gcc/libgo/go/crypto/cipher/example_test.go
Ian Lance Taylor c2047754c3 libgo: update to Go 1.8 release candidate 1
Compiler changes:
      * Change map assignment to use mapassign and assign value directly.
      * Change string iteration to use decoderune, faster for ASCII strings.
      * Change makeslice to take int, and use makeslice64 for larger values.
      * Add new noverflow field to hmap struct used for maps.
    
    Unresolved problems, to be fixed later:
      * Commented out test in go/types/sizes_test.go that doesn't compile.
      * Commented out reflect.TestStructOf test for padding after zero-sized field.
    
    Reviewed-on: https://go-review.googlesource.com/35231

gotools/:
	Updates for Go 1.8rc1.
	* Makefile.am (go_cmd_go_files): Add bug.go.
	(s-zdefaultcc): Write defaultPkgConfig.
	* Makefile.in: Rebuild.

From-SVN: r244456
2017-01-14 00:05:42 +00:00

337 lines
9.2 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package cipher_test
import (
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"encoding/hex"
"fmt"
"io"
"os"
)
func ExampleNewGCM_encrypt() {
// The key argument should be the AES key, either 16 or 32 bytes
// to select AES-128 or AES-256.
key := []byte("AES256Key-32Characters1234567890")
plaintext := []byte("exampleplaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err.Error())
}
// Never use more than 2^32 random nonces with a given key because of the risk of a repeat.
nonce := make([]byte, 12)
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
panic(err.Error())
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
ciphertext := aesgcm.Seal(nil, nonce, plaintext, nil)
fmt.Printf("%x\n", ciphertext)
}
func ExampleNewGCM_decrypt() {
// The key argument should be the AES key, either 16 or 32 bytes
// to select AES-128 or AES-256.
key := []byte("AES256Key-32Characters1234567890")
ciphertext, _ := hex.DecodeString("1019aa66cd7c024f9efd0038899dae1973ee69427f5a6579eba292ffe1b5a260")
nonce, _ := hex.DecodeString("37b8e8a308c354048d245f6d")
block, err := aes.NewCipher(key)
if err != nil {
panic(err.Error())
}
aesgcm, err := cipher.NewGCM(block)
if err != nil {
panic(err.Error())
}
plaintext, err := aesgcm.Open(nil, nonce, ciphertext, nil)
if err != nil {
panic(err.Error())
}
fmt.Printf("%s\n", plaintext)
// Output: exampleplaintext
}
func ExampleNewCBCDecrypter() {
key := []byte("example key 1234")
ciphertext, _ := hex.DecodeString("f363f3ccdcb12bb883abf484ba77d9cd7d32b5baecb3d4b1b3e0e4beffdb3ded")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
// CBC mode always works in whole blocks.
if len(ciphertext)%aes.BlockSize != 0 {
panic("ciphertext is not a multiple of the block size")
}
mode := cipher.NewCBCDecrypter(block, iv)
// CryptBlocks can work in-place if the two arguments are the same.
mode.CryptBlocks(ciphertext, ciphertext)
// If the original plaintext lengths are not a multiple of the block
// size, padding would have to be added when encrypting, which would be
// removed at this point. For an example, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. However, it's
// critical to note that ciphertexts must be authenticated (i.e. by
// using crypto/hmac) before being decrypted in order to avoid creating
// a padding oracle.
fmt.Printf("%s\n", ciphertext)
// Output: exampleplaintext
}
func ExampleNewCBCEncrypter() {
key := []byte("example key 1234")
plaintext := []byte("exampleplaintext")
// CBC mode works on blocks so plaintexts may need to be padded to the
// next whole block. For an example of such padding, see
// https://tools.ietf.org/html/rfc5246#section-6.2.3.2. Here we'll
// assume that the plaintext is already of the correct length.
if len(plaintext)%aes.BlockSize != 0 {
panic("plaintext is not a multiple of the block size")
}
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
mode := cipher.NewCBCEncrypter(block, iv)
mode.CryptBlocks(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
fmt.Printf("%x\n", ciphertext)
}
func ExampleNewCFBDecrypter() {
key := []byte("example key 1234")
ciphertext, _ := hex.DecodeString("22277966616d9bc47177bd02603d08c9a67d5380d0fe8cf3b44438dff7b9")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
if len(ciphertext) < aes.BlockSize {
panic("ciphertext too short")
}
iv := ciphertext[:aes.BlockSize]
ciphertext = ciphertext[aes.BlockSize:]
stream := cipher.NewCFBDecrypter(block, iv)
// XORKeyStream can work in-place if the two arguments are the same.
stream.XORKeyStream(ciphertext, ciphertext)
fmt.Printf("%s", ciphertext)
// Output: some plaintext
}
func ExampleNewCFBEncrypter() {
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCFBEncrypter(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
}
func ExampleNewCTR() {
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewCTR(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// CTR mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewCTR.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewCTR(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
// Output: some plaintext
}
func ExampleNewOFB() {
key := []byte("example key 1234")
plaintext := []byte("some plaintext")
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// The IV needs to be unique, but not secure. Therefore it's common to
// include it at the beginning of the ciphertext.
ciphertext := make([]byte, aes.BlockSize+len(plaintext))
iv := ciphertext[:aes.BlockSize]
if _, err := io.ReadFull(rand.Reader, iv); err != nil {
panic(err)
}
stream := cipher.NewOFB(block, iv)
stream.XORKeyStream(ciphertext[aes.BlockSize:], plaintext)
// It's important to remember that ciphertexts must be authenticated
// (i.e. by using crypto/hmac) as well as being encrypted in order to
// be secure.
// OFB mode is the same for both encryption and decryption, so we can
// also decrypt that ciphertext with NewOFB.
plaintext2 := make([]byte, len(plaintext))
stream = cipher.NewOFB(block, iv)
stream.XORKeyStream(plaintext2, ciphertext[aes.BlockSize:])
fmt.Printf("%s\n", plaintext2)
// Output: some plaintext
}
func ExampleStreamReader() {
key := []byte("example key 1234")
inFile, err := os.Open("encrypted-file")
if err != nil {
panic(err)
}
defer inFile.Close()
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
outFile, err := os.OpenFile("decrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
panic(err)
}
defer outFile.Close()
reader := &cipher.StreamReader{S: stream, R: inFile}
// Copy the input file to the output file, decrypting as we go.
if _, err := io.Copy(outFile, reader); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. If you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the output.
}
func ExampleStreamWriter() {
key := []byte("example key 1234")
inFile, err := os.Open("plaintext-file")
if err != nil {
panic(err)
}
defer inFile.Close()
block, err := aes.NewCipher(key)
if err != nil {
panic(err)
}
// If the key is unique for each ciphertext, then it's ok to use a zero
// IV.
var iv [aes.BlockSize]byte
stream := cipher.NewOFB(block, iv[:])
outFile, err := os.OpenFile("encrypted-file", os.O_WRONLY|os.O_CREATE|os.O_TRUNC, 0600)
if err != nil {
panic(err)
}
defer outFile.Close()
writer := &cipher.StreamWriter{S: stream, W: outFile}
// Copy the input file to the output file, encrypting as we go.
if _, err := io.Copy(writer, inFile); err != nil {
panic(err)
}
// Note that this example is simplistic in that it omits any
// authentication of the encrypted data. If you were actually to use
// StreamReader in this manner, an attacker could flip arbitrary bits in
// the decrypted result.
}