2193ad7fbf
This started by moving procresize from C to Go so that we can pass the right type to the memory allocator when allocating a p, which forced the gomaxprocs variable to move from C to Go, and everything else followed from that. Reviewed-on: https://go-review.googlesource.com/34916 From-SVN: r244236
545 lines
19 KiB
C
545 lines
19 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Memory allocator, based on tcmalloc.
|
|
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
|
|
|
|
// The main allocator works in runs of pages.
|
|
// Small allocation sizes (up to and including 32 kB) are
|
|
// rounded to one of about 100 size classes, each of which
|
|
// has its own free list of objects of exactly that size.
|
|
// Any free page of memory can be split into a set of objects
|
|
// of one size class, which are then managed using free list
|
|
// allocators.
|
|
//
|
|
// The allocator's data structures are:
|
|
//
|
|
// FixAlloc: a free-list allocator for fixed-size objects,
|
|
// used to manage storage used by the allocator.
|
|
// MHeap: the malloc heap, managed at page (4096-byte) granularity.
|
|
// MSpan: a run of pages managed by the MHeap.
|
|
// MCentral: a shared free list for a given size class.
|
|
// MCache: a per-thread (in Go, per-P) cache for small objects.
|
|
// MStats: allocation statistics.
|
|
//
|
|
// Allocating a small object proceeds up a hierarchy of caches:
|
|
//
|
|
// 1. Round the size up to one of the small size classes
|
|
// and look in the corresponding MCache free list.
|
|
// If the list is not empty, allocate an object from it.
|
|
// This can all be done without acquiring a lock.
|
|
//
|
|
// 2. If the MCache free list is empty, replenish it by
|
|
// taking a bunch of objects from the MCentral free list.
|
|
// Moving a bunch amortizes the cost of acquiring the MCentral lock.
|
|
//
|
|
// 3. If the MCentral free list is empty, replenish it by
|
|
// allocating a run of pages from the MHeap and then
|
|
// chopping that memory into a objects of the given size.
|
|
// Allocating many objects amortizes the cost of locking
|
|
// the heap.
|
|
//
|
|
// 4. If the MHeap is empty or has no page runs large enough,
|
|
// allocate a new group of pages (at least 1MB) from the
|
|
// operating system. Allocating a large run of pages
|
|
// amortizes the cost of talking to the operating system.
|
|
//
|
|
// Freeing a small object proceeds up the same hierarchy:
|
|
//
|
|
// 1. Look up the size class for the object and add it to
|
|
// the MCache free list.
|
|
//
|
|
// 2. If the MCache free list is too long or the MCache has
|
|
// too much memory, return some to the MCentral free lists.
|
|
//
|
|
// 3. If all the objects in a given span have returned to
|
|
// the MCentral list, return that span to the page heap.
|
|
//
|
|
// 4. If the heap has too much memory, return some to the
|
|
// operating system.
|
|
//
|
|
// TODO(rsc): Step 4 is not implemented.
|
|
//
|
|
// Allocating and freeing a large object uses the page heap
|
|
// directly, bypassing the MCache and MCentral free lists.
|
|
//
|
|
// The small objects on the MCache and MCentral free lists
|
|
// may or may not be zeroed. They are zeroed if and only if
|
|
// the second word of the object is zero. A span in the
|
|
// page heap is zeroed unless s->needzero is set. When a span
|
|
// is allocated to break into small objects, it is zeroed if needed
|
|
// and s->needzero is set. There are two main benefits to delaying the
|
|
// zeroing this way:
|
|
//
|
|
// 1. stack frames allocated from the small object lists
|
|
// or the page heap can avoid zeroing altogether.
|
|
// 2. the cost of zeroing when reusing a small object is
|
|
// charged to the mutator, not the garbage collector.
|
|
//
|
|
// This C code was written with an eye toward translating to Go
|
|
// in the future. Methods have the form Type_Method(Type *t, ...).
|
|
|
|
typedef struct MCentral MCentral;
|
|
typedef struct MHeap MHeap;
|
|
typedef struct mspan MSpan;
|
|
typedef struct mstats MStats;
|
|
typedef struct mlink MLink;
|
|
typedef struct mtypes MTypes;
|
|
typedef struct gcstats GCStats;
|
|
|
|
enum
|
|
{
|
|
PageShift = 13,
|
|
PageSize = 1<<PageShift,
|
|
PageMask = PageSize - 1,
|
|
};
|
|
typedef uintptr PageID; // address >> PageShift
|
|
|
|
enum
|
|
{
|
|
// Computed constant. The definition of MaxSmallSize and the
|
|
// algorithm in msize.c produce some number of different allocation
|
|
// size classes. _NumSizeClasses is that number. It's needed here
|
|
// because there are static arrays of this length; when msize runs its
|
|
// size choosing algorithm it double-checks that NumSizeClasses agrees.
|
|
// _NumSizeClasses is defined in runtime2.go as 67.
|
|
|
|
// Tunable constants.
|
|
MaxSmallSize = 32<<10,
|
|
|
|
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.goc.
|
|
TinySize = 16,
|
|
TinySizeClass = 2,
|
|
|
|
FixAllocChunk = 16<<10, // Chunk size for FixAlloc
|
|
MaxMHeapList = 1<<(20 - PageShift), // Maximum page length for fixed-size list in MHeap.
|
|
HeapAllocChunk = 1<<20, // Chunk size for heap growth
|
|
|
|
// Number of bits in page to span calculations (4k pages).
|
|
// On Windows 64-bit we limit the arena to 32GB or 35 bits (see below for reason).
|
|
// On other 64-bit platforms, we limit the arena to 128GB, or 37 bits.
|
|
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
|
|
#if __SIZEOF_POINTER__ == 8
|
|
#ifdef GOOS_windows
|
|
// Windows counts memory used by page table into committed memory
|
|
// of the process, so we can't reserve too much memory.
|
|
// See http://golang.org/issue/5402 and http://golang.org/issue/5236.
|
|
MHeapMap_Bits = 35 - PageShift,
|
|
#else
|
|
MHeapMap_Bits = 37 - PageShift,
|
|
#endif
|
|
#else
|
|
MHeapMap_Bits = 32 - PageShift,
|
|
#endif
|
|
};
|
|
|
|
// Maximum memory allocation size, a hint for callers.
|
|
// This must be a #define instead of an enum because it
|
|
// is so large.
|
|
#if __SIZEOF_POINTER__ == 8
|
|
#define MaxMem (1ULL<<(MHeapMap_Bits+PageShift)) /* 128 GB or 32 GB */
|
|
#else
|
|
#define MaxMem ((uintptr)-1)
|
|
#endif
|
|
// SysAlloc obtains a large chunk of zeroed memory from the
|
|
// operating system, typically on the order of a hundred kilobytes
|
|
// or a megabyte.
|
|
// NOTE: SysAlloc returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by SysAlloc.
|
|
//
|
|
// SysUnused notifies the operating system that the contents
|
|
// of the memory region are no longer needed and can be reused
|
|
// for other purposes.
|
|
// SysUsed notifies the operating system that the contents
|
|
// of the memory region are needed again.
|
|
//
|
|
// SysFree returns it unconditionally; this is only used if
|
|
// an out-of-memory error has been detected midway through
|
|
// an allocation. It is okay if SysFree is a no-op.
|
|
//
|
|
// SysReserve reserves address space without allocating memory.
|
|
// If the pointer passed to it is non-nil, the caller wants the
|
|
// reservation there, but SysReserve can still choose another
|
|
// location if that one is unavailable. On some systems and in some
|
|
// cases SysReserve will simply check that the address space is
|
|
// available and not actually reserve it. If SysReserve returns
|
|
// non-nil, it sets *reserved to true if the address space is
|
|
// reserved, false if it has merely been checked.
|
|
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by SysAlloc.
|
|
//
|
|
// SysMap maps previously reserved address space for use.
|
|
// The reserved argument is true if the address space was really
|
|
// reserved, not merely checked.
|
|
//
|
|
// SysFault marks a (already SysAlloc'd) region to fault
|
|
// if accessed. Used only for debugging the runtime.
|
|
|
|
void* runtime_SysAlloc(uintptr nbytes, uint64 *stat)
|
|
__asm__ (GOSYM_PREFIX "runtime.sysAlloc");
|
|
void runtime_SysFree(void *v, uintptr nbytes, uint64 *stat)
|
|
__asm__ (GOSYM_PREFIX "runtime.sysFree");
|
|
void runtime_SysUnused(void *v, uintptr nbytes);
|
|
void runtime_SysUsed(void *v, uintptr nbytes);
|
|
void runtime_SysMap(void *v, uintptr nbytes, bool reserved, uint64 *stat);
|
|
void* runtime_SysReserve(void *v, uintptr nbytes, bool *reserved);
|
|
void runtime_SysFault(void *v, uintptr nbytes);
|
|
|
|
// FixAlloc is a simple free-list allocator for fixed size objects.
|
|
// Malloc uses a FixAlloc wrapped around SysAlloc to manages its
|
|
// MCache and MSpan objects.
|
|
//
|
|
// Memory returned by FixAlloc_Alloc is not zeroed.
|
|
// The caller is responsible for locking around FixAlloc calls.
|
|
// Callers can keep state in the object but the first word is
|
|
// smashed by freeing and reallocating.
|
|
struct FixAlloc
|
|
{
|
|
uintptr size;
|
|
void (*first)(void *arg, byte *p); // called first time p is returned
|
|
void* arg;
|
|
MLink* list;
|
|
byte* chunk;
|
|
uint32 nchunk;
|
|
uintptr inuse; // in-use bytes now
|
|
uint64* stat;
|
|
};
|
|
|
|
void runtime_FixAlloc_Init(FixAlloc *f, uintptr size, void (*first)(void*, byte*), void *arg, uint64 *stat);
|
|
void* runtime_FixAlloc_Alloc(FixAlloc *f);
|
|
void runtime_FixAlloc_Free(FixAlloc *f, void *p);
|
|
|
|
extern MStats *mstats(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.getMstats");
|
|
void runtime_updatememstats(GCStats *stats)
|
|
__asm__ (GOSYM_PREFIX "runtime.updatememstats");
|
|
|
|
// Size classes. Computed and initialized by InitSizes.
|
|
//
|
|
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
|
|
// 1 <= sizeclass < _NumSizeClasses, for n.
|
|
// Size class 0 is reserved to mean "not small".
|
|
//
|
|
// class_to_size[i] = largest size in class i
|
|
// class_to_allocnpages[i] = number of pages to allocate when
|
|
// making new objects in class i
|
|
|
|
int32 runtime_SizeToClass(int32);
|
|
uintptr runtime_roundupsize(uintptr)
|
|
__asm__(GOSYM_PREFIX "runtime.roundupsize");
|
|
extern int32 runtime_class_to_size[_NumSizeClasses];
|
|
extern int32 runtime_class_to_allocnpages[_NumSizeClasses];
|
|
extern int8 runtime_size_to_class8[1024/8 + 1];
|
|
extern int8 runtime_size_to_class128[(MaxSmallSize-1024)/128 + 1];
|
|
extern void runtime_InitSizes(void);
|
|
|
|
|
|
typedef struct mcachelist MCacheList;
|
|
|
|
MSpan* runtime_MCache_Refill(MCache *c, int32 sizeclass);
|
|
void runtime_MCache_Free(MCache *c, MLink *p, int32 sizeclass, uintptr size);
|
|
void runtime_MCache_ReleaseAll(MCache *c);
|
|
|
|
// MTypes describes the types of blocks allocated within a span.
|
|
// The compression field describes the layout of the data.
|
|
//
|
|
// MTypes_Empty:
|
|
// All blocks are free, or no type information is available for
|
|
// allocated blocks.
|
|
// The data field has no meaning.
|
|
// MTypes_Single:
|
|
// The span contains just one block.
|
|
// The data field holds the type information.
|
|
// The sysalloc field has no meaning.
|
|
// MTypes_Words:
|
|
// The span contains multiple blocks.
|
|
// The data field points to an array of type [NumBlocks]uintptr,
|
|
// and each element of the array holds the type of the corresponding
|
|
// block.
|
|
// MTypes_Bytes:
|
|
// The span contains at most seven different types of blocks.
|
|
// The data field points to the following structure:
|
|
// struct {
|
|
// type [8]uintptr // type[0] is always 0
|
|
// index [NumBlocks]byte
|
|
// }
|
|
// The type of the i-th block is: data.type[data.index[i]]
|
|
enum
|
|
{
|
|
MTypes_Empty = 0,
|
|
MTypes_Single = 1,
|
|
MTypes_Words = 2,
|
|
MTypes_Bytes = 3,
|
|
};
|
|
|
|
enum
|
|
{
|
|
KindSpecialFinalizer = 1,
|
|
KindSpecialProfile = 2,
|
|
// Note: The finalizer special must be first because if we're freeing
|
|
// an object, a finalizer special will cause the freeing operation
|
|
// to abort, and we want to keep the other special records around
|
|
// if that happens.
|
|
};
|
|
|
|
typedef struct special Special;
|
|
|
|
// The described object has a finalizer set for it.
|
|
typedef struct SpecialFinalizer SpecialFinalizer;
|
|
struct SpecialFinalizer
|
|
{
|
|
Special;
|
|
FuncVal* fn;
|
|
const FuncType* ft;
|
|
const PtrType* ot;
|
|
};
|
|
|
|
// The described object is being heap profiled.
|
|
typedef struct bucket Bucket; // from mprof.go
|
|
typedef struct SpecialProfile SpecialProfile;
|
|
struct SpecialProfile
|
|
{
|
|
Special;
|
|
Bucket* b;
|
|
};
|
|
|
|
// An MSpan is a run of pages.
|
|
enum
|
|
{
|
|
MSpanInUse = 0,
|
|
MSpanFree,
|
|
MSpanListHead,
|
|
MSpanDead,
|
|
};
|
|
|
|
void runtime_MSpan_Init(MSpan *span, PageID start, uintptr npages);
|
|
void runtime_MSpan_EnsureSwept(MSpan *span);
|
|
bool runtime_MSpan_Sweep(MSpan *span);
|
|
|
|
// Every MSpan is in one doubly-linked list,
|
|
// either one of the MHeap's free lists or one of the
|
|
// MCentral's span lists. We use empty MSpan structures as list heads.
|
|
void runtime_MSpanList_Init(MSpan *list);
|
|
bool runtime_MSpanList_IsEmpty(MSpan *list);
|
|
void runtime_MSpanList_Insert(MSpan *list, MSpan *span);
|
|
void runtime_MSpanList_InsertBack(MSpan *list, MSpan *span);
|
|
void runtime_MSpanList_Remove(MSpan *span); // from whatever list it is in
|
|
|
|
|
|
// Central list of free objects of a given size.
|
|
struct MCentral
|
|
{
|
|
Lock;
|
|
int32 sizeclass;
|
|
MSpan nonempty; // list of spans with a free object
|
|
MSpan mempty; // list of spans with no free objects (or cached in an MCache)
|
|
int32 nfree; // # of objects available in nonempty spans
|
|
};
|
|
|
|
void runtime_MCentral_Init(MCentral *c, int32 sizeclass);
|
|
MSpan* runtime_MCentral_CacheSpan(MCentral *c);
|
|
void runtime_MCentral_UncacheSpan(MCentral *c, MSpan *s);
|
|
bool runtime_MCentral_FreeSpan(MCentral *c, MSpan *s, int32 n, MLink *start, MLink *end);
|
|
void runtime_MCentral_FreeList(MCentral *c, MLink *start); // TODO: need this?
|
|
|
|
// Main malloc heap.
|
|
// The heap itself is the "free[]" and "large" arrays,
|
|
// but all the other global data is here too.
|
|
struct MHeap
|
|
{
|
|
Lock;
|
|
MSpan free[MaxMHeapList]; // free lists of given length
|
|
MSpan freelarge; // free lists length >= MaxMHeapList
|
|
MSpan busy[MaxMHeapList]; // busy lists of large objects of given length
|
|
MSpan busylarge; // busy lists of large objects length >= MaxMHeapList
|
|
MSpan **allspans; // all spans out there
|
|
MSpan **sweepspans; // copy of allspans referenced by sweeper
|
|
uint32 nspan;
|
|
uint32 nspancap;
|
|
uint32 sweepgen; // sweep generation, see comment in MSpan
|
|
uint32 sweepdone; // all spans are swept
|
|
|
|
// span lookup
|
|
MSpan** spans;
|
|
uintptr spans_mapped;
|
|
|
|
// range of addresses we might see in the heap
|
|
byte *bitmap;
|
|
uintptr bitmap_mapped;
|
|
byte *arena_start;
|
|
byte *arena_used;
|
|
byte *arena_end;
|
|
bool arena_reserved;
|
|
|
|
// central free lists for small size classes.
|
|
// the padding makes sure that the MCentrals are
|
|
// spaced CacheLineSize bytes apart, so that each MCentral.Lock
|
|
// gets its own cache line.
|
|
struct {
|
|
MCentral;
|
|
byte pad[64];
|
|
} central[_NumSizeClasses];
|
|
|
|
FixAlloc spanalloc; // allocator for Span*
|
|
FixAlloc cachealloc; // allocator for MCache*
|
|
FixAlloc specialfinalizeralloc; // allocator for SpecialFinalizer*
|
|
FixAlloc specialprofilealloc; // allocator for SpecialProfile*
|
|
Lock speciallock; // lock for sepcial record allocators.
|
|
|
|
// Malloc stats.
|
|
uint64 largefree; // bytes freed for large objects (>MaxSmallSize)
|
|
uint64 nlargefree; // number of frees for large objects (>MaxSmallSize)
|
|
uint64 nsmallfree[_NumSizeClasses]; // number of frees for small objects (<=MaxSmallSize)
|
|
};
|
|
extern MHeap runtime_mheap;
|
|
|
|
void runtime_MHeap_Init(MHeap *h);
|
|
MSpan* runtime_MHeap_Alloc(MHeap *h, uintptr npage, int32 sizeclass, bool large, bool needzero);
|
|
void runtime_MHeap_Free(MHeap *h, MSpan *s, int32 acct);
|
|
MSpan* runtime_MHeap_Lookup(MHeap *h, void *v);
|
|
MSpan* runtime_MHeap_LookupMaybe(MHeap *h, void *v);
|
|
void runtime_MGetSizeClassInfo(int32 sizeclass, uintptr *size, int32 *npages, int32 *nobj);
|
|
void* runtime_MHeap_SysAlloc(MHeap *h, uintptr n);
|
|
void runtime_MHeap_MapBits(MHeap *h);
|
|
void runtime_MHeap_MapSpans(MHeap *h);
|
|
void runtime_MHeap_Scavenger(void*);
|
|
void runtime_MHeap_SplitSpan(MHeap *h, MSpan *s);
|
|
|
|
void* runtime_mallocgc(uintptr size, uintptr typ, uint32 flag);
|
|
void* runtime_persistentalloc(uintptr size, uintptr align, uint64 *stat)
|
|
__asm__(GOSYM_PREFIX "runtime.persistentalloc");
|
|
int32 runtime_mlookup(void *v, byte **base, uintptr *size, MSpan **s);
|
|
void runtime_gc(int32 force);
|
|
uintptr runtime_sweepone(void);
|
|
void runtime_markscan(void *v);
|
|
void runtime_marknogc(void *v);
|
|
void runtime_checkallocated(void *v, uintptr n);
|
|
void runtime_markfreed(void *v);
|
|
void runtime_checkfreed(void *v, uintptr n);
|
|
extern int32 runtime_checking;
|
|
void runtime_markspan(void *v, uintptr size, uintptr n, bool leftover);
|
|
void runtime_unmarkspan(void *v, uintptr size);
|
|
void runtime_purgecachedstats(MCache*);
|
|
void* runtime_cnew(const Type*)
|
|
__asm__(GOSYM_PREFIX "runtime.newobject");
|
|
void* runtime_cnewarray(const Type*, intgo)
|
|
__asm__(GOSYM_PREFIX "runtime.newarray");
|
|
void runtime_tracealloc(void*, uintptr, uintptr)
|
|
__asm__ (GOSYM_PREFIX "runtime.tracealloc");
|
|
void runtime_tracefree(void*, uintptr)
|
|
__asm__ (GOSYM_PREFIX "runtime.tracefree");
|
|
void runtime_tracegc(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.tracegc");
|
|
|
|
uintptr runtime_gettype(void*);
|
|
|
|
enum
|
|
{
|
|
// flags to malloc
|
|
FlagNoScan = 1<<0, // GC doesn't have to scan object
|
|
FlagNoProfiling = 1<<1, // must not profile
|
|
FlagNoGC = 1<<2, // must not free or scan for pointers
|
|
FlagNoZero = 1<<3, // don't zero memory
|
|
FlagNoInvokeGC = 1<<4, // don't invoke GC
|
|
};
|
|
|
|
typedef struct Obj Obj;
|
|
struct Obj
|
|
{
|
|
byte *p; // data pointer
|
|
uintptr n; // size of data in bytes
|
|
uintptr ti; // type info
|
|
};
|
|
|
|
void runtime_MProf_Malloc(void*, uintptr)
|
|
__asm__ (GOSYM_PREFIX "runtime.mProf_Malloc");
|
|
void runtime_MProf_Free(Bucket*, uintptr, bool)
|
|
__asm__ (GOSYM_PREFIX "runtime.mProf_Free");
|
|
void runtime_MProf_GC(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.mProf_GC");
|
|
void runtime_iterate_memprof(FuncVal* callback)
|
|
__asm__ (GOSYM_PREFIX "runtime.iterate_memprof");
|
|
int32 runtime_gcprocs(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.gcprocs");
|
|
void runtime_helpgc(int32 nproc)
|
|
__asm__ (GOSYM_PREFIX "runtime.helpgc");
|
|
void runtime_gchelper(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.gchelper");
|
|
void runtime_createfing(void);
|
|
G* runtime_wakefing(void)
|
|
__asm__ (GOSYM_PREFIX "runtime.wakefing");
|
|
extern bool runtime_fingwait;
|
|
extern bool runtime_fingwake;
|
|
|
|
void runtime_setprofilebucket(void *p, Bucket *b)
|
|
__asm__ (GOSYM_PREFIX "runtime.setprofilebucket");
|
|
|
|
struct __go_func_type;
|
|
struct __go_ptr_type;
|
|
bool runtime_addfinalizer(void *p, FuncVal *fn, const struct __go_func_type*, const struct __go_ptr_type*);
|
|
void runtime_removefinalizer(void*);
|
|
void runtime_queuefinalizer(void *p, FuncVal *fn, const struct __go_func_type *ft, const struct __go_ptr_type *ot);
|
|
|
|
void runtime_freeallspecials(MSpan *span, void *p, uintptr size);
|
|
bool runtime_freespecial(Special *s, void *p, uintptr size, bool freed);
|
|
|
|
enum
|
|
{
|
|
TypeInfo_SingleObject = 0,
|
|
TypeInfo_Array = 1,
|
|
TypeInfo_Chan = 2,
|
|
|
|
// Enables type information at the end of blocks allocated from heap
|
|
DebugTypeAtBlockEnd = 0,
|
|
};
|
|
|
|
// Information from the compiler about the layout of stack frames.
|
|
typedef struct BitVector BitVector;
|
|
struct BitVector
|
|
{
|
|
int32 n; // # of bits
|
|
uint32 *data;
|
|
};
|
|
typedef struct StackMap StackMap;
|
|
struct StackMap
|
|
{
|
|
int32 n; // number of bitmaps
|
|
int32 nbit; // number of bits in each bitmap
|
|
uint32 data[];
|
|
};
|
|
enum {
|
|
// Pointer map
|
|
BitsPerPointer = 2,
|
|
BitsDead = 0,
|
|
BitsScalar = 1,
|
|
BitsPointer = 2,
|
|
BitsMultiWord = 3,
|
|
// BitsMultiWord will be set for the first word of a multi-word item.
|
|
// When it is set, one of the following will be set for the second word.
|
|
BitsString = 0,
|
|
BitsSlice = 1,
|
|
BitsIface = 2,
|
|
BitsEface = 3,
|
|
};
|
|
// Returns pointer map data for the given stackmap index
|
|
// (the index is encoded in PCDATA_StackMapIndex).
|
|
BitVector runtime_stackmapdata(StackMap *stackmap, int32 n);
|
|
|
|
// defined in mgc0.go
|
|
void runtime_gc_m_ptr(Eface*);
|
|
void runtime_gc_g_ptr(Eface*);
|
|
void runtime_gc_itab_ptr(Eface*);
|
|
|
|
void runtime_memorydump(void);
|
|
int32 runtime_setgcpercent(int32)
|
|
__asm__ (GOSYM_PREFIX "runtime.setgcpercent");
|
|
|
|
// Value we use to mark dead pointers when GODEBUG=gcdead=1.
|
|
#define PoisonGC ((uintptr)0xf969696969696969ULL)
|
|
#define PoisonStack ((uintptr)0x6868686868686868ULL)
|
|
|
|
struct Workbuf;
|