c2047754c3
Compiler changes: * Change map assignment to use mapassign and assign value directly. * Change string iteration to use decoderune, faster for ASCII strings. * Change makeslice to take int, and use makeslice64 for larger values. * Add new noverflow field to hmap struct used for maps. Unresolved problems, to be fixed later: * Commented out test in go/types/sizes_test.go that doesn't compile. * Commented out reflect.TestStructOf test for padding after zero-sized field. Reviewed-on: https://go-review.googlesource.com/35231 gotools/: Updates for Go 1.8rc1. * Makefile.am (go_cmd_go_files): Add bug.go. (s-zdefaultcc): Write defaultPkgConfig. * Makefile.in: Rebuild. From-SVN: r244456
337 lines
9.2 KiB
Go
337 lines
9.2 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package cipher_test
|
|
|
|
import (
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/rand"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"io"
|
|
"os"
|
|
)
|
|
|
|
func ExampleNewGCM_encrypt() {
|
|
// The key argument should be the AES key, either 16 or 32 bytes
|
|
// to select AES-128 or AES-256.
|
|
key := []byte("AES256Key-32Characters1234567890")
|
|
plaintext := []byte("exampleplaintext")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
// Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
|
|
nonce := make([]byte, 12)
|
|
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
aesgcm, err := cipher.NewGCM(block)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
ciphertext := aesgcm.Seal(nil, nonce, plaintext, nil)
|
|
fmt.Printf("%x\n", ciphertext)
|
|
}
|
|
|
|
func ExampleNewGCM_decrypt() {
|
|
// The key argument should be the AES key, either 16 or 32 bytes
|
|
// to select AES-128 or AES-256.
|
|
key := []byte("AES256Key-32Characters1234567890")
|
|
ciphertext, _ := hex.DecodeString("1019aa66cd7c024f9efd0038899dae1973ee69427f5a6579eba292ffe1b5a260")
|
|
|
|
nonce, _ := hex.DecodeString("37b8e8a308c354048d245f6d")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
aesgcm, err := cipher.NewGCM(block)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
plaintext, err := aesgcm.Open(nil, nonce, ciphertext, nil)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
fmt.Printf("%s\n", plaintext)
|
|
// Output: exampleplaintext
|
|
}
|
|
|
|
func ExampleNewCBCDecrypter() {
|
|
key := []byte("example key 1234")
|
|
ciphertext, _ := hex.DecodeString("f363f3ccdcb12bb883abf484ba77d9cd7d32b5baecb3d4b1b3e0e4beffdb3ded")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
if len(ciphertext) < aes.BlockSize {
|
|
panic("ciphertext too short")
|
|
}
|
|
iv := ciphertext[:aes.BlockSize]
|
|
ciphertext = ciphertext[aes.BlockSize:]
|
|
|
|
// CBC mode always works in whole blocks.
|
|
if len(ciphertext)%aes.BlockSize != 0 {
|
|
panic("ciphertext is not a multiple of the block size")
|
|
}
|
|
|
|
mode := cipher.NewCBCDecrypter(block, iv)
|
|
|
|
// CryptBlocks can work in-place if the two arguments are the same.
|
|
mode.CryptBlocks(ciphertext, ciphertext)
|
|
|
|
// If the original plaintext lengths are not a multiple of the block
|
|
// size, padding would have to be added when encrypting, which would be
|
|
// removed at this point. For an example, see
|
|
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. However, it's
|
|
// critical to note that ciphertexts must be authenticated (i.e. by
|
|
// using crypto/hmac) before being decrypted in order to avoid creating
|
|
// a padding oracle.
|
|
|
|
fmt.Printf("%s\n", ciphertext)
|
|
// Output: exampleplaintext
|
|
}
|
|
|
|
func ExampleNewCBCEncrypter() {
|
|
key := []byte("example key 1234")
|
|
plaintext := []byte("exampleplaintext")
|
|
|
|
// CBC mode works on blocks so plaintexts may need to be padded to the
|
|
// next whole block. For an example of such padding, see
|
|
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. Here we'll
|
|
// assume that the plaintext is already of the correct length.
|
|
if len(plaintext)%aes.BlockSize != 0 {
|
|
panic("plaintext is not a multiple of the block size")
|
|
}
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
|
|
iv := ciphertext[:aes.BlockSize]
|
|
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
mode := cipher.NewCBCEncrypter(block, iv)
|
|
mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext)
|
|
|
|
// It's important to remember that ciphertexts must be authenticated
|
|
// (i.e. by using crypto/hmac) as well as being encrypted in order to
|
|
// be secure.
|
|
|
|
fmt.Printf("%x\n", ciphertext)
|
|
}
|
|
|
|
func ExampleNewCFBDecrypter() {
|
|
key := []byte("example key 1234")
|
|
ciphertext, _ := hex.DecodeString("22277966616d9bc47177bd02603d08c9a67d5380d0fe8cf3b44438dff7b9")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
if len(ciphertext) < aes.BlockSize {
|
|
panic("ciphertext too short")
|
|
}
|
|
iv := ciphertext[:aes.BlockSize]
|
|
ciphertext = ciphertext[aes.BlockSize:]
|
|
|
|
stream := cipher.NewCFBDecrypter(block, iv)
|
|
|
|
// XORKeyStream can work in-place if the two arguments are the same.
|
|
stream.XORKeyStream(ciphertext, ciphertext)
|
|
fmt.Printf("%s", ciphertext)
|
|
// Output: some plaintext
|
|
}
|
|
|
|
func ExampleNewCFBEncrypter() {
|
|
key := []byte("example key 1234")
|
|
plaintext := []byte("some plaintext")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
|
|
iv := ciphertext[:aes.BlockSize]
|
|
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
stream := cipher.NewCFBEncrypter(block, iv)
|
|
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
|
|
|
|
// It's important to remember that ciphertexts must be authenticated
|
|
// (i.e. by using crypto/hmac) as well as being encrypted in order to
|
|
// be secure.
|
|
}
|
|
|
|
func ExampleNewCTR() {
|
|
key := []byte("example key 1234")
|
|
plaintext := []byte("some plaintext")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
|
|
iv := ciphertext[:aes.BlockSize]
|
|
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
stream := cipher.NewCTR(block, iv)
|
|
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
|
|
|
|
// It's important to remember that ciphertexts must be authenticated
|
|
// (i.e. by using crypto/hmac) as well as being encrypted in order to
|
|
// be secure.
|
|
|
|
// CTR mode is the same for both encryption and decryption, so we can
|
|
// also decrypt that ciphertext with NewCTR.
|
|
|
|
plaintext2 := make([]byte, len(plaintext))
|
|
stream = cipher.NewCTR(block, iv)
|
|
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
|
|
|
|
fmt.Printf("%s\n", plaintext2)
|
|
// Output: some plaintext
|
|
}
|
|
|
|
func ExampleNewOFB() {
|
|
key := []byte("example key 1234")
|
|
plaintext := []byte("some plaintext")
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// The IV needs to be unique, but not secure. Therefore it's common to
|
|
// include it at the beginning of the ciphertext.
|
|
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
|
|
iv := ciphertext[:aes.BlockSize]
|
|
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
stream := cipher.NewOFB(block, iv)
|
|
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
|
|
|
|
// It's important to remember that ciphertexts must be authenticated
|
|
// (i.e. by using crypto/hmac) as well as being encrypted in order to
|
|
// be secure.
|
|
|
|
// OFB mode is the same for both encryption and decryption, so we can
|
|
// also decrypt that ciphertext with NewOFB.
|
|
|
|
plaintext2 := make([]byte, len(plaintext))
|
|
stream = cipher.NewOFB(block, iv)
|
|
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
|
|
|
|
fmt.Printf("%s\n", plaintext2)
|
|
// Output: some plaintext
|
|
}
|
|
|
|
func ExampleStreamReader() {
|
|
key := []byte("example key 1234")
|
|
|
|
inFile, err := os.Open("encrypted-file")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
defer inFile.Close()
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// If the key is unique for each ciphertext, then it's ok to use a zero
|
|
// IV.
|
|
var iv [aes.BlockSize]byte
|
|
stream := cipher.NewOFB(block, iv[:])
|
|
|
|
outFile, err := os.OpenFile("decrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
defer outFile.Close()
|
|
|
|
reader := &cipher.StreamReader{S: stream, R: inFile}
|
|
// Copy the input file to the output file, decrypting as we go.
|
|
if _, err := io.Copy(outFile, reader); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// Note that this example is simplistic in that it omits any
|
|
// authentication of the encrypted data. If you were actually to use
|
|
// StreamReader in this manner, an attacker could flip arbitrary bits in
|
|
// the output.
|
|
}
|
|
|
|
func ExampleStreamWriter() {
|
|
key := []byte("example key 1234")
|
|
|
|
inFile, err := os.Open("plaintext-file")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
defer inFile.Close()
|
|
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// If the key is unique for each ciphertext, then it's ok to use a zero
|
|
// IV.
|
|
var iv [aes.BlockSize]byte
|
|
stream := cipher.NewOFB(block, iv[:])
|
|
|
|
outFile, err := os.OpenFile("encrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
defer outFile.Close()
|
|
|
|
writer := &cipher.StreamWriter{S: stream, W: outFile}
|
|
// Copy the input file to the output file, encrypting as we go.
|
|
if _, err := io.Copy(writer, inFile); err != nil {
|
|
panic(err)
|
|
}
|
|
|
|
// Note that this example is simplistic in that it omits any
|
|
// authentication of the encrypted data. If you were actually to use
|
|
// StreamReader in this manner, an attacker could flip arbitrary bits in
|
|
// the decrypted result.
|
|
}
|