gcc/libgcc-math/dbl-64/dosincos.c
Richard Guenther 0058967bb0 Makefile.def (target_modules): Add libgcc-math target module.
2006-01-31  Richard Guenther  <rguenther@suse.de>
	Paolo Bonzini  <bonzini@gnu.org>

	* Makefile.def (target_modules): Add libgcc-math target module.
	* configure.in (target_libraries): Add libgcc-math target library.
	(--enable-libgcc-math): New configure switch.
	* Makefile.in: Re-generate.
	* configure: Re-generate.
	* libgcc-math: New toplevel directory.

	* doc/install.texi (--disable-libgcc-math): Document.

	libgcc-math/
	* configure.ac: New file.
	* Makefile.am: Likewise.
	* configure: New generated file.
	* Makefile.in: Likewise.
	* aclocal.m4: Likewise.
	* libtool-version: New file.
	* include/ieee754.h: New file.
	* include/libc-symbols.h: Likewise.
	* include/math_private.h: Likewise.
	* i386/Makefile.am: New file.
	* i386/Makefile.in: New generated file.
	* i386/sse2.h: New file.
	* i386/endian.h: Likewise.
	* i386/sse2.map: Linker script for SSE2 ABI math intrinsics.
	* flt-32/: Import from glibc.
	* dbl-64/: Likewise.

Co-Authored-By: Paolo Bonzini <bonzini@gnu.org>

From-SVN: r110434
2006-01-31 11:56:46 +00:00

190 lines
7.6 KiB
C

/*
* IBM Accurate Mathematical Library
* written by International Business Machines Corp.
* Copyright (C) 2001 Free Software Foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
/********************************************************************/
/* */
/* MODULE_NAME: dosincos.c */
/* */
/* */
/* FUNCTIONS: dubsin */
/* dubcos */
/* docos */
/* FILES NEEDED: endian.h mydefs.h dla.h dosincos.h */
/* sincos.tbl */
/* */
/* Routines compute sin() and cos() as Double-Length numbers */
/********************************************************************/
#include "endian.h"
#include "mydefs.h"
#include "sincos.tbl"
#include "dla.h"
#include "dosincos.h"
#include "math_private.h"
/***********************************************************************/
/* Routine receive Double-Length number (x+dx) and computing sin(x+dx) */
/* as Double-Length number and store it at array v .It computes it by */
/* arithmetic action on Double-Length numbers */
/*(x+dx) between 0 and PI/4 */
/***********************************************************************/
void __dubsin(double x, double dx, double v[]) {
double r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
sn,ssn,cs,ccs,ds,dss,dc,dcc;
#if 0
double xx,y,yy,z,zz;
#endif
mynumber u;
int4 k;
u.x=x+big.x;
k = u.i[LOW_HALF]<<2;
x=x-(u.x-big.x);
d=x+dx;
dd=(x-d)+dx;
/* sin(x+dx)=sin(Xi+t)=sin(Xi)*cos(t) + cos(Xi)sin(t) where t ->0 */
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
sn=sincos.x[k]; /* */
ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
cs=sincos.x[k+2]; /* */
ccs=sincos.x[k+3]; /* */
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* Taylor */
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* series */
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc); /* for sin */
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,d,dd,ds,dss,r,s); /* ds=sin(t) */
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc); ;/* Taylor */
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* series */
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* for cos */
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc); /* dc=cos(t) */
MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
SUB2(e,ee,dc,dcc,e,ee,r,s);
ADD2(e,ee,sn,ssn,e,ee,r,s); /* e+ee=sin(x+dx) */
v[0]=e;
v[1]=ee;
}
/**********************************************************************/
/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
/* as Double-Length number and store it in array v .It computes it by */
/* arithmetic action on Double-Length numbers */
/*(x+dx) between 0 and PI/4 */
/**********************************************************************/
void __dubcos(double x, double dx, double v[]) {
double r,s,p,hx,tx,hy,ty,q,c,cc,d,dd,d2,dd2,e,ee,
sn,ssn,cs,ccs,ds,dss,dc,dcc;
#if 0
double xx,y,yy,z,zz;
#endif
mynumber u;
int4 k;
u.x=x+big.x;
k = u.i[LOW_HALF]<<2;
x=x-(u.x-big.x);
d=x+dx;
dd=(x-d)+dx; /* cos(x+dx)=cos(Xi+t)=cos(Xi)cos(t) - sin(Xi)sin(t) */
MUL2(d,dd,d,dd,d2,dd2,p,hx,tx,hy,ty,q,c,cc);
sn=sincos.x[k]; /* */
ssn=sincos.x[k+1]; /* sin(Xi) and cos(Xi) */
cs=sincos.x[k+2]; /* */
ccs=sincos.x[k+3]; /* */
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,d,dd,ds,dss,r,s);
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
MUL2(cs,ccs,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
MUL2(dc,dcc,sn,ssn,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
MUL2(d2,dd2,s7.x,ss7.x,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,s5.x,ss5.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,s3.x,ss3.x,ds,dss,r,s);
MUL2(d2,dd2,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
MUL2(d,dd,ds,dss,ds,dss,p,hx,tx,hy,ty,q,c,cc);
ADD2(ds,dss,d,dd,ds,dss,r,s);
MUL2(d2,dd2,c8.x,cc8.x,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c6.x,cc6.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c4.x,cc4.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(dc,dcc,c2.x,cc2.x,dc,dcc,r,s);
MUL2(d2,dd2,dc,dcc,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
MUL2(sn,ssn,ds,dss,e,ee,p,hx,tx,hy,ty,q,c,cc);
MUL2(dc,dcc,cs,ccs,dc,dcc,p,hx,tx,hy,ty,q,c,cc);
ADD2(e,ee,dc,dcc,e,ee,r,s);
SUB2(cs,ccs,e,ee,e,ee,r,s);
v[0]=e;
v[1]=ee;
}
/**********************************************************************/
/* Routine receive Double-Length number (x+dx) and computes cos(x+dx) */
/* as Double-Length number and store it in array v */
/**********************************************************************/
void __docos(double x, double dx, double v[]) {
double y,yy,p,w[2];
if (x>0) {y=x; yy=dx;}
else {y=-x; yy=-dx;}
if (y<0.5*hp0.x) /* y< PI/4 */
{__dubcos(y,yy,w); v[0]=w[0]; v[1]=w[1];}
else if (y<1.5*hp0.x) { /* y< 3/4 * PI */
p=hp0.x-y; /* p = PI/2 - y */
yy=hp1.x-yy;
y=p+yy;
yy=(p-y)+yy;
if (y>0) {__dubsin(y,yy,w); v[0]=w[0]; v[1]=w[1];}
/* cos(x) = sin ( 90 - x ) */
else {__dubsin(-y,-yy,w); v[0]=-w[0]; v[1]=-w[1];
}
}
else { /* y>= 3/4 * PI */
p=2.0*hp0.x-y; /* p = PI- y */
yy=2.0*hp1.x-yy;
y=p+yy;
yy=(p-y)+yy;
__dubcos(y,yy,w);
v[0]=-w[0];
v[1]=-w[1];
}
}