Pmode, \ plus_constant (Pmode, frame_pointer_rtx, UNITS_PER_WORD)) /* Storage Layout */ #define BITS_BIG_ENDIAN 0 #define BYTES_BIG_ENDIAN 0 #define WORDS_BIG_ENDIAN 0 /* Alignment required for a function entry point, in bits. */ #define FUNCTION_BOUNDARY 32 #define BRANCH_COST(speed_p, predictable_p) 2 /* Define this macro as a C expression which is nonzero if accessing less than a word of memory (i.e. a `char' or a `short') is no faster than accessing a word of memory. */ #define SLOW_BYTE_ACCESS 1 #define STORE_FLAG_VALUE 1 #define MOVE_RATIO(speed) ((speed) ? 6 : 2) /* Number of storage units in a word; normally the size of a general-purpose register, a power of two from 1 or 8. */ #define UNITS_PER_WORD 4 /* Define this macro to the minimum alignment enforced by hardware for the stack pointer on this machine. The definition is a C expression for the desired alignment (measured in bits). */ #define STACK_BOUNDARY 32 /* Normal alignment required for function parameters on the stack, in bits. All stack parameters receive at least this much alignment regardless of data type. */ #define PARM_BOUNDARY 32 /* Alignment of field after `int : 0' in a structure. */ #define EMPTY_FIELD_BOUNDARY 32 /* No data type wants to be aligned rounder than this. */ #define BIGGEST_ALIGNMENT 32 /* The best alignment to use in cases where we have a choice. */ #define FASTEST_ALIGNMENT 32 /* Align definitions of arrays, unions and structures so that initializations and copies can be made more efficient. This is not ABI-changing, so it only affects places where we can see the definition. Increasing the alignment tends to introduce padding, so don't do this when optimizing for size/conserving stack space. */ #define FT32_EXPAND_ALIGNMENT(COND, EXP, ALIGN) \ (((COND) && ((ALIGN) < BITS_PER_WORD) \ && (TREE_CODE (EXP) == ARRAY_TYPE \ || TREE_CODE (EXP) == UNION_TYPE \ || TREE_CODE (EXP) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN)) /* Make arrays of chars word-aligned for the same reasons. */ #define DATA_ALIGNMENT(TYPE, ALIGN) \ (TREE_CODE (TYPE) == ARRAY_TYPE \ && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \ && (ALIGN) < FASTEST_ALIGNMENT ? FASTEST_ALIGNMENT : (ALIGN)) /* Similarly, make sure that objects on the stack are sensibly aligned. */ #define LOCAL_ALIGNMENT(EXP, ALIGN) \ FT32_EXPAND_ALIGNMENT(/*!flag_conserve_stack*/ 1, EXP, ALIGN) /* Every structures size must be a multiple of 8 bits. */ #define STRUCTURE_SIZE_BOUNDARY 8 /* Look at the fundamental type that is used for a bit-field and use that to impose alignment on the enclosing structure. struct s {int a:8}; should have same alignment as "int", not "char". */ #define PCC_BITFIELD_TYPE_MATTERS 1 /* Largest integer machine mode for structures. If undefined, the default is GET_MODE_SIZE(DImode). */ #define MAX_FIXED_MODE_SIZE 32 /* Make strings word-aligned so strcpy from constants will be faster. */ #define CONSTANT_ALIGNMENT(EXP, ALIGN) \ ((TREE_CODE (EXP) == STRING_CST \ && (ALIGN) < FASTEST_ALIGNMENT) \ ? FASTEST_ALIGNMENT : (ALIGN)) /* Set this nonzero if move instructions will actually fail to work when given unaligned data. */ #define STRICT_ALIGNMENT 1 /* Generating Code for Profiling */ #define FUNCTION_PROFILER(FILE,LABELNO) (abort (), 0) /* Trampolines for Nested Functions. */ #define TRAMPOLINE_SIZE (2 + 6 + 6 + 2 + 2 + 6) /* Alignment required for trampolines, in bits. */ #define TRAMPOLINE_ALIGNMENT 32 /* An alias for the machine mode for pointers. */ #define Pmode SImode #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \ do { \ if (((MODE) == HImode) \ || ((MODE) == QImode)) \ (MODE) = SImode; \ } while (0) /* An alias for the machine mode used for memory references to functions being called, in `call' RTL expressions. */ #define FUNCTION_MODE QImode #define STATIC_CHAIN_REGNUM FT32_R28 /* The register number of the stack pointer register, which must also be a fixed register according to `FIXED_REGISTERS'. */ #define STACK_POINTER_REGNUM FT32_SP /* The register number of the frame pointer register, which is used to access automatic variables in the stack frame. */ #define FRAME_POINTER_REGNUM FT32_FP /* The register number of the arg pointer register, which is used to access the function's argument list. */ #define ARG_POINTER_REGNUM FT32_QAP #define ELIMINABLE_REGS \ {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \ {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \ {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}} /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the initial difference between the specified pair of registers. This macro must be defined if `ELIMINABLE_REGS' is defined. */ #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \ do { \ (OFFSET) = ft32_initial_elimination_offset ((FROM), (TO)); \ } while (0) /* A C expression that is nonzero if REGNO is the number of a hard register in which function arguments are sometimes passed. */ #define FUNCTION_ARG_REGNO_P(r) (r >= FT32_R0 && r <= FT32_R5) /* A macro whose definition is the name of the class to which a valid base register must belong. A base register is one used in an address which is the register value plus a displacement. */ #define BASE_REG_CLASS GENERAL_REGS #define INDEX_REG_CLASS NO_REGS #define HARD_REGNO_OK_FOR_BASE_P(NUM) \ ((unsigned) (NUM) < FIRST_PSEUDO_REGISTER \ && (REGNO_REG_CLASS(NUM) == GENERAL_REGS \ || (NUM) == HARD_FRAME_POINTER_REGNUM)) /* A C expression which is nonzero if register number NUM is suitable for use as a base register in operand addresses. */ #ifdef REG_OK_STRICT #define REGNO_OK_FOR_BASE_P(NUM) \ (HARD_REGNO_OK_FOR_BASE_P(NUM) \ || HARD_REGNO_OK_FOR_BASE_P(reg_renumber[(NUM)])) #else #define REGNO_OK_FOR_BASE_P(NUM) \ ((NUM) >= FIRST_PSEUDO_REGISTER || HARD_REGNO_OK_FOR_BASE_P(NUM)) #endif /* A C expression which is nonzero if register number NUM is suitable for use as an index register in operand addresses. */ #define REGNO_OK_FOR_INDEX_P(NUM) FT32_FP /* The maximum number of bytes that a single instruction can move quickly between memory and registers or between two memory locations. */ #define MOVE_MAX 4 #define TRULY_NOOP_TRUNCATION(op,ip) 1 /* Define this to be nonzero if shift instructions ignore all but the low-order few bits. */ #define SHIFT_COUNT_TRUNCATED 1 /* All load operations zero extend. */ #define LOAD_EXTEND_OP(MEM) ZERO_EXTEND /* A number, the maximum number of registers that can appear in a valid memory address. */ #define MAX_REGS_PER_ADDRESS 1 /* An alias for a machine mode name. This is the machine mode that elements of a jump-table should have. */ #define CASE_VECTOR_MODE SImode /* Run-time Target Specification */ #define TARGET_CPU_CPP_BUILTINS() \ { \ builtin_define ("__FT32__"); \ } #define HAS_LONG_UNCOND_BRANCH true #define NO_FUNCTION_CSE 1 #define ADDR_SPACE_PM 1 #define REGISTER_TARGET_PRAGMAS() do { \ c_register_addr_space ("__flash__", ADDR_SPACE_PM); \ } while (0); extern int ft32_is_mem_pm(rtx o); #endif /* GCC_FT32_H */