3135 lines
109 KiB
C
3135 lines
109 KiB
C
/* Single-image implementation of GNU Fortran Coarray Library
|
|
Copyright (C) 2011-2017 Free Software Foundation, Inc.
|
|
Contributed by Tobias Burnus <burnus@net-b.de>
|
|
|
|
This file is part of the GNU Fortran Coarray Runtime Library (libcaf).
|
|
|
|
Libcaf is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
Libcaf is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "libcaf.h"
|
|
#include <stdio.h> /* For fputs and fprintf. */
|
|
#include <stdlib.h> /* For exit and malloc. */
|
|
#include <string.h> /* For memcpy and memset. */
|
|
#include <stdarg.h> /* For variadic arguments. */
|
|
#include <assert.h>
|
|
|
|
/* Define GFC_CAF_CHECK to enable run-time checking. */
|
|
/* #define GFC_CAF_CHECK 1 */
|
|
|
|
struct caf_single_token
|
|
{
|
|
/* The pointer to the memory registered. For arrays this is the data member
|
|
in the descriptor. For components it's the pure data pointer. */
|
|
void *memptr;
|
|
/* The descriptor when this token is associated to an allocatable array. */
|
|
gfc_descriptor_t *desc;
|
|
/* Set when the caf lib has allocated the memory in memptr and is responsible
|
|
for freeing it on deregister. */
|
|
bool owning_memory;
|
|
};
|
|
typedef struct caf_single_token *caf_single_token_t;
|
|
|
|
#define TOKEN(X) ((caf_single_token_t) (X))
|
|
#define MEMTOK(X) ((caf_single_token_t) (X))->memptr
|
|
|
|
/* Single-image implementation of the CAF library.
|
|
Note: For performance reasons -fcoarry=single should be used
|
|
rather than this library. */
|
|
|
|
/* Global variables. */
|
|
caf_static_t *caf_static_list = NULL;
|
|
|
|
/* Keep in sync with mpi.c. */
|
|
static void
|
|
caf_runtime_error (const char *message, ...)
|
|
{
|
|
va_list ap;
|
|
fprintf (stderr, _("Fortran runtime error: "));
|
|
va_start (ap, message);
|
|
vfprintf (stderr, message, ap);
|
|
va_end (ap);
|
|
fprintf (stderr, "\n");
|
|
|
|
/* FIXME: Shutdown the Fortran RTL to flush the buffer. PR 43849. */
|
|
exit (EXIT_FAILURE);
|
|
}
|
|
|
|
/* Error handling is similar everytime. */
|
|
static void
|
|
caf_internal_error (const char *msg, int *stat, char *errmsg,
|
|
int errmsg_len, ...)
|
|
{
|
|
va_list args;
|
|
va_start (args, errmsg_len);
|
|
if (stat)
|
|
{
|
|
*stat = 1;
|
|
if (errmsg_len > 0)
|
|
{
|
|
size_t len = snprintf (errmsg, errmsg_len, msg, args);
|
|
if ((size_t)errmsg_len > len)
|
|
memset (&errmsg[len], ' ', errmsg_len - len);
|
|
}
|
|
va_end (args);
|
|
return;
|
|
}
|
|
else
|
|
caf_runtime_error (msg, args);
|
|
va_end (args);
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_init (int *argc __attribute__ ((unused)),
|
|
char ***argv __attribute__ ((unused)))
|
|
{
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_finalize (void)
|
|
{
|
|
while (caf_static_list != NULL)
|
|
{
|
|
caf_static_t *tmp = caf_static_list->prev;
|
|
free (caf_static_list->token);
|
|
free (caf_static_list);
|
|
caf_static_list = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
_lfortran_caf_this_image (int distance __attribute__ ((unused)))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
int
|
|
_lfortran_caf_num_images (int distance __attribute__ ((unused)),
|
|
int failed __attribute__ ((unused)))
|
|
{
|
|
return 1;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_register (size_t size, caf_register_t type, caf_token_t *token,
|
|
gfc_descriptor_t *data, int *stat, char *errmsg,
|
|
int errmsg_len)
|
|
{
|
|
const char alloc_fail_msg[] = "Failed to allocate coarray";
|
|
void *local;
|
|
caf_single_token_t single_token;
|
|
|
|
if (type == CAF_REGTYPE_LOCK_STATIC || type == CAF_REGTYPE_LOCK_ALLOC
|
|
|| type == CAF_REGTYPE_CRITICAL)
|
|
local = calloc (size, sizeof (bool));
|
|
else if (type == CAF_REGTYPE_EVENT_STATIC || type == CAF_REGTYPE_EVENT_ALLOC)
|
|
/* In the event_(wait|post) function the counter for events is a uint32,
|
|
so better allocate enough memory here. */
|
|
local = calloc (size, sizeof (uint32_t));
|
|
else if (type == CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY)
|
|
local = NULL;
|
|
else
|
|
local = malloc (size);
|
|
|
|
if (type != CAF_REGTYPE_COARRAY_ALLOC_ALLOCATE_ONLY)
|
|
*token = malloc (sizeof (struct caf_single_token));
|
|
|
|
if (unlikely (*token == NULL
|
|
|| (local == NULL
|
|
&& type != CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY)))
|
|
{
|
|
/* Freeing the memory conditionally seems pointless, but
|
|
caf_internal_error () may return, when a stat is given and then the
|
|
memory may be lost. */
|
|
if (local)
|
|
free (local);
|
|
if (*token)
|
|
free (*token);
|
|
caf_internal_error (alloc_fail_msg, stat, errmsg, errmsg_len);
|
|
return;
|
|
}
|
|
|
|
single_token = TOKEN (*token);
|
|
single_token->memptr = local;
|
|
single_token->owning_memory = type != CAF_REGTYPE_COARRAY_ALLOC_REGISTER_ONLY;
|
|
single_token->desc = GFC_DESCRIPTOR_RANK (data) > 0 ? data : NULL;
|
|
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
if (type == CAF_REGTYPE_COARRAY_STATIC || type == CAF_REGTYPE_LOCK_STATIC
|
|
|| type == CAF_REGTYPE_CRITICAL || type == CAF_REGTYPE_EVENT_STATIC
|
|
|| type == CAF_REGTYPE_EVENT_ALLOC)
|
|
{
|
|
caf_static_t *tmp = malloc (sizeof (caf_static_t));
|
|
tmp->prev = caf_static_list;
|
|
tmp->token = *token;
|
|
caf_static_list = tmp;
|
|
}
|
|
GFC_DESCRIPTOR_DATA (data) = local;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_deregister (caf_token_t *token, caf_deregister_t type, int *stat,
|
|
char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
caf_single_token_t single_token = TOKEN (*token);
|
|
|
|
if (single_token->owning_memory && single_token->memptr)
|
|
free (single_token->memptr);
|
|
|
|
if (type != CAF_DEREGTYPE_COARRAY_DEALLOCATE_ONLY)
|
|
{
|
|
free (TOKEN (*token));
|
|
*token = NULL;
|
|
}
|
|
else
|
|
{
|
|
single_token->memptr = NULL;
|
|
single_token->owning_memory = false;
|
|
}
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_sync_all (int *stat,
|
|
char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
__asm__ __volatile__ ("":::"memory");
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_sync_memory (int *stat,
|
|
char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
__asm__ __volatile__ ("":::"memory");
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_sync_images (int count __attribute__ ((unused)),
|
|
int images[] __attribute__ ((unused)),
|
|
int *stat,
|
|
char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
#ifdef GFC_CAF_CHECK
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
if (images[i] != 1)
|
|
{
|
|
fprintf (stderr, _("COARRAY ERROR: Invalid image index %d to SYNC IMAGES"), images[i]);
|
|
exit (EXIT_FAILURE);
|
|
}
|
|
#endif
|
|
|
|
__asm__ __volatile__ ("":::"memory");
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_stop_numeric(int32_t stop_code)
|
|
{
|
|
fprintf (stderr, "STOP %d\n", stop_code);
|
|
exit (0);
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_stop_str(const char *string, int32_t len)
|
|
{
|
|
fputs ("STOP ", stderr);
|
|
while (len--)
|
|
fputc (*(string++), stderr);
|
|
fputs ("\n", stderr);
|
|
|
|
exit (0);
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_error_stop_str (const char *string, int32_t len)
|
|
{
|
|
fputs ("ERROR STOP ", stderr);
|
|
while (len--)
|
|
fputc (*(string++), stderr);
|
|
fputs ("\n", stderr);
|
|
|
|
exit (1);
|
|
}
|
|
|
|
|
|
/* Reported that the program terminated because of a fail image issued.
|
|
Because this is a single image library, nothing else than aborting the whole
|
|
program can be done. */
|
|
|
|
void _lfortran_caf_fail_image (void)
|
|
{
|
|
fputs ("IMAGE FAILED!\n", stderr);
|
|
exit (0);
|
|
}
|
|
|
|
|
|
/* Get the status of image IMAGE. Because being the single image library all
|
|
other images are reported to be stopped. */
|
|
|
|
int _lfortran_caf_image_status (int image,
|
|
caf_team_t * team __attribute__ ((unused)))
|
|
{
|
|
if (image == 1)
|
|
return 0;
|
|
else
|
|
return CAF_STAT_STOPPED_IMAGE;
|
|
}
|
|
|
|
|
|
/* Single image library. There can not be any failed images with only one
|
|
image. */
|
|
|
|
void
|
|
_lfortran_caf_failed_images (gfc_descriptor_t *array,
|
|
caf_team_t * team __attribute__ ((unused)),
|
|
int * kind)
|
|
{
|
|
int local_kind = kind != NULL ? *kind : 4;
|
|
|
|
array->base_addr = NULL;
|
|
array->dtype = ((BT_INTEGER << GFC_DTYPE_TYPE_SHIFT)
|
|
| (local_kind << GFC_DTYPE_SIZE_SHIFT));
|
|
/* Setting lower_bound higher then upper_bound is what the compiler does to
|
|
indicate an empty array. */
|
|
array->dim[0].lower_bound = 0;
|
|
array->dim[0]._ubound = -1;
|
|
array->dim[0]._stride = 1;
|
|
array->offset = 0;
|
|
}
|
|
|
|
|
|
/* With only one image available no other images can be stopped. Therefore
|
|
return an empty array. */
|
|
|
|
void
|
|
_lfortran_caf_stopped_images (gfc_descriptor_t *array,
|
|
caf_team_t * team __attribute__ ((unused)),
|
|
int * kind)
|
|
{
|
|
int local_kind = kind != NULL ? *kind : 4;
|
|
|
|
array->base_addr = NULL;
|
|
array->dtype = ((BT_INTEGER << GFC_DTYPE_TYPE_SHIFT)
|
|
| (local_kind << GFC_DTYPE_SIZE_SHIFT));
|
|
/* Setting lower_bound higher then upper_bound is what the compiler does to
|
|
indicate an empty array. */
|
|
array->dim[0].lower_bound = 0;
|
|
array->dim[0]._ubound = -1;
|
|
array->dim[0]._stride = 1;
|
|
array->offset = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_error_stop (int32_t error)
|
|
{
|
|
fprintf (stderr, "ERROR STOP %d\n", error);
|
|
exit (error);
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_co_broadcast (gfc_descriptor_t *a __attribute__ ((unused)),
|
|
int source_image __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_co_sum (gfc_descriptor_t *a __attribute__ ((unused)),
|
|
int result_image __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_co_min (gfc_descriptor_t *a __attribute__ ((unused)),
|
|
int result_image __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int a_len __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_co_max (gfc_descriptor_t *a __attribute__ ((unused)),
|
|
int result_image __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int a_len __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_co_reduce (gfc_descriptor_t *a __attribute__ ((unused)),
|
|
void * (*opr) (void *, void *)
|
|
__attribute__ ((unused)),
|
|
int opr_flags __attribute__ ((unused)),
|
|
int result_image __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int a_len __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
static void
|
|
assign_char4_from_char1 (size_t dst_size, size_t src_size, uint32_t *dst,
|
|
unsigned char *src)
|
|
{
|
|
size_t i, n;
|
|
n = dst_size/4 > src_size ? src_size : dst_size/4;
|
|
for (i = 0; i < n; ++i)
|
|
dst[i] = (int32_t) src[i];
|
|
for (; i < dst_size/4; ++i)
|
|
dst[i] = (int32_t) ' ';
|
|
}
|
|
|
|
|
|
static void
|
|
assign_char1_from_char4 (size_t dst_size, size_t src_size, unsigned char *dst,
|
|
uint32_t *src)
|
|
{
|
|
size_t i, n;
|
|
n = dst_size > src_size/4 ? src_size/4 : dst_size;
|
|
for (i = 0; i < n; ++i)
|
|
dst[i] = src[i] > UINT8_MAX ? (unsigned char) '?' : (unsigned char) src[i];
|
|
if (dst_size > n)
|
|
memset (&dst[n], ' ', dst_size - n);
|
|
}
|
|
|
|
|
|
static void
|
|
convert_type (void *dst, int dst_type, int dst_kind, void *src, int src_type,
|
|
int src_kind, int *stat)
|
|
{
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
typedef __int128 int128t;
|
|
#else
|
|
typedef int64_t int128t;
|
|
#endif
|
|
|
|
#if defined(GFC_REAL_16_IS_LONG_DOUBLE)
|
|
typedef long double real128t;
|
|
typedef _Complex long double complex128t;
|
|
#elif defined(HAVE_GFC_REAL_16)
|
|
typedef _Complex float __attribute__((mode(TC))) __complex128;
|
|
typedef __float128 real128t;
|
|
typedef __complex128 complex128t;
|
|
#elif defined(HAVE_GFC_REAL_10)
|
|
typedef long double real128t;
|
|
typedef long double complex128t;
|
|
#else
|
|
typedef double real128t;
|
|
typedef _Complex double complex128t;
|
|
#endif
|
|
|
|
int128t int_val = 0;
|
|
real128t real_val = 0;
|
|
complex128t cmpx_val = 0;
|
|
|
|
switch (src_type)
|
|
{
|
|
case BT_INTEGER:
|
|
if (src_kind == 1)
|
|
int_val = *(int8_t*) src;
|
|
else if (src_kind == 2)
|
|
int_val = *(int16_t*) src;
|
|
else if (src_kind == 4)
|
|
int_val = *(int32_t*) src;
|
|
else if (src_kind == 8)
|
|
int_val = *(int64_t*) src;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
else if (src_kind == 16)
|
|
int_val = *(int128t*) src;
|
|
#endif
|
|
else
|
|
goto error;
|
|
break;
|
|
case BT_REAL:
|
|
if (src_kind == 4)
|
|
real_val = *(float*) src;
|
|
else if (src_kind == 8)
|
|
real_val = *(double*) src;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (src_kind == 10)
|
|
real_val = *(long double*) src;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (src_kind == 16)
|
|
real_val = *(real128t*) src;
|
|
#endif
|
|
else
|
|
goto error;
|
|
break;
|
|
case BT_COMPLEX:
|
|
if (src_kind == 4)
|
|
cmpx_val = *(_Complex float*) src;
|
|
else if (src_kind == 8)
|
|
cmpx_val = *(_Complex double*) src;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (src_kind == 10)
|
|
cmpx_val = *(_Complex long double*) src;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (src_kind == 16)
|
|
cmpx_val = *(complex128t*) src;
|
|
#endif
|
|
else
|
|
goto error;
|
|
break;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
switch (dst_type)
|
|
{
|
|
case BT_INTEGER:
|
|
if (src_type == BT_INTEGER)
|
|
{
|
|
if (dst_kind == 1)
|
|
*(int8_t*) dst = (int8_t) int_val;
|
|
else if (dst_kind == 2)
|
|
*(int16_t*) dst = (int16_t) int_val;
|
|
else if (dst_kind == 4)
|
|
*(int32_t*) dst = (int32_t) int_val;
|
|
else if (dst_kind == 8)
|
|
*(int64_t*) dst = (int64_t) int_val;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
else if (dst_kind == 16)
|
|
*(int128t*) dst = (int128t) int_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_REAL)
|
|
{
|
|
if (dst_kind == 1)
|
|
*(int8_t*) dst = (int8_t) real_val;
|
|
else if (dst_kind == 2)
|
|
*(int16_t*) dst = (int16_t) real_val;
|
|
else if (dst_kind == 4)
|
|
*(int32_t*) dst = (int32_t) real_val;
|
|
else if (dst_kind == 8)
|
|
*(int64_t*) dst = (int64_t) real_val;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
else if (dst_kind == 16)
|
|
*(int128t*) dst = (int128t) real_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_COMPLEX)
|
|
{
|
|
if (dst_kind == 1)
|
|
*(int8_t*) dst = (int8_t) cmpx_val;
|
|
else if (dst_kind == 2)
|
|
*(int16_t*) dst = (int16_t) cmpx_val;
|
|
else if (dst_kind == 4)
|
|
*(int32_t*) dst = (int32_t) cmpx_val;
|
|
else if (dst_kind == 8)
|
|
*(int64_t*) dst = (int64_t) cmpx_val;
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
else if (dst_kind == 16)
|
|
*(int128t*) dst = (int128t) cmpx_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else
|
|
goto error;
|
|
return;
|
|
case BT_REAL:
|
|
if (src_type == BT_INTEGER)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(float*) dst = (float) int_val;
|
|
else if (dst_kind == 8)
|
|
*(double*) dst = (double) int_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(long double*) dst = (long double) int_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(real128t*) dst = (real128t) int_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_REAL)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(float*) dst = (float) real_val;
|
|
else if (dst_kind == 8)
|
|
*(double*) dst = (double) real_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(long double*) dst = (long double) real_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(real128t*) dst = (real128t) real_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_COMPLEX)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(float*) dst = (float) cmpx_val;
|
|
else if (dst_kind == 8)
|
|
*(double*) dst = (double) cmpx_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(long double*) dst = (long double) cmpx_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(real128t*) dst = (real128t) cmpx_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
return;
|
|
case BT_COMPLEX:
|
|
if (src_type == BT_INTEGER)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(_Complex float*) dst = (_Complex float) int_val;
|
|
else if (dst_kind == 8)
|
|
*(_Complex double*) dst = (_Complex double) int_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(_Complex long double*) dst = (_Complex long double) int_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(complex128t*) dst = (complex128t) int_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_REAL)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(_Complex float*) dst = (_Complex float) real_val;
|
|
else if (dst_kind == 8)
|
|
*(_Complex double*) dst = (_Complex double) real_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(_Complex long double*) dst = (_Complex long double) real_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(complex128t*) dst = (complex128t) real_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else if (src_type == BT_COMPLEX)
|
|
{
|
|
if (dst_kind == 4)
|
|
*(_Complex float*) dst = (_Complex float) cmpx_val;
|
|
else if (dst_kind == 8)
|
|
*(_Complex double*) dst = (_Complex double) cmpx_val;
|
|
#ifdef HAVE_GFC_REAL_10
|
|
else if (dst_kind == 10)
|
|
*(_Complex long double*) dst = (_Complex long double) cmpx_val;
|
|
#endif
|
|
#ifdef HAVE_GFC_REAL_16
|
|
else if (dst_kind == 16)
|
|
*(complex128t*) dst = (complex128t) cmpx_val;
|
|
#endif
|
|
else
|
|
goto error;
|
|
}
|
|
else
|
|
goto error;
|
|
return;
|
|
default:
|
|
goto error;
|
|
}
|
|
|
|
error:
|
|
fprintf (stderr, _("libcaf_single RUNTIME ERROR: Cannot convert type %d kind %d to type %d kind %d\n"), src_type, src_kind, dst_type, dst_kind);
|
|
if (stat)
|
|
*stat = 1;
|
|
else
|
|
abort ();
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_get (caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
gfc_descriptor_t *src,
|
|
caf_vector_t *src_vector __attribute__ ((unused)),
|
|
gfc_descriptor_t *dest, int src_kind, int dst_kind,
|
|
bool may_require_tmp, int *stat)
|
|
{
|
|
/* FIXME: Handle vector subscripts. */
|
|
size_t i, k, size;
|
|
int j;
|
|
int rank = GFC_DESCRIPTOR_RANK (dest);
|
|
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
|
|
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
if (rank == 0)
|
|
{
|
|
void *sr = (void *) ((char *) MEMTOK (token) + offset);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (GFC_DESCRIPTOR_DATA (dest), sr,
|
|
dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) GFC_DESCRIPTOR_DATA (dest) + src_size,
|
|
' ', dst_size - src_size);
|
|
else /* dst_kind == 4. */
|
|
for (i = src_size/4; i < dst_size/4; i++)
|
|
((int32_t*) GFC_DESCRIPTOR_DATA (dest))[i] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
|
|
sr);
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, GFC_DESCRIPTOR_DATA (dest),
|
|
sr);
|
|
else
|
|
convert_type (GFC_DESCRIPTOR_DATA (dest), GFC_DESCRIPTOR_TYPE (dest),
|
|
dst_kind, sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
|
|
return;
|
|
}
|
|
|
|
size = 1;
|
|
for (j = 0; j < rank; j++)
|
|
{
|
|
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
|
|
if (dimextent < 0)
|
|
dimextent = 0;
|
|
size *= dimextent;
|
|
}
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
if (may_require_tmp)
|
|
{
|
|
ptrdiff_t array_offset_sr, array_offset_dst;
|
|
void *tmp = malloc (size*src_size);
|
|
|
|
array_offset_dst = 0;
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_sr = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
|
|
{
|
|
array_offset_sr += ((i / (extent*stride))
|
|
% (src->dim[j]._ubound
|
|
- src->dim[j].lower_bound + 1))
|
|
* src->dim[j]._stride;
|
|
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
|
|
stride = src->dim[j]._stride;
|
|
}
|
|
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
|
|
void *sr = (void *)((char *) MEMTOK (token) + offset
|
|
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
|
|
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
|
|
array_offset_dst += src_size;
|
|
}
|
|
|
|
array_offset_sr = 0;
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_dst = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < rank-1; j++)
|
|
{
|
|
array_offset_dst += ((i / (extent*stride))
|
|
% (dest->dim[j]._ubound
|
|
- dest->dim[j].lower_bound + 1))
|
|
* dest->dim[j]._stride;
|
|
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
|
|
stride = dest->dim[j]._stride;
|
|
}
|
|
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
|
|
void *dst = dest->base_addr
|
|
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
|
|
void *sr = tmp + array_offset_sr;
|
|
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
|
|
&& dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) dst + src_size, ' ',
|
|
dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (k = src_size/4; k < dst_size/4; k++)
|
|
((int32_t*) dst)[k] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, dst, sr);
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, dst, sr);
|
|
else
|
|
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
|
|
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
|
|
array_offset_sr += src_size;
|
|
}
|
|
|
|
free (tmp);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_dst = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < rank-1; j++)
|
|
{
|
|
array_offset_dst += ((i / (extent*stride))
|
|
% (dest->dim[j]._ubound
|
|
- dest->dim[j].lower_bound + 1))
|
|
* dest->dim[j]._stride;
|
|
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
|
|
stride = dest->dim[j]._stride;
|
|
}
|
|
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
|
|
void *dst = dest->base_addr + array_offset_dst*GFC_DESCRIPTOR_SIZE (dest);
|
|
|
|
ptrdiff_t array_offset_sr = 0;
|
|
stride = 1;
|
|
extent = 1;
|
|
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
|
|
{
|
|
array_offset_sr += ((i / (extent*stride))
|
|
% (src->dim[j]._ubound
|
|
- src->dim[j].lower_bound + 1))
|
|
* src->dim[j]._stride;
|
|
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
|
|
stride = src->dim[j]._stride;
|
|
}
|
|
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
|
|
void *sr = (void *)((char *) MEMTOK (token) + offset
|
|
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
|
|
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (dst, sr, dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (k = src_size/4; k < dst_size/4; k++)
|
|
((int32_t*) dst)[k] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, dst, sr);
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, dst, sr);
|
|
else
|
|
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
|
|
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_send (caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
gfc_descriptor_t *dest,
|
|
caf_vector_t *dst_vector __attribute__ ((unused)),
|
|
gfc_descriptor_t *src, int dst_kind, int src_kind,
|
|
bool may_require_tmp, int *stat)
|
|
{
|
|
/* FIXME: Handle vector subscripts. */
|
|
size_t i, k, size;
|
|
int j;
|
|
int rank = GFC_DESCRIPTOR_RANK (dest);
|
|
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
|
|
size_t dst_size = GFC_DESCRIPTOR_SIZE (dest);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
if (rank == 0)
|
|
{
|
|
void *dst = (void *) ((char *) MEMTOK (token) + offset);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (dst, GFC_DESCRIPTOR_DATA (src),
|
|
dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (i = src_size/4; i < dst_size/4; i++)
|
|
((int32_t*) dst)[i] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, dst,
|
|
GFC_DESCRIPTOR_DATA (src));
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, dst,
|
|
GFC_DESCRIPTOR_DATA (src));
|
|
else
|
|
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
|
|
GFC_DESCRIPTOR_DATA (src), GFC_DESCRIPTOR_TYPE (src),
|
|
src_kind, stat);
|
|
return;
|
|
}
|
|
|
|
size = 1;
|
|
for (j = 0; j < rank; j++)
|
|
{
|
|
ptrdiff_t dimextent = dest->dim[j]._ubound - dest->dim[j].lower_bound + 1;
|
|
if (dimextent < 0)
|
|
dimextent = 0;
|
|
size *= dimextent;
|
|
}
|
|
|
|
if (size == 0)
|
|
return;
|
|
|
|
if (may_require_tmp)
|
|
{
|
|
ptrdiff_t array_offset_sr, array_offset_dst;
|
|
void *tmp;
|
|
|
|
if (GFC_DESCRIPTOR_RANK (src) == 0)
|
|
{
|
|
tmp = malloc (src_size);
|
|
memcpy (tmp, GFC_DESCRIPTOR_DATA (src), src_size);
|
|
}
|
|
else
|
|
{
|
|
tmp = malloc (size*src_size);
|
|
array_offset_dst = 0;
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_sr = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
|
|
{
|
|
array_offset_sr += ((i / (extent*stride))
|
|
% (src->dim[j]._ubound
|
|
- src->dim[j].lower_bound + 1))
|
|
* src->dim[j]._stride;
|
|
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
|
|
stride = src->dim[j]._stride;
|
|
}
|
|
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
|
|
void *sr = (void *) ((char *) src->base_addr
|
|
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
|
|
memcpy ((void *) ((char *) tmp + array_offset_dst), sr, src_size);
|
|
array_offset_dst += src_size;
|
|
}
|
|
}
|
|
|
|
array_offset_sr = 0;
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_dst = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < rank-1; j++)
|
|
{
|
|
array_offset_dst += ((i / (extent*stride))
|
|
% (dest->dim[j]._ubound
|
|
- dest->dim[j].lower_bound + 1))
|
|
* dest->dim[j]._stride;
|
|
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
|
|
stride = dest->dim[j]._stride;
|
|
}
|
|
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
|
|
void *dst = (void *)((char *) MEMTOK (token) + offset
|
|
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
|
|
void *sr = tmp + array_offset_sr;
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (dst, sr,
|
|
dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER
|
|
&& dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) dst + src_size, ' ',
|
|
dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (k = src_size/4; k < dst_size/4; k++)
|
|
((int32_t*) dst)[k] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, dst, sr);
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, dst, sr);
|
|
else
|
|
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
|
|
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
|
|
if (GFC_DESCRIPTOR_RANK (src))
|
|
array_offset_sr += src_size;
|
|
}
|
|
free (tmp);
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < size; i++)
|
|
{
|
|
ptrdiff_t array_offset_dst = 0;
|
|
ptrdiff_t stride = 1;
|
|
ptrdiff_t extent = 1;
|
|
for (j = 0; j < rank-1; j++)
|
|
{
|
|
array_offset_dst += ((i / (extent*stride))
|
|
% (dest->dim[j]._ubound
|
|
- dest->dim[j].lower_bound + 1))
|
|
* dest->dim[j]._stride;
|
|
extent = (dest->dim[j]._ubound - dest->dim[j].lower_bound + 1);
|
|
stride = dest->dim[j]._stride;
|
|
}
|
|
array_offset_dst += (i / extent) * dest->dim[rank-1]._stride;
|
|
void *dst = (void *)((char *) MEMTOK (token) + offset
|
|
+ array_offset_dst*GFC_DESCRIPTOR_SIZE (dest));
|
|
void *sr;
|
|
if (GFC_DESCRIPTOR_RANK (src) != 0)
|
|
{
|
|
ptrdiff_t array_offset_sr = 0;
|
|
stride = 1;
|
|
extent = 1;
|
|
for (j = 0; j < GFC_DESCRIPTOR_RANK (src)-1; j++)
|
|
{
|
|
array_offset_sr += ((i / (extent*stride))
|
|
% (src->dim[j]._ubound
|
|
- src->dim[j].lower_bound + 1))
|
|
* src->dim[j]._stride;
|
|
extent = (src->dim[j]._ubound - src->dim[j].lower_bound + 1);
|
|
stride = src->dim[j]._stride;
|
|
}
|
|
array_offset_sr += (i / extent) * src->dim[rank-1]._stride;
|
|
sr = (void *)((char *) src->base_addr
|
|
+ array_offset_sr*GFC_DESCRIPTOR_SIZE (src));
|
|
}
|
|
else
|
|
sr = src->base_addr;
|
|
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == GFC_DESCRIPTOR_TYPE (src)
|
|
&& dst_kind == src_kind)
|
|
{
|
|
memmove (dst, sr,
|
|
dst_size > src_size ? src_size : dst_size);
|
|
if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) dst + src_size, ' ', dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (k = src_size/4; k < dst_size/4; k++)
|
|
((int32_t*) dst)[k] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, dst, sr);
|
|
else if (GFC_DESCRIPTOR_TYPE (dest) == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, dst, sr);
|
|
else
|
|
convert_type (dst, GFC_DESCRIPTOR_TYPE (dest), dst_kind,
|
|
sr, GFC_DESCRIPTOR_TYPE (src), src_kind, stat);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_sendget (caf_token_t dst_token, size_t dst_offset,
|
|
int dst_image_index, gfc_descriptor_t *dest,
|
|
caf_vector_t *dst_vector, caf_token_t src_token,
|
|
size_t src_offset,
|
|
int src_image_index __attribute__ ((unused)),
|
|
gfc_descriptor_t *src,
|
|
caf_vector_t *src_vector __attribute__ ((unused)),
|
|
int dst_kind, int src_kind, bool may_require_tmp, int *stat __attribute__ ((unused)))
|
|
{
|
|
/* FIXME: Handle vector subscript of 'src_vector'. */
|
|
/* For a single image, src->base_addr should be the same as src_token + offset
|
|
but to play save, we do it properly. */
|
|
void *src_base = GFC_DESCRIPTOR_DATA (src);
|
|
GFC_DESCRIPTOR_DATA (src) = (void *) ((char *) MEMTOK (src_token)
|
|
+ src_offset);
|
|
_lfortran_caf_send (dst_token, dst_offset, dst_image_index, dest, dst_vector,
|
|
src, dst_kind, src_kind, may_require_tmp, NULL);
|
|
GFC_DESCRIPTOR_DATA (src) = src_base;
|
|
}
|
|
|
|
|
|
/* Emitted when a theorectically unreachable part is reached. */
|
|
const char unreachable[] = "Fatal error: unreachable alternative found.\n";
|
|
|
|
|
|
static void
|
|
copy_data (void *ds, void *sr, int dst_type, int src_type,
|
|
int dst_kind, int src_kind, size_t dst_size, size_t src_size,
|
|
size_t num, int *stat)
|
|
{
|
|
size_t k;
|
|
if (dst_type == src_type && dst_kind == src_kind)
|
|
{
|
|
memmove (ds, sr, (dst_size > src_size ? src_size : dst_size) * num);
|
|
if ((dst_type == BT_CHARACTER || src_type == BT_CHARACTER)
|
|
&& dst_size > src_size)
|
|
{
|
|
if (dst_kind == 1)
|
|
memset ((void*)(char*) ds + src_size, ' ', dst_size-src_size);
|
|
else /* dst_kind == 4. */
|
|
for (k = src_size/4; k < dst_size/4; k++)
|
|
((int32_t*) ds)[k] = (int32_t) ' ';
|
|
}
|
|
}
|
|
else if (dst_type == BT_CHARACTER && dst_kind == 1)
|
|
assign_char1_from_char4 (dst_size, src_size, ds, sr);
|
|
else if (dst_type == BT_CHARACTER)
|
|
assign_char4_from_char1 (dst_size, src_size, ds, sr);
|
|
else
|
|
for (k = 0; k < num; ++k)
|
|
{
|
|
convert_type (ds, dst_type, dst_kind, sr, src_type, src_kind, stat);
|
|
ds += dst_size;
|
|
sr += src_size;
|
|
}
|
|
}
|
|
|
|
|
|
#define COMPUTE_NUM_ITEMS(num, stride, lb, ub) \
|
|
do { \
|
|
index_type abs_stride = (stride) > 0 ? (stride) : -(stride); \
|
|
num = (stride) > 0 ? (ub) + 1 - (lb) : (lb) + 1 - (ub); \
|
|
if (num <= 0 || abs_stride < 1) return; \
|
|
num = (abs_stride > 1) ? (1 + (num - 1) / abs_stride) : num; \
|
|
} while (0)
|
|
|
|
|
|
static void
|
|
get_for_ref (caf_reference_t *ref, size_t *i, size_t *dst_index,
|
|
caf_single_token_t single_token, gfc_descriptor_t *dst,
|
|
gfc_descriptor_t *src, void *ds, void *sr,
|
|
int dst_kind, int src_kind, size_t dst_dim, size_t src_dim,
|
|
size_t num, int *stat)
|
|
{
|
|
ptrdiff_t extent_src = 1, array_offset_src = 0, stride_src;
|
|
size_t next_dst_dim;
|
|
|
|
if (unlikely (ref == NULL))
|
|
/* May be we should issue an error here, because this case should not
|
|
occur. */
|
|
return;
|
|
|
|
if (ref->next == NULL)
|
|
{
|
|
size_t dst_size = GFC_DESCRIPTOR_SIZE (dst);
|
|
ptrdiff_t array_offset_dst = 0;;
|
|
size_t dst_rank = GFC_DESCRIPTOR_RANK (dst);
|
|
int src_type = -1;
|
|
|
|
switch (ref->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
/* Because the token is always registered after the component, its
|
|
offset is always greater zeor. */
|
|
if (ref->u.c.caf_token_offset > 0)
|
|
copy_data (ds, *(void **)(sr + ref->u.c.offset),
|
|
GFC_DESCRIPTOR_TYPE (dst), GFC_DESCRIPTOR_TYPE (dst),
|
|
dst_kind, src_kind, dst_size, ref->item_size, 1, stat);
|
|
else
|
|
copy_data (ds, sr + ref->u.c.offset,
|
|
GFC_DESCRIPTOR_TYPE (dst), GFC_DESCRIPTOR_TYPE (src),
|
|
dst_kind, src_kind, dst_size, ref->item_size, 1, stat);
|
|
++(*i);
|
|
return;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
src_type = ref->u.a.static_array_type;
|
|
/* Intentionally fall through. */
|
|
case CAF_REF_ARRAY:
|
|
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
size_t d;
|
|
for (d = 0; d < dst_rank; ++d)
|
|
{
|
|
array_offset_dst += dst_index[d];
|
|
}
|
|
copy_data (ds + array_offset_dst * dst_size, sr,
|
|
GFC_DESCRIPTOR_TYPE (dst),
|
|
src_type == -1 ? GFC_DESCRIPTOR_TYPE (src) : src_type,
|
|
dst_kind, src_kind, dst_size, ref->item_size, num,
|
|
stat);
|
|
*i += num;
|
|
return;
|
|
}
|
|
break;
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
}
|
|
|
|
switch (ref->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (ref->u.c.caf_token_offset > 0)
|
|
get_for_ref (ref->next, i, dst_index,
|
|
*(caf_single_token_t*)(sr + ref->u.c.caf_token_offset), dst,
|
|
(*(caf_single_token_t*)(sr + ref->u.c.caf_token_offset))->desc,
|
|
ds, sr + ref->u.c.offset, dst_kind, src_kind, dst_dim, 0,
|
|
1, stat);
|
|
else
|
|
get_for_ref (ref->next, i, dst_index, single_token, dst,
|
|
(gfc_descriptor_t *)(sr + ref->u.c.offset), ds,
|
|
sr + ref->u.c.offset, dst_kind, src_kind, dst_dim, 0, 1,
|
|
stat);
|
|
return;
|
|
case CAF_REF_ARRAY:
|
|
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
get_for_ref (ref->next, i, dst_index, single_token, dst,
|
|
src, ds, sr, dst_kind, src_kind,
|
|
dst_dim, 0, 1, stat);
|
|
return;
|
|
}
|
|
/* Only when on the left most index switch the data pointer to
|
|
the array's data pointer. */
|
|
if (src_dim == 0)
|
|
sr = GFC_DESCRIPTOR_DATA (src);
|
|
switch (ref->u.a.mode[src_dim])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
{
|
|
size_t idx;
|
|
extent_src = GFC_DIMENSION_EXTENT (src->dim[src_dim]);
|
|
array_offset_src = 0;
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < ref->u.a.dim[src_dim].v.nvec; ++idx)
|
|
{
|
|
#define KINDCASE(kind, type) case kind: \
|
|
array_offset_src = (((index_type) \
|
|
((type *)ref->u.a.dim[src_dim].v.vector)[idx]) \
|
|
- GFC_DIMENSION_LBOUND (src->dim[src_dim])) \
|
|
* GFC_DIMENSION_STRIDE (src->dim[src_dim]); \
|
|
break
|
|
|
|
switch (ref->u.a.dim[src_dim].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_FULL:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_src,
|
|
ref->u.a.dim[src_dim].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[src_dim]),
|
|
GFC_DIMENSION_UBOUND (src->dim[src_dim]));
|
|
stride_src = src->dim[src_dim]._stride
|
|
* ref->u.a.dim[src_dim].s.stride;
|
|
array_offset_src = 0;
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < extent_src;
|
|
++idx, array_offset_src += stride_src)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_RANGE:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_src,
|
|
ref->u.a.dim[src_dim].s.stride,
|
|
ref->u.a.dim[src_dim].s.start,
|
|
ref->u.a.dim[src_dim].s.end);
|
|
array_offset_src = (ref->u.a.dim[src_dim].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[src_dim]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
|
|
* ref->u.a.dim[src_dim].s.stride;
|
|
dst_index[dst_dim] = 0;
|
|
/* Increase the dst_dim only, when the src_extent is greater one
|
|
or src and dst extent are both one. Don't increase when the scalar
|
|
source is not present in the dst. */
|
|
next_dst_dim = extent_src > 1
|
|
|| (GFC_DIMENSION_EXTENT (dst->dim[dst_dim]) == 1
|
|
&& extent_src == 1) ? (dst_dim + 1) : dst_dim;
|
|
for (idx = 0; idx < extent_src; ++idx)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, next_dst_dim, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
array_offset_src += stride_src;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_SINGLE:
|
|
array_offset_src = (ref->u.a.dim[src_dim].s.start
|
|
- src->dim[src_dim].lower_bound)
|
|
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
dst_index[dst_dim] = 0;
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src, ds,
|
|
sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim, src_dim + 1, 1,
|
|
stat);
|
|
return;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_src,
|
|
ref->u.a.dim[src_dim].s.stride,
|
|
ref->u.a.dim[src_dim].s.start,
|
|
GFC_DIMENSION_UBOUND (src->dim[src_dim]));
|
|
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
|
|
* ref->u.a.dim[src_dim].s.stride;
|
|
array_offset_src = (ref->u.a.dim[src_dim].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[src_dim]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < extent_src; ++idx)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
array_offset_src += stride_src;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_OPEN_START:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_src,
|
|
ref->u.a.dim[src_dim].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[src_dim]),
|
|
ref->u.a.dim[src_dim].s.end);
|
|
stride_src = GFC_DIMENSION_STRIDE (src->dim[src_dim])
|
|
* ref->u.a.dim[src_dim].s.stride;
|
|
array_offset_src = 0;
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < extent_src; ++idx)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, src,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
array_offset_src += stride_src;
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
return;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
{
|
|
if (ref->u.a.mode[src_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
get_for_ref (ref->next, i, dst_index, single_token, dst,
|
|
NULL, ds, sr, dst_kind, src_kind,
|
|
dst_dim, 0, 1, stat);
|
|
return;
|
|
}
|
|
switch (ref->u.a.mode[src_dim])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
{
|
|
size_t idx;
|
|
array_offset_src = 0;
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < ref->u.a.dim[src_dim].v.nvec; ++idx)
|
|
{
|
|
#define KINDCASE(kind, type) case kind: \
|
|
array_offset_src = ((type *)ref->u.a.dim[src_dim].v.vector)[idx]; \
|
|
break
|
|
|
|
switch (ref->u.a.dim[src_dim].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
|
|
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_FULL:
|
|
dst_index[dst_dim] = 0;
|
|
for (array_offset_src = 0 ;
|
|
array_offset_src <= ref->u.a.dim[src_dim].s.end;
|
|
array_offset_src += ref->u.a.dim[src_dim].s.stride)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
}
|
|
return;
|
|
case CAF_ARR_REF_RANGE:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_src,
|
|
ref->u.a.dim[src_dim].s.stride,
|
|
ref->u.a.dim[src_dim].s.start,
|
|
ref->u.a.dim[src_dim].s.end);
|
|
array_offset_src = ref->u.a.dim[src_dim].s.start;
|
|
dst_index[dst_dim] = 0;
|
|
for (idx = 0; idx < extent_src; ++idx)
|
|
{
|
|
get_for_ref (ref, i, dst_index, single_token, dst, NULL,
|
|
ds, sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, stat);
|
|
dst_index[dst_dim]
|
|
+= GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
array_offset_src += ref->u.a.dim[src_dim].s.stride;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_SINGLE:
|
|
array_offset_src = ref->u.a.dim[src_dim].s.start;
|
|
get_for_ref (ref, i, dst_index, single_token, dst, NULL, ds,
|
|
sr + array_offset_src * ref->item_size,
|
|
dst_kind, src_kind, dst_dim, src_dim + 1, 1,
|
|
stat);
|
|
return;
|
|
/* The OPEN_* are mapped to a RANGE and therefore can not occur. */
|
|
case CAF_ARR_REF_OPEN_END:
|
|
case CAF_ARR_REF_OPEN_START:
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_get_by_ref (caf_token_t token,
|
|
int image_index __attribute__ ((unused)),
|
|
gfc_descriptor_t *dst, caf_reference_t *refs,
|
|
int dst_kind, int src_kind,
|
|
bool may_require_tmp __attribute__ ((unused)),
|
|
bool dst_reallocatable, int *stat)
|
|
{
|
|
const char vecrefunknownkind[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown kind in vector-ref.\n";
|
|
const char unknownreftype[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown reference type.\n";
|
|
const char unknownarrreftype[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown array reference type.\n";
|
|
const char rankoutofrange[] = "libcaf_single::caf_get_by_ref(): "
|
|
"rank out of range.\n";
|
|
const char extentoutofrange[] = "libcaf_single::caf_get_by_ref(): "
|
|
"extent out of range.\n";
|
|
const char cannotallocdst[] = "libcaf_single::caf_get_by_ref(): "
|
|
"can not allocate memory.\n";
|
|
const char nonallocextentmismatch[] = "libcaf_single::caf_get_by_ref(): "
|
|
"extent of non-allocatable arrays mismatch (%lu != %lu).\n";
|
|
const char doublearrayref[] = "libcaf_single::caf_get_by_ref(): "
|
|
"two or more array part references are not supported.\n";
|
|
size_t size, i;
|
|
size_t dst_index[GFC_MAX_DIMENSIONS];
|
|
int dst_rank = GFC_DESCRIPTOR_RANK (dst);
|
|
int dst_cur_dim = 0;
|
|
size_t src_size = 0;
|
|
caf_single_token_t single_token = TOKEN (token);
|
|
void *memptr = single_token->memptr;
|
|
gfc_descriptor_t *src = single_token->desc;
|
|
caf_reference_t *riter = refs;
|
|
long delta;
|
|
/* Reallocation of dst.data is needed (e.g., array to small). */
|
|
bool realloc_needed;
|
|
/* Reallocation of dst.data is required, because data is not alloced at
|
|
all. */
|
|
bool realloc_required;
|
|
bool extent_mismatch = false;
|
|
/* Set when the first non-scalar array reference is encountered. */
|
|
bool in_array_ref = false;
|
|
bool array_extent_fixed = false;
|
|
realloc_needed = realloc_required = GFC_DESCRIPTOR_DATA (dst) == NULL;
|
|
|
|
assert (!realloc_needed || dst_reallocatable);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
/* Compute the size of the result. In the beginning size just counts the
|
|
number of elements. */
|
|
size = 1;
|
|
while (riter)
|
|
{
|
|
switch (riter->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (riter->u.c.caf_token_offset)
|
|
{
|
|
single_token = *(caf_single_token_t*)
|
|
(memptr + riter->u.c.caf_token_offset);
|
|
memptr = single_token->memptr;
|
|
src = single_token->desc;
|
|
}
|
|
else
|
|
{
|
|
memptr += riter->u.c.offset;
|
|
src = (gfc_descriptor_t *)memptr;
|
|
}
|
|
break;
|
|
case CAF_REF_ARRAY:
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
delta = riter->u.a.dim[i].v.nvec;
|
|
#define KINDCASE(kind, type) case kind: \
|
|
memptr += (((index_type) \
|
|
((type *)riter->u.a.dim[i].v.vector)[0]) \
|
|
- GFC_DIMENSION_LBOUND (src->dim[i])) \
|
|
* GFC_DIMENSION_STRIDE (src->dim[i]) \
|
|
* riter->item_size; \
|
|
break
|
|
|
|
switch (riter->u.a.dim[i].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[i]),
|
|
GFC_DIMENSION_UBOUND (src->dim[i]));
|
|
/* The memptr stays unchanged when ref'ing the first element
|
|
in a dimension. */
|
|
break;
|
|
case CAF_ARR_REF_RANGE:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
riter->u.a.dim[i].s.end);
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[i]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_SINGLE:
|
|
delta = 1;
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[i]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
GFC_DIMENSION_UBOUND (src->dim[i]));
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[i]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_START:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[i]),
|
|
riter->u.a.dim[i].s.end);
|
|
/* The memptr stays unchanged when ref'ing the first element
|
|
in a dimension. */
|
|
break;
|
|
default:
|
|
caf_internal_error (unknownarrreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
if (delta <= 0)
|
|
return;
|
|
/* Check the various properties of the destination array.
|
|
Is an array expected and present? */
|
|
if (delta > 1 && dst_rank == 0)
|
|
{
|
|
/* No, an array is required, but not provided. */
|
|
caf_internal_error (extentoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
/* When dst is an array. */
|
|
if (dst_rank > 0)
|
|
{
|
|
/* Check that dst_cur_dim is valid for dst. Can be
|
|
superceeded only by scalar data. */
|
|
if (dst_cur_dim >= dst_rank && delta != 1)
|
|
{
|
|
caf_internal_error (rankoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
/* Do further checks, when the source is not scalar. */
|
|
else if (delta != 1)
|
|
{
|
|
/* Check that the extent is not scalar and we are not in
|
|
an array ref for the dst side. */
|
|
if (!in_array_ref)
|
|
{
|
|
/* Check that this is the non-scalar extent. */
|
|
if (!array_extent_fixed)
|
|
{
|
|
/* In an array extent now. */
|
|
in_array_ref = true;
|
|
/* Check that we haven't skipped any scalar
|
|
dimensions yet and that the dst is
|
|
compatible. */
|
|
if (i > 0
|
|
&& dst_rank == GFC_DESCRIPTOR_RANK (src))
|
|
{
|
|
if (dst_reallocatable)
|
|
{
|
|
/* Dst is reallocatable, which means that
|
|
the bounds are not set. Set them. */
|
|
for (dst_cur_dim= 0; dst_cur_dim < (int)i;
|
|
++dst_cur_dim)
|
|
GFC_DIMENSION_SET (dst->dim[dst_cur_dim],
|
|
1, 1, 1);
|
|
}
|
|
else
|
|
dst_cur_dim = i;
|
|
}
|
|
/* Else press thumbs, that there are enough
|
|
dimensional refs to come. Checked below. */
|
|
}
|
|
else
|
|
{
|
|
caf_internal_error (doublearrayref, stat, NULL,
|
|
0);
|
|
return;
|
|
}
|
|
}
|
|
/* When the realloc is required, then no extent may have
|
|
been set. */
|
|
extent_mismatch = realloc_required
|
|
|| GFC_DESCRIPTOR_EXTENT (dst, dst_cur_dim) != delta;
|
|
/* When it already known, that a realloc is needed or
|
|
the extent does not match the needed one. */
|
|
if (realloc_required || realloc_needed
|
|
|| extent_mismatch)
|
|
{
|
|
/* Check whether dst is reallocatable. */
|
|
if (unlikely (!dst_reallocatable))
|
|
{
|
|
caf_internal_error (nonallocextentmismatch, stat,
|
|
NULL, 0, delta,
|
|
GFC_DESCRIPTOR_EXTENT (dst,
|
|
dst_cur_dim));
|
|
return;
|
|
}
|
|
/* Only report an error, when the extent needs to be
|
|
modified, which is not allowed. */
|
|
else if (!dst_reallocatable && extent_mismatch)
|
|
{
|
|
caf_internal_error (extentoutofrange, stat, NULL,
|
|
0);
|
|
return;
|
|
}
|
|
realloc_needed = true;
|
|
}
|
|
/* Only change the extent when it does not match. This is
|
|
to prevent resetting given array bounds. */
|
|
if (extent_mismatch)
|
|
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, delta,
|
|
size);
|
|
}
|
|
|
|
/* Only increase the dim counter, when in an array ref. */
|
|
if (in_array_ref && dst_cur_dim < dst_rank)
|
|
++dst_cur_dim;
|
|
}
|
|
size *= (index_type)delta;
|
|
}
|
|
if (in_array_ref)
|
|
{
|
|
array_extent_fixed = true;
|
|
in_array_ref = false;
|
|
/* Check, if we got less dimensional refs than the rank of dst
|
|
expects. */
|
|
assert (dst_cur_dim == GFC_DESCRIPTOR_RANK (dst));
|
|
}
|
|
break;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
delta = riter->u.a.dim[i].v.nvec;
|
|
#define KINDCASE(kind, type) case kind: \
|
|
memptr += ((type *)riter->u.a.dim[i].v.vector)[0] \
|
|
* riter->item_size; \
|
|
break
|
|
|
|
switch (riter->u.a.dim[i].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
delta = riter->u.a.dim[i].s.end / riter->u.a.dim[i].s.stride
|
|
+ 1;
|
|
/* The memptr stays unchanged when ref'ing the first element
|
|
in a dimension. */
|
|
break;
|
|
case CAF_ARR_REF_RANGE:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
riter->u.a.dim[i].s.end);
|
|
memptr += riter->u.a.dim[i].s.start
|
|
* riter->u.a.dim[i].s.stride
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_SINGLE:
|
|
delta = 1;
|
|
memptr += riter->u.a.dim[i].s.start
|
|
* riter->u.a.dim[i].s.stride
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
/* This and OPEN_START are mapped to a RANGE and therefore
|
|
can not occur here. */
|
|
case CAF_ARR_REF_OPEN_START:
|
|
default:
|
|
caf_internal_error (unknownarrreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
if (delta <= 0)
|
|
return;
|
|
/* Check the various properties of the destination array.
|
|
Is an array expected and present? */
|
|
if (delta > 1 && dst_rank == 0)
|
|
{
|
|
/* No, an array is required, but not provided. */
|
|
caf_internal_error (extentoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
/* When dst is an array. */
|
|
if (dst_rank > 0)
|
|
{
|
|
/* Check that dst_cur_dim is valid for dst. Can be
|
|
superceeded only by scalar data. */
|
|
if (dst_cur_dim >= dst_rank && delta != 1)
|
|
{
|
|
caf_internal_error (rankoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
/* Do further checks, when the source is not scalar. */
|
|
else if (delta != 1)
|
|
{
|
|
/* Check that the extent is not scalar and we are not in
|
|
an array ref for the dst side. */
|
|
if (!in_array_ref)
|
|
{
|
|
/* Check that this is the non-scalar extent. */
|
|
if (!array_extent_fixed)
|
|
{
|
|
/* In an array extent now. */
|
|
in_array_ref = true;
|
|
/* The dst is not reallocatable, so nothing more
|
|
to do, then correct the dim counter. */
|
|
dst_cur_dim = i;
|
|
}
|
|
else
|
|
{
|
|
caf_internal_error (doublearrayref, stat, NULL,
|
|
0);
|
|
return;
|
|
}
|
|
}
|
|
/* When the realloc is required, then no extent may have
|
|
been set. */
|
|
extent_mismatch = realloc_required
|
|
|| GFC_DESCRIPTOR_EXTENT (dst, dst_cur_dim) != delta;
|
|
/* When it is already known, that a realloc is needed or
|
|
the extent does not match the needed one. */
|
|
if (realloc_required || realloc_needed
|
|
|| extent_mismatch)
|
|
{
|
|
/* Check whether dst is reallocatable. */
|
|
if (unlikely (!dst_reallocatable))
|
|
{
|
|
caf_internal_error (nonallocextentmismatch, stat,
|
|
NULL, 0, delta,
|
|
GFC_DESCRIPTOR_EXTENT (dst,
|
|
dst_cur_dim));
|
|
return;
|
|
}
|
|
/* Only report an error, when the extent needs to be
|
|
modified, which is not allowed. */
|
|
else if (!dst_reallocatable && extent_mismatch)
|
|
{
|
|
caf_internal_error (extentoutofrange, stat, NULL,
|
|
0);
|
|
return;
|
|
}
|
|
realloc_needed = true;
|
|
}
|
|
/* Only change the extent when it does not match. This is
|
|
to prevent resetting given array bounds. */
|
|
if (extent_mismatch)
|
|
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, delta,
|
|
size);
|
|
}
|
|
/* Only increase the dim counter, when in an array ref. */
|
|
if (in_array_ref && dst_cur_dim < dst_rank)
|
|
++dst_cur_dim;
|
|
}
|
|
size *= (index_type)delta;
|
|
}
|
|
if (in_array_ref)
|
|
{
|
|
array_extent_fixed = true;
|
|
in_array_ref = false;
|
|
/* Check, if we got less dimensional refs than the rank of dst
|
|
expects. */
|
|
assert (dst_cur_dim == GFC_DESCRIPTOR_RANK (dst));
|
|
}
|
|
break;
|
|
default:
|
|
caf_internal_error (unknownreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
src_size = riter->item_size;
|
|
riter = riter->next;
|
|
}
|
|
if (size == 0 || src_size == 0)
|
|
return;
|
|
/* Postcondition:
|
|
- size contains the number of elements to store in the destination array,
|
|
- src_size gives the size in bytes of each item in the destination array.
|
|
*/
|
|
|
|
if (realloc_needed)
|
|
{
|
|
if (!array_extent_fixed)
|
|
{
|
|
assert (size == 1);
|
|
/* This can happen only, when the result is scalar. */
|
|
for (dst_cur_dim = 0; dst_cur_dim < dst_rank; ++dst_cur_dim)
|
|
GFC_DIMENSION_SET (dst->dim[dst_cur_dim], 1, 1, 1);
|
|
}
|
|
|
|
GFC_DESCRIPTOR_DATA (dst) = malloc (size * GFC_DESCRIPTOR_SIZE (dst));
|
|
if (unlikely (GFC_DESCRIPTOR_DATA (dst) == NULL))
|
|
{
|
|
caf_internal_error (cannotallocdst, stat, NULL, 0);
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* Reset the token. */
|
|
single_token = TOKEN (token);
|
|
memptr = single_token->memptr;
|
|
src = single_token->desc;
|
|
memset(dst_index, 0, sizeof (dst_index));
|
|
i = 0;
|
|
get_for_ref (refs, &i, dst_index, single_token, dst, src,
|
|
GFC_DESCRIPTOR_DATA (dst), memptr, dst_kind, src_kind, 0, 0,
|
|
1, stat);
|
|
}
|
|
|
|
|
|
static void
|
|
send_by_ref (caf_reference_t *ref, size_t *i, size_t *src_index,
|
|
caf_single_token_t single_token, gfc_descriptor_t *dst,
|
|
gfc_descriptor_t *src, void *ds, void *sr,
|
|
int dst_kind, int src_kind, size_t dst_dim, size_t src_dim,
|
|
size_t num, size_t size, int *stat)
|
|
{
|
|
const char vecrefunknownkind[] = "libcaf_single::caf_send_by_ref(): "
|
|
"unknown kind in vector-ref.\n";
|
|
ptrdiff_t extent_dst = 1, array_offset_dst = 0, stride_dst;
|
|
const size_t src_rank = GFC_DESCRIPTOR_RANK (src);
|
|
|
|
if (unlikely (ref == NULL))
|
|
/* May be we should issue an error here, because this case should not
|
|
occur. */
|
|
return;
|
|
|
|
if (ref->next == NULL)
|
|
{
|
|
size_t src_size = GFC_DESCRIPTOR_SIZE (src);
|
|
ptrdiff_t array_offset_src = 0;;
|
|
int dst_type = -1;
|
|
|
|
switch (ref->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (ref->u.c.caf_token_offset > 0)
|
|
{
|
|
if (*(void**)(ds + ref->u.c.offset) == NULL)
|
|
{
|
|
/* Create a scalar temporary array descriptor. */
|
|
gfc_descriptor_t static_dst;
|
|
GFC_DESCRIPTOR_DATA (&static_dst) = NULL;
|
|
GFC_DESCRIPTOR_DTYPE (&static_dst)
|
|
= GFC_DESCRIPTOR_DTYPE (src);
|
|
/* The component can be allocated now, because it is a
|
|
scalar. */
|
|
_lfortran_caf_register (ref->item_size,
|
|
CAF_REGTYPE_COARRAY_ALLOC,
|
|
ds + ref->u.c.caf_token_offset,
|
|
&static_dst, stat, NULL, 0);
|
|
single_token = *(caf_single_token_t *)
|
|
(ds + ref->u.c.caf_token_offset);
|
|
/* In case of an error in allocation return. When stat is
|
|
NULL, then register_component() terminates on error. */
|
|
if (stat != NULL && *stat)
|
|
return;
|
|
/* Publish the allocated memory. */
|
|
*((void **)(ds + ref->u.c.offset))
|
|
= GFC_DESCRIPTOR_DATA (&static_dst);
|
|
ds = GFC_DESCRIPTOR_DATA (&static_dst);
|
|
/* Set the type from the src. */
|
|
dst_type = GFC_DESCRIPTOR_TYPE (src);
|
|
}
|
|
else
|
|
{
|
|
single_token = *(caf_single_token_t *)
|
|
(ds + ref->u.c.caf_token_offset);
|
|
dst = single_token->desc;
|
|
if (dst)
|
|
{
|
|
ds = GFC_DESCRIPTOR_DATA (dst);
|
|
dst_type = GFC_DESCRIPTOR_TYPE (dst);
|
|
}
|
|
else
|
|
{
|
|
/* When no destination descriptor is present, assume that
|
|
source and dest type are identical. */
|
|
dst_type = GFC_DESCRIPTOR_TYPE (src);
|
|
ds = *(void **)(ds + ref->u.c.offset);
|
|
}
|
|
}
|
|
copy_data (ds, sr, dst_type, GFC_DESCRIPTOR_TYPE (src),
|
|
dst_kind, src_kind, ref->item_size, src_size, 1, stat);
|
|
}
|
|
else
|
|
copy_data (ds + ref->u.c.offset, sr,
|
|
dst != NULL ? GFC_DESCRIPTOR_TYPE (dst)
|
|
: GFC_DESCRIPTOR_TYPE (src),
|
|
GFC_DESCRIPTOR_TYPE (src),
|
|
dst_kind, src_kind, ref->item_size, src_size, 1, stat);
|
|
++(*i);
|
|
return;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
dst_type = ref->u.a.static_array_type;
|
|
/* Intentionally fall through. */
|
|
case CAF_REF_ARRAY:
|
|
{
|
|
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
if (src_rank > 0)
|
|
{
|
|
size_t d;
|
|
for (d = 0; d < src_rank; ++d)
|
|
array_offset_src += src_index[d];
|
|
copy_data (ds, sr + array_offset_src * ref->item_size,
|
|
dst_type == -1 ? GFC_DESCRIPTOR_TYPE (dst)
|
|
: dst_type,
|
|
GFC_DESCRIPTOR_TYPE (src), dst_kind, src_kind,
|
|
ref->item_size, src_size, num, stat);
|
|
}
|
|
else
|
|
copy_data (ds, sr,
|
|
dst_type == -1 ? GFC_DESCRIPTOR_TYPE (dst)
|
|
: dst_type,
|
|
GFC_DESCRIPTOR_TYPE (src), dst_kind, src_kind,
|
|
ref->item_size, src_size, num, stat);
|
|
*i += num;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
}
|
|
|
|
switch (ref->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (ref->u.c.caf_token_offset > 0)
|
|
{
|
|
if (*(void**)(ds + ref->u.c.offset) == NULL)
|
|
{
|
|
size_t d;
|
|
/* This component refs an unallocated array. Non-arrays are
|
|
caught in the if (!ref->next) above. */
|
|
dst = (gfc_descriptor_t *)(ds + ref->u.c.offset);
|
|
/* Assume that the rank and the dimensions fit for copying src
|
|
to dst. */
|
|
GFC_DESCRIPTOR_DTYPE (dst) = GFC_DESCRIPTOR_DTYPE (src);
|
|
dst->offset = 0;
|
|
stride_dst = 1;
|
|
for (d = 0; d < src_rank; ++d)
|
|
{
|
|
extent_dst = GFC_DIMENSION_EXTENT (src->dim[d]);
|
|
GFC_DIMENSION_LBOUND (dst->dim[d]) = 0;
|
|
GFC_DIMENSION_UBOUND (dst->dim[d]) = extent_dst - 1;
|
|
GFC_DIMENSION_STRIDE (dst->dim[d]) = stride_dst;
|
|
stride_dst *= extent_dst;
|
|
}
|
|
/* Null the data-pointer to make register_component allocate
|
|
its own memory. */
|
|
GFC_DESCRIPTOR_DATA (dst) = NULL;
|
|
|
|
/* The size of the array is given by size. */
|
|
_lfortran_caf_register (size * ref->item_size,
|
|
CAF_REGTYPE_COARRAY_ALLOC,
|
|
ds + ref->u.c.caf_token_offset,
|
|
dst, stat, NULL, 0);
|
|
/* In case of an error in allocation return. When stat is
|
|
NULL, then register_component() terminates on error. */
|
|
if (stat != NULL && *stat)
|
|
return;
|
|
}
|
|
single_token = *(caf_single_token_t*)(ds + ref->u.c.caf_token_offset);
|
|
send_by_ref (ref->next, i, src_index, single_token,
|
|
single_token->desc, src, ds + ref->u.c.offset, sr,
|
|
dst_kind, src_kind, 0, src_dim, 1, size, stat);
|
|
}
|
|
else
|
|
send_by_ref (ref->next, i, src_index, single_token,
|
|
(gfc_descriptor_t *)(ds + ref->u.c.offset), src,
|
|
ds + ref->u.c.offset, sr, dst_kind, src_kind, 0, src_dim,
|
|
1, size, stat);
|
|
return;
|
|
case CAF_REF_ARRAY:
|
|
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
send_by_ref (ref->next, i, src_index, single_token,
|
|
(gfc_descriptor_t *)ds, src, ds, sr, dst_kind, src_kind,
|
|
0, src_dim, 1, size, stat);
|
|
return;
|
|
}
|
|
/* Only when on the left most index switch the data pointer to
|
|
the array's data pointer. And only for non-static arrays. */
|
|
if (dst_dim == 0 && ref->type != CAF_REF_STATIC_ARRAY)
|
|
ds = GFC_DESCRIPTOR_DATA (dst);
|
|
switch (ref->u.a.mode[dst_dim])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
{
|
|
size_t idx;
|
|
array_offset_dst = 0;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < ref->u.a.dim[dst_dim].v.nvec;
|
|
++idx)
|
|
{
|
|
#define KINDCASE(kind, type) case kind: \
|
|
array_offset_dst = (((index_type) \
|
|
((type *)ref->u.a.dim[dst_dim].v.vector)[idx]) \
|
|
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim])) \
|
|
* GFC_DIMENSION_STRIDE (dst->dim[dst_dim]); \
|
|
break
|
|
|
|
switch (ref->u.a.dim[dst_dim].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
|
|
send_by_ref (ref, i, src_index, single_token, dst, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_FULL:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_dst,
|
|
ref->u.a.dim[dst_dim].s.stride,
|
|
GFC_DIMENSION_LBOUND (dst->dim[dst_dim]),
|
|
GFC_DIMENSION_UBOUND (dst->dim[dst_dim]));
|
|
array_offset_dst = 0;
|
|
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
|
|
* ref->u.a.dim[dst_dim].s.stride;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < extent_dst;
|
|
++idx, array_offset_dst += stride_dst)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, dst, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_RANGE:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_dst,
|
|
ref->u.a.dim[dst_dim].s.stride,
|
|
ref->u.a.dim[dst_dim].s.start,
|
|
ref->u.a.dim[dst_dim].s.end);
|
|
array_offset_dst = ref->u.a.dim[dst_dim].s.start
|
|
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]);
|
|
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
|
|
* ref->u.a.dim[dst_dim].s.stride;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < extent_dst; ++idx)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, dst, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
array_offset_dst += stride_dst;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_SINGLE:
|
|
array_offset_dst = (ref->u.a.dim[dst_dim].s.start
|
|
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]))
|
|
* GFC_DIMENSION_STRIDE (dst->dim[dst_dim]);
|
|
send_by_ref (ref, i, src_index, single_token, dst, src, ds
|
|
+ array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim, 1,
|
|
size, stat);
|
|
return;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_dst,
|
|
ref->u.a.dim[dst_dim].s.stride,
|
|
ref->u.a.dim[dst_dim].s.start,
|
|
GFC_DIMENSION_UBOUND (dst->dim[dst_dim]));
|
|
array_offset_dst = ref->u.a.dim[dst_dim].s.start
|
|
- GFC_DIMENSION_LBOUND (dst->dim[dst_dim]);
|
|
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
|
|
* ref->u.a.dim[dst_dim].s.stride;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < extent_dst; ++idx)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, dst, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
array_offset_dst += stride_dst;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_OPEN_START:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_dst,
|
|
ref->u.a.dim[dst_dim].s.stride,
|
|
GFC_DIMENSION_LBOUND (dst->dim[dst_dim]),
|
|
ref->u.a.dim[dst_dim].s.end);
|
|
array_offset_dst = 0;
|
|
stride_dst = GFC_DIMENSION_STRIDE (dst->dim[dst_dim])
|
|
* ref->u.a.dim[dst_dim].s.stride;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < extent_dst; ++idx)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, dst, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
array_offset_dst += stride_dst;
|
|
}
|
|
return;
|
|
}
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
return;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
if (ref->u.a.mode[dst_dim] == CAF_ARR_REF_NONE)
|
|
{
|
|
send_by_ref (ref->next, i, src_index, single_token, NULL,
|
|
src, ds, sr, dst_kind, src_kind,
|
|
0, src_dim, 1, size, stat);
|
|
return;
|
|
}
|
|
switch (ref->u.a.mode[dst_dim])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
{
|
|
size_t idx;
|
|
array_offset_dst = 0;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < ref->u.a.dim[dst_dim].v.nvec;
|
|
++idx)
|
|
{
|
|
#define KINDCASE(kind, type) case kind: \
|
|
array_offset_dst = ((type *)ref->u.a.dim[dst_dim].v.vector)[idx]; \
|
|
break
|
|
|
|
switch (ref->u.a.dim[dst_dim].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
|
|
send_by_ref (ref, i, src_index, single_token, NULL, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_FULL:
|
|
src_index[src_dim] = 0;
|
|
for (array_offset_dst = 0 ;
|
|
array_offset_dst <= ref->u.a.dim[dst_dim].s.end;
|
|
array_offset_dst += ref->u.a.dim[dst_dim].s.stride)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, NULL, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
}
|
|
return;
|
|
case CAF_ARR_REF_RANGE:
|
|
{
|
|
index_type idx;
|
|
COMPUTE_NUM_ITEMS (extent_dst,
|
|
ref->u.a.dim[dst_dim].s.stride,
|
|
ref->u.a.dim[dst_dim].s.start,
|
|
ref->u.a.dim[dst_dim].s.end);
|
|
array_offset_dst = ref->u.a.dim[dst_dim].s.start;
|
|
src_index[src_dim] = 0;
|
|
for (idx = 0; idx < extent_dst; ++idx)
|
|
{
|
|
send_by_ref (ref, i, src_index, single_token, NULL, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim + 1,
|
|
1, size, stat);
|
|
if (src_rank > 0)
|
|
src_index[src_dim]
|
|
+= GFC_DIMENSION_STRIDE (src->dim[src_dim]);
|
|
array_offset_dst += ref->u.a.dim[dst_dim].s.stride;
|
|
}
|
|
return;
|
|
}
|
|
case CAF_ARR_REF_SINGLE:
|
|
array_offset_dst = ref->u.a.dim[dst_dim].s.start;
|
|
send_by_ref (ref, i, src_index, single_token, NULL, src,
|
|
ds + array_offset_dst * ref->item_size, sr,
|
|
dst_kind, src_kind, dst_dim + 1, src_dim, 1,
|
|
size, stat);
|
|
return;
|
|
/* The OPEN_* are mapped to a RANGE and therefore can not occur. */
|
|
case CAF_ARR_REF_OPEN_END:
|
|
case CAF_ARR_REF_OPEN_START:
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
return;
|
|
default:
|
|
caf_runtime_error (unreachable);
|
|
}
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_send_by_ref (caf_token_t token,
|
|
int image_index __attribute__ ((unused)),
|
|
gfc_descriptor_t *src, caf_reference_t *refs,
|
|
int dst_kind, int src_kind,
|
|
bool may_require_tmp __attribute__ ((unused)),
|
|
bool dst_reallocatable, int *stat)
|
|
{
|
|
const char vecrefunknownkind[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown kind in vector-ref.\n";
|
|
const char unknownreftype[] = "libcaf_single::caf_send_by_ref(): "
|
|
"unknown reference type.\n";
|
|
const char unknownarrreftype[] = "libcaf_single::caf_send_by_ref(): "
|
|
"unknown array reference type.\n";
|
|
const char rankoutofrange[] = "libcaf_single::caf_send_by_ref(): "
|
|
"rank out of range.\n";
|
|
const char realloconinnerref[] = "libcaf_single::caf_send_by_ref(): "
|
|
"reallocation of array followed by component ref not allowed.\n";
|
|
const char cannotallocdst[] = "libcaf_single::caf_send_by_ref(): "
|
|
"can not allocate memory.\n";
|
|
const char nonallocextentmismatch[] = "libcaf_single::caf_send_by_ref(): "
|
|
"extent of non-allocatable array mismatch.\n";
|
|
const char innercompref[] = "libcaf_single::caf_send_by_ref(): "
|
|
"inner unallocated component detected.\n";
|
|
size_t size, i;
|
|
size_t dst_index[GFC_MAX_DIMENSIONS];
|
|
int src_rank = GFC_DESCRIPTOR_RANK (src);
|
|
int src_cur_dim = 0;
|
|
size_t src_size = 0;
|
|
caf_single_token_t single_token = TOKEN (token);
|
|
void *memptr = single_token->memptr;
|
|
gfc_descriptor_t *dst = single_token->desc;
|
|
caf_reference_t *riter = refs;
|
|
long delta;
|
|
bool extent_mismatch;
|
|
/* Note that the component is not allocated yet. */
|
|
index_type new_component_idx = -1;
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
|
|
/* Compute the size of the result. In the beginning size just counts the
|
|
number of elements. */
|
|
size = 1;
|
|
while (riter)
|
|
{
|
|
switch (riter->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (unlikely (new_component_idx != -1))
|
|
{
|
|
/* Allocating a component in the middle of a component ref is not
|
|
support. We don't know the type to allocate. */
|
|
caf_internal_error (innercompref, stat, NULL, 0);
|
|
return;
|
|
}
|
|
if (riter->u.c.caf_token_offset > 0)
|
|
{
|
|
/* Check whether the allocatable component is zero, then no
|
|
token is present, too. The token's pointer is not cleared
|
|
when the structure is initialized. */
|
|
if (*(void**)(memptr + riter->u.c.offset) == NULL)
|
|
{
|
|
/* This component is not yet allocated. Check that it is
|
|
allocatable here. */
|
|
if (!dst_reallocatable)
|
|
{
|
|
caf_internal_error (cannotallocdst, stat, NULL, 0);
|
|
return;
|
|
}
|
|
single_token = NULL;
|
|
memptr = NULL;
|
|
dst = NULL;
|
|
break;
|
|
}
|
|
single_token = *(caf_single_token_t*)
|
|
(memptr + riter->u.c.caf_token_offset);
|
|
memptr += riter->u.c.offset;
|
|
dst = single_token->desc;
|
|
}
|
|
else
|
|
{
|
|
/* Regular component. */
|
|
memptr += riter->u.c.offset;
|
|
dst = (gfc_descriptor_t *)memptr;
|
|
}
|
|
break;
|
|
case CAF_REF_ARRAY:
|
|
if (dst != NULL)
|
|
memptr = GFC_DESCRIPTOR_DATA (dst);
|
|
else
|
|
dst = src;
|
|
/* When the dst array needs to be allocated, then look at the
|
|
extent of the source array in the dimension dst_cur_dim. */
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
delta = riter->u.a.dim[i].v.nvec;
|
|
#define KINDCASE(kind, type) case kind: \
|
|
memptr += (((index_type) \
|
|
((type *)riter->u.a.dim[i].v.vector)[0]) \
|
|
- GFC_DIMENSION_LBOUND (dst->dim[i])) \
|
|
* GFC_DIMENSION_STRIDE (dst->dim[i]) \
|
|
* riter->item_size; \
|
|
break
|
|
|
|
switch (riter->u.a.dim[i].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
if (dst)
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (dst->dim[i]),
|
|
GFC_DIMENSION_UBOUND (dst->dim[i]));
|
|
else
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[src_cur_dim]),
|
|
GFC_DIMENSION_UBOUND (src->dim[src_cur_dim]));
|
|
break;
|
|
case CAF_ARR_REF_RANGE:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
riter->u.a.dim[i].s.end);
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- dst->dim[i].lower_bound)
|
|
* GFC_DIMENSION_STRIDE (dst->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_SINGLE:
|
|
delta = 1;
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- dst->dim[i].lower_bound)
|
|
* GFC_DIMENSION_STRIDE (dst->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
if (dst)
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
GFC_DIMENSION_UBOUND (dst->dim[i]));
|
|
else
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
GFC_DIMENSION_UBOUND (src->dim[src_cur_dim]));
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- dst->dim[i].lower_bound)
|
|
* GFC_DIMENSION_STRIDE (dst->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_START:
|
|
if (dst)
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (dst->dim[i]),
|
|
riter->u.a.dim[i].s.end);
|
|
else
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
GFC_DIMENSION_LBOUND (src->dim[src_cur_dim]),
|
|
riter->u.a.dim[i].s.end);
|
|
/* The memptr stays unchanged when ref'ing the first element
|
|
in a dimension. */
|
|
break;
|
|
default:
|
|
caf_internal_error (unknownarrreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
|
|
if (delta <= 0)
|
|
return;
|
|
/* Check the various properties of the source array.
|
|
When src is an array. */
|
|
if (delta > 1 && src_rank > 0)
|
|
{
|
|
/* Check that src_cur_dim is valid for src. Can be
|
|
superceeded only by scalar data. */
|
|
if (src_cur_dim >= src_rank)
|
|
{
|
|
caf_internal_error (rankoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
/* Do further checks, when the source is not scalar. */
|
|
else
|
|
{
|
|
/* When the realloc is required, then no extent may have
|
|
been set. */
|
|
extent_mismatch = memptr == NULL
|
|
|| (dst
|
|
&& GFC_DESCRIPTOR_EXTENT (dst, src_cur_dim)
|
|
!= delta);
|
|
/* When it already known, that a realloc is needed or
|
|
the extent does not match the needed one. */
|
|
if (extent_mismatch)
|
|
{
|
|
/* Check whether dst is reallocatable. */
|
|
if (unlikely (!dst_reallocatable))
|
|
{
|
|
caf_internal_error (nonallocextentmismatch, stat,
|
|
NULL, 0, delta,
|
|
GFC_DESCRIPTOR_EXTENT (dst,
|
|
src_cur_dim));
|
|
return;
|
|
}
|
|
/* Report error on allocatable but missing inner
|
|
ref. */
|
|
else if (riter->next != NULL)
|
|
{
|
|
caf_internal_error (realloconinnerref, stat, NULL,
|
|
0);
|
|
return;
|
|
}
|
|
}
|
|
/* Only change the extent when it does not match. This is
|
|
to prevent resetting given array bounds. */
|
|
if (extent_mismatch)
|
|
GFC_DIMENSION_SET (dst->dim[src_cur_dim], 1, delta,
|
|
size);
|
|
}
|
|
/* Increase the dim-counter of the src only when the extent
|
|
matches. */
|
|
if (src_cur_dim < src_rank
|
|
&& GFC_DESCRIPTOR_EXTENT (src, src_cur_dim) == delta)
|
|
++src_cur_dim;
|
|
}
|
|
size *= (index_type)delta;
|
|
}
|
|
break;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_VECTOR:
|
|
delta = riter->u.a.dim[i].v.nvec;
|
|
#define KINDCASE(kind, type) case kind: \
|
|
memptr += ((type *)riter->u.a.dim[i].v.vector)[0] \
|
|
* riter->item_size; \
|
|
break
|
|
|
|
switch (riter->u.a.dim[i].v.kind)
|
|
{
|
|
KINDCASE (1, GFC_INTEGER_1);
|
|
KINDCASE (2, GFC_INTEGER_2);
|
|
KINDCASE (4, GFC_INTEGER_4);
|
|
#ifdef HAVE_GFC_INTEGER_8
|
|
KINDCASE (8, GFC_INTEGER_8);
|
|
#endif
|
|
#ifdef HAVE_GFC_INTEGER_16
|
|
KINDCASE (16, GFC_INTEGER_16);
|
|
#endif
|
|
default:
|
|
caf_internal_error (vecrefunknownkind, stat, NULL, 0);
|
|
return;
|
|
}
|
|
#undef KINDCASE
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
delta = riter->u.a.dim[i].s.end / riter->u.a.dim[i].s.stride
|
|
+ 1;
|
|
/* The memptr stays unchanged when ref'ing the first element
|
|
in a dimension. */
|
|
break;
|
|
case CAF_ARR_REF_RANGE:
|
|
COMPUTE_NUM_ITEMS (delta,
|
|
riter->u.a.dim[i].s.stride,
|
|
riter->u.a.dim[i].s.start,
|
|
riter->u.a.dim[i].s.end);
|
|
memptr += riter->u.a.dim[i].s.start
|
|
* riter->u.a.dim[i].s.stride
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_SINGLE:
|
|
delta = 1;
|
|
memptr += riter->u.a.dim[i].s.start
|
|
* riter->u.a.dim[i].s.stride
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_OPEN_END:
|
|
/* This and OPEN_START are mapped to a RANGE and therefore
|
|
can not occur here. */
|
|
case CAF_ARR_REF_OPEN_START:
|
|
default:
|
|
caf_internal_error (unknownarrreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
if (delta <= 0)
|
|
return;
|
|
/* Check the various properties of the source array.
|
|
Only when the source array is not scalar examine its
|
|
properties. */
|
|
if (delta > 1 && src_rank > 0)
|
|
{
|
|
/* Check that src_cur_dim is valid for src. Can be
|
|
superceeded only by scalar data. */
|
|
if (src_cur_dim >= src_rank)
|
|
{
|
|
caf_internal_error (rankoutofrange, stat, NULL, 0);
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
/* We will not be able to realloc the dst, because that's
|
|
a fixed size array. */
|
|
extent_mismatch = GFC_DESCRIPTOR_EXTENT (src, src_cur_dim)
|
|
!= delta;
|
|
/* When the extent does not match the needed one we can
|
|
only stop here. */
|
|
if (extent_mismatch)
|
|
{
|
|
caf_internal_error (nonallocextentmismatch, stat,
|
|
NULL, 0, delta,
|
|
GFC_DESCRIPTOR_EXTENT (src,
|
|
src_cur_dim));
|
|
return;
|
|
}
|
|
}
|
|
++src_cur_dim;
|
|
}
|
|
size *= (index_type)delta;
|
|
}
|
|
break;
|
|
default:
|
|
caf_internal_error (unknownreftype, stat, NULL, 0);
|
|
return;
|
|
}
|
|
src_size = riter->item_size;
|
|
riter = riter->next;
|
|
}
|
|
if (size == 0 || src_size == 0)
|
|
return;
|
|
/* Postcondition:
|
|
- size contains the number of elements to store in the destination array,
|
|
- src_size gives the size in bytes of each item in the destination array.
|
|
*/
|
|
|
|
/* Reset the token. */
|
|
single_token = TOKEN (token);
|
|
memptr = single_token->memptr;
|
|
dst = single_token->desc;
|
|
memset (dst_index, 0, sizeof (dst_index));
|
|
i = 0;
|
|
send_by_ref (refs, &i, dst_index, single_token, dst, src,
|
|
memptr, GFC_DESCRIPTOR_DATA (src), dst_kind, src_kind, 0, 0,
|
|
1, size, stat);
|
|
assert (i == size);
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_sendget_by_ref (caf_token_t dst_token, int dst_image_index,
|
|
caf_reference_t *dst_refs, caf_token_t src_token,
|
|
int src_image_index,
|
|
caf_reference_t *src_refs, int dst_kind,
|
|
int src_kind, bool may_require_tmp, int *dst_stat,
|
|
int *src_stat)
|
|
{
|
|
gfc_array_void temp;
|
|
|
|
_lfortran_caf_get_by_ref (src_token, src_image_index, &temp, src_refs,
|
|
dst_kind, src_kind, may_require_tmp, true,
|
|
src_stat);
|
|
|
|
if (src_stat && *src_stat != 0)
|
|
return;
|
|
|
|
_lfortran_caf_send_by_ref (dst_token, dst_image_index, &temp, dst_refs,
|
|
dst_kind, src_kind, may_require_tmp, true,
|
|
dst_stat);
|
|
if (GFC_DESCRIPTOR_DATA (&temp))
|
|
free (GFC_DESCRIPTOR_DATA (&temp));
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_atomic_define (caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
void *value, int *stat,
|
|
int type __attribute__ ((unused)), int kind)
|
|
{
|
|
assert(kind == 4);
|
|
|
|
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
|
|
|
|
__atomic_store (atom, (uint32_t *) value, __ATOMIC_RELAXED);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_atomic_ref (caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
void *value, int *stat,
|
|
int type __attribute__ ((unused)), int kind)
|
|
{
|
|
assert(kind == 4);
|
|
|
|
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
|
|
|
|
__atomic_load (atom, (uint32_t *) value, __ATOMIC_RELAXED);
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_atomic_cas (caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
void *old, void *compare, void *new_val, int *stat,
|
|
int type __attribute__ ((unused)), int kind)
|
|
{
|
|
assert(kind == 4);
|
|
|
|
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
|
|
|
|
*(uint32_t *) old = *(uint32_t *) compare;
|
|
(void) __atomic_compare_exchange_n (atom, (uint32_t *) old,
|
|
*(uint32_t *) new_val, false,
|
|
__ATOMIC_RELAXED, __ATOMIC_RELAXED);
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_atomic_op (int op, caf_token_t token, size_t offset,
|
|
int image_index __attribute__ ((unused)),
|
|
void *value, void *old, int *stat,
|
|
int type __attribute__ ((unused)), int kind)
|
|
{
|
|
assert(kind == 4);
|
|
|
|
uint32_t res;
|
|
uint32_t *atom = (uint32_t *) ((char *) MEMTOK (token) + offset);
|
|
|
|
switch (op)
|
|
{
|
|
case GFC_CAF_ATOMIC_ADD:
|
|
res = __atomic_fetch_add (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
|
|
break;
|
|
case GFC_CAF_ATOMIC_AND:
|
|
res = __atomic_fetch_and (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
|
|
break;
|
|
case GFC_CAF_ATOMIC_OR:
|
|
res = __atomic_fetch_or (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
|
|
break;
|
|
case GFC_CAF_ATOMIC_XOR:
|
|
res = __atomic_fetch_xor (atom, *(uint32_t *) value, __ATOMIC_RELAXED);
|
|
break;
|
|
default:
|
|
__builtin_unreachable();
|
|
}
|
|
|
|
if (old)
|
|
*(uint32_t *) old = res;
|
|
|
|
if (stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_event_post (caf_token_t token, size_t index,
|
|
int image_index __attribute__ ((unused)),
|
|
int *stat, char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
uint32_t value = 1;
|
|
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
|
|
* sizeof (uint32_t));
|
|
__atomic_fetch_add (event, (uint32_t) value, __ATOMIC_RELAXED);
|
|
|
|
if(stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_event_wait (caf_token_t token, size_t index,
|
|
int until_count, int *stat,
|
|
char *errmsg __attribute__ ((unused)),
|
|
int errmsg_len __attribute__ ((unused)))
|
|
{
|
|
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
|
|
* sizeof (uint32_t));
|
|
uint32_t value = (uint32_t)-until_count;
|
|
__atomic_fetch_add (event, (uint32_t) value, __ATOMIC_RELAXED);
|
|
|
|
if(stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_event_query (caf_token_t token, size_t index,
|
|
int image_index __attribute__ ((unused)),
|
|
int *count, int *stat)
|
|
{
|
|
uint32_t *event = (uint32_t *) ((char *) MEMTOK (token) + index
|
|
* sizeof (uint32_t));
|
|
__atomic_load (event, (uint32_t *) count, __ATOMIC_RELAXED);
|
|
|
|
if(stat)
|
|
*stat = 0;
|
|
}
|
|
|
|
void
|
|
_lfortran_caf_lock (caf_token_t token, size_t index,
|
|
int image_index __attribute__ ((unused)),
|
|
int *aquired_lock, int *stat, char *errmsg, int errmsg_len)
|
|
{
|
|
const char *msg = _("Already locked");
|
|
bool *lock = &((bool *) MEMTOK (token))[index];
|
|
|
|
if (!*lock)
|
|
{
|
|
*lock = true;
|
|
if (aquired_lock)
|
|
*aquired_lock = (int) true;
|
|
if (stat)
|
|
*stat = 0;
|
|
return;
|
|
}
|
|
|
|
if (aquired_lock)
|
|
{
|
|
*aquired_lock = (int) false;
|
|
if (stat)
|
|
*stat = 0;
|
|
return;
|
|
}
|
|
|
|
|
|
if (stat)
|
|
{
|
|
*stat = 1;
|
|
if (errmsg_len > 0)
|
|
{
|
|
int len = ((int) strlen (msg) > errmsg_len) ? errmsg_len
|
|
: (int) strlen (msg);
|
|
memcpy (errmsg, msg, len);
|
|
if (errmsg_len > len)
|
|
memset (&errmsg[len], ' ', errmsg_len-len);
|
|
}
|
|
return;
|
|
}
|
|
_lfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
|
|
}
|
|
|
|
|
|
void
|
|
_lfortran_caf_unlock (caf_token_t token, size_t index,
|
|
int image_index __attribute__ ((unused)),
|
|
int *stat, char *errmsg, int errmsg_len)
|
|
{
|
|
const char *msg = _("Variable is not locked");
|
|
bool *lock = &((bool *) MEMTOK (token))[index];
|
|
|
|
if (*lock)
|
|
{
|
|
*lock = false;
|
|
if (stat)
|
|
*stat = 0;
|
|
return;
|
|
}
|
|
|
|
if (stat)
|
|
{
|
|
*stat = 1;
|
|
if (errmsg_len > 0)
|
|
{
|
|
int len = ((int) strlen (msg) > errmsg_len) ? errmsg_len
|
|
: (int) strlen (msg);
|
|
memcpy (errmsg, msg, len);
|
|
if (errmsg_len > len)
|
|
memset (&errmsg[len], ' ', errmsg_len-len);
|
|
}
|
|
return;
|
|
}
|
|
_lfortran_caf_error_stop_str (msg, (int32_t) strlen (msg));
|
|
}
|
|
|
|
int
|
|
_lfortran_caf_is_present (caf_token_t token,
|
|
int image_index __attribute__ ((unused)),
|
|
caf_reference_t *refs)
|
|
{
|
|
const char arraddressingnotallowed[] = "libcaf_single::caf_is_present(): "
|
|
"only scalar indexes allowed.\n";
|
|
const char unknownreftype[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown reference type.\n";
|
|
const char unknownarrreftype[] = "libcaf_single::caf_get_by_ref(): "
|
|
"unknown array reference type.\n";
|
|
size_t i;
|
|
caf_single_token_t single_token = TOKEN (token);
|
|
void *memptr = single_token->memptr;
|
|
gfc_descriptor_t *src = single_token->desc;
|
|
caf_reference_t *riter = refs;
|
|
|
|
while (riter)
|
|
{
|
|
switch (riter->type)
|
|
{
|
|
case CAF_REF_COMPONENT:
|
|
if (riter->u.c.caf_token_offset)
|
|
{
|
|
single_token = *(caf_single_token_t*)
|
|
(memptr + riter->u.c.caf_token_offset);
|
|
memptr = single_token->memptr;
|
|
src = single_token->desc;
|
|
}
|
|
else
|
|
{
|
|
memptr += riter->u.c.offset;
|
|
src = (gfc_descriptor_t *)memptr;
|
|
}
|
|
break;
|
|
case CAF_REF_ARRAY:
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_SINGLE:
|
|
memptr += (riter->u.a.dim[i].s.start
|
|
- GFC_DIMENSION_LBOUND (src->dim[i]))
|
|
* GFC_DIMENSION_STRIDE (src->dim[i])
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
/* A full array ref is allowed on the last reference only. */
|
|
if (riter->next == NULL)
|
|
break;
|
|
/* else fall through reporting an error. */
|
|
/* FALLTHROUGH */
|
|
case CAF_ARR_REF_VECTOR:
|
|
case CAF_ARR_REF_RANGE:
|
|
case CAF_ARR_REF_OPEN_END:
|
|
case CAF_ARR_REF_OPEN_START:
|
|
caf_internal_error (arraddressingnotallowed, 0, NULL, 0);
|
|
return 0;
|
|
default:
|
|
caf_internal_error (unknownarrreftype, 0, NULL, 0);
|
|
return 0;
|
|
}
|
|
}
|
|
break;
|
|
case CAF_REF_STATIC_ARRAY:
|
|
for (i = 0; riter->u.a.mode[i] != CAF_ARR_REF_NONE; ++i)
|
|
{
|
|
switch (riter->u.a.mode[i])
|
|
{
|
|
case CAF_ARR_REF_SINGLE:
|
|
memptr += riter->u.a.dim[i].s.start
|
|
* riter->u.a.dim[i].s.stride
|
|
* riter->item_size;
|
|
break;
|
|
case CAF_ARR_REF_FULL:
|
|
/* A full array ref is allowed on the last reference only. */
|
|
if (riter->next == NULL)
|
|
break;
|
|
/* else fall through reporting an error. */
|
|
/* FALLTHROUGH */
|
|
case CAF_ARR_REF_VECTOR:
|
|
case CAF_ARR_REF_RANGE:
|
|
case CAF_ARR_REF_OPEN_END:
|
|
case CAF_ARR_REF_OPEN_START:
|
|
caf_internal_error (arraddressingnotallowed, 0, NULL, 0);
|
|
return 0;
|
|
default:
|
|
caf_internal_error (unknownarrreftype, 0, NULL, 0);
|
|
return 0;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
caf_internal_error (unknownreftype, 0, NULL, 0);
|
|
return 0;
|
|
}
|
|
riter = riter->next;
|
|
}
|
|
return memptr != NULL;
|
|
}
|