gcc/libgcc-math/dbl-64/atnat.h
Richard Guenther 0058967bb0 Makefile.def (target_modules): Add libgcc-math target module.
2006-01-31  Richard Guenther  <rguenther@suse.de>
	Paolo Bonzini  <bonzini@gnu.org>

	* Makefile.def (target_modules): Add libgcc-math target module.
	* configure.in (target_libraries): Add libgcc-math target library.
	(--enable-libgcc-math): New configure switch.
	* Makefile.in: Re-generate.
	* configure: Re-generate.
	* libgcc-math: New toplevel directory.

	* doc/install.texi (--disable-libgcc-math): Document.

	libgcc-math/
	* configure.ac: New file.
	* Makefile.am: Likewise.
	* configure: New generated file.
	* Makefile.in: Likewise.
	* aclocal.m4: Likewise.
	* libtool-version: New file.
	* include/ieee754.h: New file.
	* include/libc-symbols.h: Likewise.
	* include/math_private.h: Likewise.
	* i386/Makefile.am: New file.
	* i386/Makefile.in: New generated file.
	* i386/sse2.h: New file.
	* i386/endian.h: Likewise.
	* i386/sse2.map: Linker script for SSE2 ABI math intrinsics.
	* flt-32/: Import from glibc.
	* dbl-64/: Likewise.

Co-Authored-By: Paolo Bonzini <bonzini@gnu.org>

From-SVN: r110434
2006-01-31 11:56:46 +00:00

168 lines
8.5 KiB
C

/*
* IBM Accurate Mathematical Library
* Written by International Business Machines Corp.
* Copyright (C) 2001 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/************************************************************************/
/* MODULE_NAME: atnat.h */
/* */
/* */
/* common data and variables definition for BIG or LITTLE ENDIAN */
/************************************************************************/
#ifndef ATNAT_H
#define ATNAT_H
#define M 4
#ifdef BIG_ENDI
static const number
/* polynomial I */
/**/ d3 = {{0xbfd55555, 0x55555555} }, /* -0.333... */
/**/ d5 = {{0x3fc99999, 0x999997fd} }, /* 0.199... */
/**/ d7 = {{0xbfc24924, 0x923f7603} }, /* -0.142... */
/**/ d9 = {{0x3fbc71c6, 0xe5129a3b} }, /* 0.111... */
/**/ d11 = {{0xbfb74580, 0x22b13c25} }, /* -0.090... */
/**/ d13 = {{0x3fb375f0, 0x8b31cbce} }, /* 0.076... */
/* polynomial II */
/**/ f3 = {{0xbfd55555, 0x55555555} }, /* -1/3 */
/**/ ff3 = {{0xbc755555, 0x55555555} }, /* -1/3-f3 */
/**/ f5 = {{0x3fc99999, 0x9999999a} }, /* 1/5 */
/**/ ff5 = {{0xbc699999, 0x9999999a} }, /* 1/5-f5 */
/**/ f7 = {{0xbfc24924, 0x92492492} }, /* -1/7 */
/**/ ff7 = {{0xbc624924, 0x92492492} }, /* -1/7-f7 */
/**/ f9 = {{0x3fbc71c7, 0x1c71c71c} }, /* 1/9 */
/**/ ff9 = {{0x3c5c71c7, 0x1c71c71c} }, /* 1/9-f9 */
/**/ f11 = {{0xbfb745d1, 0x745d1746} }, /* -1/11 */
/**/ f13 = {{0x3fb3b13b, 0x13b13b14} }, /* 1/13 */
/**/ f15 = {{0xbfb11111, 0x11111111} }, /* -1/15 */
/**/ f17 = {{0x3fae1e1e, 0x1e1e1e1e} }, /* 1/17 */
/**/ f19 = {{0xbfaaf286, 0xbca1af28} }, /* -1/19 */
/* constants */
/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
/**/ one = {{0x3ff00000, 0x00000000} }, /* 1 */
/**/ a = {{0x3e4bb67a, 0x00000000} }, /* 1.290e-8 */
/**/ b = {{0x3fb00000, 0x00000000} }, /* 1/16 */
/**/ c = {{0x3ff00000, 0x00000000} }, /* 1 */
/**/ d = {{0x40300000, 0x00000000} }, /* 16 */
/**/ e = {{0x43349ff2, 0x00000000} }, /* 5.805e15 */
/**/ hpi = {{0x3ff921fb, 0x54442d18} }, /* pi/2 */
/**/ mhpi = {{0xbff921fb, 0x54442d18} }, /* -pi/2 */
/**/ hpi1 = {{0x3c91a626, 0x33145c07} }, /* pi/2-hpi */
/**/ u1 = {{0x3c2d3382, 0x00000000} }, /* 7.915e-19 */
/**/ u21 = {{0x3c6dffc0, 0x00000000} }, /* 1.301e-17 */
/**/ u22 = {{0x3c527bd0, 0x00000000} }, /* 4.008e-18 */
/**/ u23 = {{0x3c3cd057, 0x00000000} }, /* 1.562e-18 */
/**/ u24 = {{0x3c329cdf, 0x00000000} }, /* 1.009e-18 */
/**/ u31 = {{0x3c3a1edf, 0x00000000} }, /* 1.416e-18 */
/**/ u32 = {{0x3c33f0e1, 0x00000000} }, /* 1.081e-18 */
/**/ u4 = {{0x3bf955e4, 0x00000000} }, /* 8.584e-20 */
/**/ u5 = {{0x3aaef2d1, 0x00000000} }, /* 5e-26 */
/**/ u6 = {{0x3a98c56d, 0x00000000} }, /* 2.001e-26 */
/**/ u7 = {{0x3a9375de, 0x00000000} }, /* 1.572e-26 */
/**/ u8 = {{0x3a6eeb36, 0x00000000} }, /* 3.122e-27 */
/**/ u9[M] ={{{0x38c1aa5b, 0x00000000} }, /* 2.658e-35 */
/**/ {{0x35c1aa4d, 0x00000000} }, /* 9.443e-50 */
/**/ {{0x32c1aa88, 0x00000000} }, /* 3.355e-64 */
/**/ {{0x11c1aa56, 0x00000000} }},/* 3.818e-223 */
/**/ two8 = {{0x40700000, 0x00000000} }, /* 2**8=256 */
/**/ two52 = {{0x43300000, 0x00000000} }; /* 2**52 */
#else
#ifdef LITTLE_ENDI
static const number
/* polynomial I */
/**/ d3 = {{0x55555555, 0xbfd55555} }, /* -0.333... */
/**/ d5 = {{0x999997fd, 0x3fc99999} }, /* 0.199... */
/**/ d7 = {{0x923f7603, 0xbfc24924} }, /* -0.142... */
/**/ d9 = {{0xe5129a3b, 0x3fbc71c6} }, /* 0.111... */
/**/ d11 = {{0x22b13c25, 0xbfb74580} }, /* -0.090... */
/**/ d13 = {{0x8b31cbce, 0x3fb375f0} }, /* 0.076... */
/* polynomial II */
/**/ f3 = {{0x55555555, 0xbfd55555} }, /* -1/3 */
/**/ ff3 = {{0x55555555, 0xbc755555} }, /* -1/3-f3 */
/**/ f5 = {{0x9999999a, 0x3fc99999} }, /* 1/5 */
/**/ ff5 = {{0x9999999a, 0xbc699999} }, /* 1/5-f5 */
/**/ f7 = {{0x92492492, 0xbfc24924} }, /* -1/7 */
/**/ ff7 = {{0x92492492, 0xbc624924} }, /* -1/7-f7 */
/**/ f9 = {{0x1c71c71c, 0x3fbc71c7} }, /* 1/9 */
/**/ ff9 = {{0x1c71c71c, 0x3c5c71c7} }, /* 1/9-f9 */
/**/ f11 = {{0x745d1746, 0xbfb745d1} }, /* -1/11 */
/**/ f13 = {{0x13b13b14, 0x3fb3b13b} }, /* 1/13 */
/**/ f15 = {{0x11111111, 0xbfb11111} }, /* -1/15 */
/**/ f17 = {{0x1e1e1e1e, 0x3fae1e1e} }, /* 1/17 */
/**/ f19 = {{0xbca1af28, 0xbfaaf286} }, /* -1/19 */
/* constants */
/**/ zero = {{0x00000000, 0x00000000} }, /* 0 */
/**/ one = {{0x00000000, 0x3ff00000} }, /* 1 */
/**/ a = {{0x00000000, 0x3e4bb67a} }, /* 1.290e-8 */
/**/ b = {{0x00000000, 0x3fb00000} }, /* 1/16 */
/**/ c = {{0x00000000, 0x3ff00000} }, /* 1 */
/**/ d = {{0x00000000, 0x40300000} }, /* 16 */
/**/ e = {{0x00000000, 0x43349ff2} }, /* 5.805e15 */
/**/ hpi = {{0x54442d18, 0x3ff921fb} }, /* pi/2 */
/**/ mhpi = {{0x54442d18, 0xbff921fb} }, /* -pi/2 */
/**/ hpi1 = {{0x33145c07, 0x3c91a626} }, /* pi/2-hpi */
/**/ u1 = {{0x00000000, 0x3c2d3382} }, /* 7.915e-19 */
/**/ u21 = {{0x00000000, 0x3c6dffc0} }, /* 1.301e-17 */
/**/ u22 = {{0x00000000, 0x3c527bd0} }, /* 4.008e-18 */
/**/ u23 = {{0x00000000, 0x3c3cd057} }, /* 1.562e-18 */
/**/ u24 = {{0x00000000, 0x3c329cdf} }, /* 1.009e-18 */
/**/ u31 = {{0x00000000, 0x3c3a1edf} }, /* 1.416e-18 */
/**/ u32 = {{0x00000000, 0x3c33f0e1} }, /* 1.081e-18 */
/**/ u4 = {{0x00000000, 0x3bf955e4} }, /* 8.584e-20 */
/**/ u5 = {{0x00000000, 0x3aaef2d1} }, /* 5e-26 */
/**/ u6 = {{0x00000000, 0x3a98c56d} }, /* 2.001e-26 */
/**/ u7 = {{0x00000000, 0x3a9375de} }, /* 1.572e-26 */
/**/ u8 = {{0x00000000, 0x3a6eeb36} }, /* 3.122e-27 */
/**/ u9[M] ={{{0x00000000, 0x38c1aa5b} }, /* 2.658e-35 */
/**/ {{0x00000000, 0x35c1aa4d} }, /* 9.443e-50 */
/**/ {{0x00000000, 0x32c1aa88} }, /* 3.355e-64 */
/**/ {{0x00000000, 0x11c1aa56} }},/* 3.818e-223 */
/**/ two8 = {{0x00000000, 0x40700000} }, /* 2**8=256 */
/**/ two52 = {{0x00000000, 0x43300000} }; /* 2**52 */
#endif
#endif
#define ZERO zero.d
#define ONE one.d
#define A a.d
#define B b.d
#define C c.d
#define D d.d
#define E e.d
#define HPI hpi.d
#define MHPI mhpi.d
#define HPI1 hpi1.d
#define U1 u1.d
#define U21 u21.d
#define U22 u22.d
#define U23 u23.d
#define U24 u24.d
#define U31 u31.d
#define U32 u32.d
#define U4 u4.d
#define U5 u5.d
#define U6 u6.d
#define U7 u7.d
#define U8 u8.d
#define TWO8 two8.d
#define TWO52 two52.d
#endif