gcc/gcc/vec.h
2005-04-24 01:40:53 +00:00

908 lines
33 KiB
C

/* Vector API for GNU compiler.
Copyright (C) 2004 Free Software Foundation, Inc.
Contributed by Nathan Sidwell <nathan@codesourcery.com>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA. */
#ifndef GCC_VEC_H
#define GCC_VEC_H
/* The macros here implement a set of templated vector types and
associated interfaces. These templates are implemented with
macros, as we're not in C++ land. The interface functions are
typesafe and use static inline functions, sometimes backed by
out-of-line generic functions. The vectors are designed to
interoperate with the GTY machinery.
Because of the different behavior of objects and of pointers to
objects, there are two flavors. One to deal with a vector of
pointers to objects, and one to deal with a vector of objects
themselves. Both of these pass pointers to objects around -- in
the former case the pointers are stored into the vector and in the
latter case the pointers are dereferenced and the objects copied
into the vector. Therefore, when using a vector of pointers, the
objects pointed to must be long lived, but when dealing with a
vector of objects, the source objects need not be. The vector of
pointers API is also appropriate for small register sized objects
like integers.
There are both 'index' and 'iterate' accessors. The iterator
returns a boolean iteration condition and updates the iteration
variable passed by reference. Because the iterator will be
inlined, the address-of can be optimized away.
The vectors are implemented using the trailing array idiom, thus
they are not resizeable without changing the address of the vector
object itself. This means you cannot have variables or fields of
vector type -- always use a pointer to a vector. The one exception
is the final field of a structure, which could be a vector type.
You will have to use the embedded_size & embedded_init calls to
create such objects, and they will probably not be resizeable (so
don't use the 'safe' allocation variants). The trailing array
idiom is used (rather than a pointer to an array of data), because,
if we allow NULL to also represent an empty vector, empty vectors
occupy minimal space in the structure containing them.
Each operation that increases the number of active elements is
available in 'quick' and 'safe' variants. The former presumes that
there is sufficient allocated space for the operation to succeed
(it dies if there is not). The latter will reallocate the
vector, if needed. Reallocation causes an exponential increase in
vector size. If you know you will be adding N elements, it would
be more efficient to use the reserve operation before adding the
elements with the 'quick' operation. This will ensure there are at
least as many elements as you ask for, it will exponentially
increase if there are too few spare slots. If you want reserve a
specific number of slots, but do not want the exponential increase
(for instance, you know this is the last allocation), use a
negative number for reservation. You can also create a vector of a
specific size from the get go.
You should prefer the push and pop operations, as they append and
remove from the end of the vector. If you need to remove several
items in one go, use the truncate operation. The insert and remove
operations allow you to change elements in the middle of the
vector. There are two remove operations, one which preserves the
element ordering 'ordered_remove', and one which does not
'unordered_remove'. The latter function copies the end element
into the removed slot, rather than invoke a memmove operation. The
'lower_bound' function will determine where to place an item in the
array using insert that will maintain sorted order.
When a vector type is defined, first a non-memory managed version
is created. You can then define either or both garbage collected
and heap allocated versions. The allocation mechanism is specified
when the type is defined, and is therefore part of the type. If
you need both gc'd and heap allocated versions, you still must have
*exactly* one definition of the common non-memory managed base vector.
If you need to directly manipulate a vector, then the 'address'
accessor will return the address of the start of the vector. Also
the 'space' predicate will tell you whether there is spare capacity
in the vector. You will not normally need to use these two functions.
Vector types are defined using a DEF_VEC_{O,P}(TYPEDEF) macro, to
get the non-memory allocation version, and then a
DEF_VEC_ALLOC_{O,P}(TYPEDEF,ALLOC) macro to get memory managed
vectors. Variables of vector type are declared using a
VEC(TYPEDEF,ALLOC) macro. The ALLOC argument specifies the
allocation strategy, and can be either 'gc' or 'heap' for garbage
collected and heap allocated respectively. It can be 'none' to get
a vector that must be explicitly allocated (for instance as a
trailing array of another structure). The characters O and P
indicate whether TYPEDEF is a pointer (P) or object (O) type. Be
careful to pick the correct one, as you'll get an awkward and
inefficient API if you get the wrong one. There is a check, which
results in a compile-time warning, for the P versions, but there is
no check for the O versions, as that is not possible in plain C.
An example of their use would be,
DEF_VEC_P(tree); // non-managed tree vector.
DEF_VEC_ALLOC_P(tree,gc); // gc'd vector of tree pointers. This must
// appear at file scope.
struct my_struct {
VEC(tree,gc) *v; // A (pointer to) a vector of tree pointers.
};
struct my_struct *s;
if (VEC_length(tree,s->v)) { we have some contents }
VEC_safe_push(tree,gc,s->v,decl); // append some decl onto the end
for (ix = 0; VEC_iterate(tree,s->v,ix,elt); ix++)
{ do something with elt }
*/
/* Macros to invoke API calls. A single macro works for both pointer
and object vectors, but the argument and return types might well be
different. In each macro, T is the typedef of the vector elements,
and A is the allocation strategy. The allocation strategy is only
present when it is required. Some of these macros pass the vector,
V, by reference (by taking its address), this is noted in the
descriptions. */
/* Length of vector
unsigned VEC_T_length(const VEC(T) *v);
Return the number of active elements in V. V can be NULL, in which
case zero is returned. */
#define VEC_length(T,V) (VEC_OP(T,base,length)(VEC_BASE(V)))
/* Get the final element of the vector.
T VEC_T_last(VEC(T) *v); // Pointer
T *VEC_T_last(VEC(T) *v); // Object
Return the final element. V must not be empty. */
#define VEC_last(T,V) (VEC_OP(T,base,last)(VEC_BASE(V) VEC_CHECK_INFO))
/* Index into vector
T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer
T *VEC_T_index(VEC(T) *v, unsigned ix); // Object
Return the IX'th element. If IX must be in the domain of V. */
#define VEC_index(T,V,I) (VEC_OP(T,base,index)(VEC_BASE(V),I VEC_CHECK_INFO))
/* Iterate over vector
int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer
int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object
Return iteration condition and update PTR to point to the IX'th
element. At the end of iteration, sets PTR to NULL. Use this to
iterate over the elements of a vector as follows,
for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++)
continue; */
#define VEC_iterate(T,V,I,P) (VEC_OP(T,base,iterate)(VEC_BASE(V),I,&(P)))
/* Allocate new vector.
VEC(T,A) *VEC_T_A_alloc(int reserve);
Allocate a new vector with space for RESERVE objects. If RESERVE
is zero, NO vector is created. */
#define VEC_alloc(T,A,N) (VEC_OP(T,A,alloc)(N MEM_STAT_INFO))
/* Free a vector.
void VEC_T_A_free(VEC(T,A) *&);
Free a vector and set it to NULL. */
#define VEC_free(T,A,V) (VEC_OP(T,A,free)(&V))
/* Use these to determine the required size and initialization of a
vector embedded within another structure (as the final member).
size_t VEC_T_embedded_size(int reserve);
void VEC_T_embedded_init(VEC(T) *v, int reserve);
These allow the caller to perform the memory allocation. */
#define VEC_embedded_size(T,N) (VEC_OP(T,base,embedded_size)(N))
#define VEC_embedded_init(T,O,N) (VEC_OP(T,base,embedded_init)(VEC_BASE(O),N))
/* Determine if a vector has additional capacity.
int VEC_T_space (VEC(T) *v,int reserve)
If V has space for RESERVE additional entries, return nonzero. You
usually only need to use this if you are doing your own vector
reallocation, for instance on an embedded vector. This returns
nonzero in exactly the same circumstances that VEC_T_reserve
will. */
#define VEC_space(T,V,R) \
(VEC_OP(T,base,space)(VEC_BASE(V),R VEC_CHECK_INFO))
/* Reserve space.
int VEC_T_A_reserve(VEC(T,A) *&v, int reserve);
Ensure that V has at least abs(RESERVE) slots available. The
signedness of RESERVE determines the reallocation behavior. A
negative value will not create additional headroom beyond that
requested. A positive value will create additional headroom. Note
this can cause V to be reallocated. Returns nonzero iff
reallocation actually occurred. */
#define VEC_reserve(T,A,V,R) \
(VEC_OP(T,A,reserve)(&(V),R VEC_CHECK_INFO MEM_STAT_INFO))
/* Push object with no reallocation
T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer
T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. There must
be sufficient space in the vector. */
#define VEC_quick_push(T,V,O) \
(VEC_OP(T,base,quick_push)(VEC_BASE(V),O VEC_CHECK_INFO))
/* Push object with reallocation
T *VEC_T_A_safe_push (VEC(T,A) *&v, T obj); // Pointer
T *VEC_T_A_safe_push (VEC(T,A) *&v, T *obj); // Object
Push a new element onto the end, returns a pointer to the slot
filled in. For object vectors, the new value can be NULL, in which
case NO initialization is performed. Reallocates V, if needed. */
#define VEC_safe_push(T,A,V,O) \
(VEC_OP(T,A,safe_push)(&(V),O VEC_CHECK_INFO MEM_STAT_INFO))
/* Pop element off end
T VEC_T_pop (VEC(T) *v); // Pointer
void VEC_T_pop (VEC(T) *v); // Object
Pop the last element off the end. Returns the element popped, for
pointer vectors. */
#define VEC_pop(T,V) (VEC_OP(T,base,pop)(VEC_BASE(V) VEC_CHECK_INFO))
/* Truncate to specific length
void VEC_T_truncate (VEC(T) *v, unsigned len);
Set the length as specified. The new length must be less than or
equal to the current length. This is an O(1) operation. */
#define VEC_truncate(T,V,I) \
(VEC_OP(T,base,truncate)(VEC_BASE(V),I VEC_CHECK_INFO))
/* Grow to a specific length.
void VEC_T_A_safe_grow (VEC(T,A) *&v, int len);
Grow the vector to a specific length. The LEN must be as
long or longer than the current length. The new elements are
uninitialized. */
#define VEC_safe_grow(T,A,V,I) \
(VEC_OP(T,A,safe_grow)(&(V),I VEC_CHECK_INFO))
/* Replace element
T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer
T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object
Replace the IXth element of V with a new value, VAL. For pointer
vectors returns the original value. For object vectors returns a
pointer to the new value. For object vectors the new value can be
NULL, in which case no overwriting of the slot is actually
performed. */
#define VEC_replace(T,V,I,O) \
(VEC_OP(T,base,replace)(VEC_BASE(V),I,O VEC_CHECK_INFO))
/* Insert object with no reallocation
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer
T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. There must be sufficient space. */
#define VEC_quick_insert(T,V,I,O) \
(VEC_OP(T,base,quick_insert)(VEC_BASE(V),I,O VEC_CHECK_INFO))
/* Insert object with reallocation
T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer
T *VEC_T_A_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object
Insert an element, VAL, at the IXth position of V. Return a pointer
to the slot created. For vectors of object, the new value can be
NULL, in which case no initialization of the inserted slot takes
place. Reallocate V, if necessary. */
#define VEC_safe_insert(T,A,V,I,O) \
(VEC_OP(T,A,safe_insert)(&(V),I,O VEC_CHECK_INFO MEM_STAT_INFO))
/* Remove element retaining order
T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer
void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is preserved. For pointer vectors returns the
removed object. This is an O(N) operation due to a memmove. */
#define VEC_ordered_remove(T,V,I) \
(VEC_OP(T,base,ordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
/* Remove element destroying order
T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer
void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object
Remove an element from the IXth position of V. Ordering of
remaining elements is destroyed. For pointer vectors returns the
removed object. This is an O(1) operation. */
#define VEC_unordered_remove(T,V,I) \
(VEC_OP(T,base,unordered_remove)(VEC_BASE(V),I VEC_CHECK_INFO))
/* Get the address of the array of elements
T *VEC_T_address (VEC(T) v)
If you need to directly manipulate the array (for instance, you
want to feed it to qsort), use this accessor. */
#define VEC_address(T,V) (VEC_OP(T,base,address)(VEC_BASE(V)))
/* Find the first index in the vector not less than the object.
unsigned VEC_T_lower_bound (VEC(T) *v, const T val,
bool (*lessthan) (const T, const T)); // Pointer
unsigned VEC_T_lower_bound (VEC(T) *v, const T *val,
bool (*lessthan) (const T*, const T*)); // Object
Find the first position in which VAL could be inserted without
changing the ordering of V. LESSTHAN is a function that returns
true if the first argument is strictly less than the second. */
#define VEC_lower_bound(T,V,O,LT) \
(VEC_OP(T,base,lower_bound)(VEC_BASE(V),O,LT VEC_CHECK_INFO))
#if !IN_GENGTYPE
/* Reallocate an array of elements with prefix. */
extern void *vec_gc_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_gc_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
extern void ggc_free (void *);
#define vec_gc_free(V) ggc_free (V)
extern void *vec_heap_p_reserve (void *, int MEM_STAT_DECL);
extern void *vec_heap_o_reserve (void *, int, size_t, size_t MEM_STAT_DECL);
#define vec_heap_free(V) free (V)
#if ENABLE_CHECKING
#define VEC_CHECK_INFO ,__FILE__,__LINE__,__FUNCTION__
#define VEC_CHECK_DECL ,const char *file_,unsigned line_,const char *function_
#define VEC_CHECK_PASS ,file_,line_,function_
#define VEC_ASSERT(EXPR,OP,T,A) \
(void)((EXPR) ? 0 : (VEC_ASSERT_FAIL(OP,VEC(T,A)), 0))
extern void vec_assert_fail (const char *, const char * VEC_CHECK_DECL)
ATTRIBUTE_NORETURN;
#define VEC_ASSERT_FAIL(OP,VEC) vec_assert_fail (OP,#VEC VEC_CHECK_PASS)
#else
#define VEC_CHECK_INFO
#define VEC_CHECK_DECL
#define VEC_CHECK_PASS
#define VEC_ASSERT(EXPR,OP,T,A) (void)(EXPR)
#endif
#define VEC(T,A) VEC_##T##_##A
#define VEC_OP(T,A,OP) VEC_##T##_##A##_##OP
#else /* IN_GENGTYPE */
#define VEC(T,A) VEC_ T _ A
#define VEC_STRINGIFY(X) VEC_STRINGIFY_(X)
#define VEC_STRINGIFY_(X) #X
#undef GTY
#endif /* IN_GENGTYPE */
/* Base of vector type, not user visible. */
#define VEC_T(T,B) \
typedef struct VEC(T,B) GTY(()) \
{ \
unsigned num; \
unsigned alloc; \
T GTY ((length ("%h.num"))) vec[1]; \
} VEC(T,B)
/* Derived vector type, user visible. */
#define VEC_TA(T,B,A,GTY) \
typedef struct VEC(T,A) GTY \
{ \
VEC(T,B) base; \
} VEC(T,A)
/* Convert to base type. */
#define VEC_BASE(P) ((P) ? &(P)->base : 0)
/* Vector of pointer to object. */
#if IN_GENGTYPE
{"DEF_VEC_P", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_P", VEC_STRINGIFY (VEC_TA (#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_P(T) \
VEC_T(T,base); \
\
static inline void VEC_OP (T,must,be_a_pointer_or_integer) (void) \
{ \
(void)((T)0 == (void *)0); \
} \
\
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline T VEC_OP (T,base,last) \
(const VEC(T,base) *vec_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
\
return vec_->vec[vec_->num - 1]; \
} \
\
static inline T VEC_OP (T,base,index) \
(const VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
\
return vec_->vec[ix_]; \
} \
\
static inline int VEC_OP (T,base,iterate) \
(const VEC(T,base) *vec_, unsigned ix_, T *ptr) \
{ \
if (vec_ && ix_ < vec_->num) \
{ \
*ptr = vec_->vec[ix_]; \
return 1; \
} \
else \
{ \
*ptr = 0; \
return 0; \
} \
} \
\
static inline size_t VEC_OP (T,base,embedded_size) \
(int alloc_) \
{ \
return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
} \
\
static inline void VEC_OP (T,base,embedded_init) \
(VEC(T,base) *vec_, int alloc_) \
{ \
vec_->num = 0; \
vec_->alloc = alloc_; \
} \
\
static inline int VEC_OP (T,base,space) \
(VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (alloc_ >= 0, "space", T, base); \
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
} \
\
static inline T *VEC_OP (T,base,quick_push) \
(VEC(T,base) *vec_, T obj_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
slot_ = &vec_->vec[vec_->num++]; \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline T VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
{ \
T obj_; \
\
VEC_ASSERT (vec_->num, "pop", T, base); \
obj_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
static inline void VEC_OP (T,base,truncate) \
(VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
if (vec_) \
vec_->num = size_; \
} \
\
static inline T VEC_OP (T,base,replace) \
(VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
{ \
T old_obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
old_obj_ = vec_->vec[ix_]; \
vec_->vec[ix_] = obj_; \
\
return old_obj_; \
} \
\
static inline T *VEC_OP (T,base,quick_insert) \
(VEC(T,base) *vec_, unsigned ix_, T obj_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
*slot_ = obj_; \
\
return slot_; \
} \
\
static inline T VEC_OP (T,base,ordered_remove) \
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
T *slot_; \
T obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
\
return obj_; \
} \
\
static inline T VEC_OP (T,base,unordered_remove) \
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
T *slot_; \
T obj_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
slot_ = &vec_->vec[ix_]; \
obj_ = *slot_; \
*slot_ = vec_->vec[--vec_->num]; \
\
return obj_; \
} \
\
static inline T *VEC_OP (T,base,address) \
(VEC(T,base) *vec_) \
{ \
return vec_ ? vec_->vec : 0; \
} \
\
static inline unsigned VEC_OP (T,base,lower_bound) \
(VEC(T,base) *vec_, const T obj_, \
bool (*lessthan_)(const T, const T) VEC_CHECK_DECL) \
{ \
unsigned int len_ = VEC_OP (T,base, length) (vec_); \
unsigned int half_, middle_; \
unsigned int first_ = 0; \
while (len_ > 0) \
{ \
T middle_elem_; \
half_ = len_ >> 1; \
middle_ = first_; \
middle_ += half_; \
middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
if (lessthan_ (middle_elem_, obj_)) \
{ \
first_ = middle_; \
++first_; \
len_ = len_ - half_ - 1; \
} \
else \
len_ = half_; \
} \
return first_; \
} \
\
VEC_TA(T,base,none,)
#define DEF_VEC_ALLOC_P(T,A) \
VEC_TA(T,base,A,); \
\
static inline VEC(T,A) *VEC_OP (T,A,alloc) \
(int alloc_ MEM_STAT_DECL) \
{ \
/* We must request exact size allocation, hence the negation. */ \
return (VEC(T,A) *) vec_##A##_p_reserve (NULL, -alloc_ PASS_MEM_STAT); \
} \
\
static inline void VEC_OP (T,A,free) \
(VEC(T,A) **vec_) \
{ \
if (*vec_) \
vec_##A##_free (*vec_); \
*vec_ = NULL; \
} \
\
static inline int VEC_OP (T,A,reserve) \
(VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
alloc_ < 0 ? -alloc_ : alloc_ \
VEC_CHECK_PASS); \
\
if (extend) \
*vec_ = (VEC(T,A) *) vec_##A##_p_reserve (*vec_, alloc_ PASS_MEM_STAT); \
\
return extend; \
} \
\
static inline void VEC_OP (T,A,safe_grow) \
(VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_ASSERT (size_ >= 0 \
&& VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
"grow", T, A); \
VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
VEC_CHECK_PASS PASS_MEM_STAT); \
VEC_BASE (*vec_)->num = size_; \
} \
\
static inline T *VEC_OP (T,A,safe_push) \
(VEC(T,A) **vec_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
\
return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
} \
\
static inline T *VEC_OP (T,A,safe_insert) \
(VEC(T,A) **vec_, unsigned ix_, T obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
\
return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
VEC_CHECK_PASS); \
} \
\
struct vec_swallow_trailing_semi
#endif
/* Vector of object. */
#if IN_GENGTYPE
{"DEF_VEC_O", VEC_STRINGIFY (VEC_T(#0,#1)) ";", "none"},
{"DEF_VEC_ALLOC_O", VEC_STRINGIFY (VEC_TA(#0,#1,#2,#3)) ";", NULL},
#else
#define DEF_VEC_O(T) \
VEC_T(T,base); \
\
static inline unsigned VEC_OP (T,base,length) (const VEC(T,base) *vec_) \
{ \
return vec_ ? vec_->num : 0; \
} \
\
static inline T *VEC_OP (T,base,last) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ && vec_->num, "last", T, base); \
\
return &vec_->vec[vec_->num - 1]; \
} \
\
static inline T *VEC_OP (T,base,index) \
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ && ix_ < vec_->num, "index", T, base); \
\
return &vec_->vec[ix_]; \
} \
\
static inline int VEC_OP (T,base,iterate) \
(VEC(T,base) *vec_, unsigned ix_, T **ptr) \
{ \
if (vec_ && ix_ < vec_->num) \
{ \
*ptr = &vec_->vec[ix_]; \
return 1; \
} \
else \
{ \
*ptr = 0; \
return 0; \
} \
} \
\
static inline size_t VEC_OP (T,base,embedded_size) \
(int alloc_) \
{ \
return offsetof (VEC(T,base),vec) + alloc_ * sizeof(T); \
} \
\
static inline void VEC_OP (T,base,embedded_init) \
(VEC(T,base) *vec_, int alloc_) \
{ \
vec_->num = 0; \
vec_->alloc = alloc_; \
} \
\
static inline int VEC_OP (T,base,space) \
(VEC(T,base) *vec_, int alloc_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (alloc_ >= 0, "space", T, base); \
return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \
} \
\
static inline T *VEC_OP (T,base,quick_push) \
(VEC(T,base) *vec_, const T *obj_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "push", T, base); \
slot_ = &vec_->vec[vec_->num++]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline void VEC_OP (T,base,pop) (VEC(T,base) *vec_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_->num, "pop", T, base); \
--vec_->num; \
} \
\
static inline void VEC_OP (T,base,truncate) \
(VEC(T,base) *vec_, unsigned size_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (vec_ ? vec_->num >= size_ : !size_, "truncate", T, base); \
if (vec_) \
vec_->num = size_; \
} \
\
static inline T *VEC_OP (T,base,replace) \
(VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (ix_ < vec_->num, "replace", T, base); \
slot_ = &vec_->vec[ix_]; \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline T *VEC_OP (T,base,quick_insert) \
(VEC(T,base) *vec_, unsigned ix_, const T *obj_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (vec_->num < vec_->alloc, "insert", T, base); \
VEC_ASSERT (ix_ <= vec_->num, "insert", T, base); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \
if (obj_) \
*slot_ = *obj_; \
\
return slot_; \
} \
\
static inline void VEC_OP (T,base,ordered_remove) \
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
T *slot_; \
\
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
slot_ = &vec_->vec[ix_]; \
memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \
} \
\
static inline void VEC_OP (T,base,unordered_remove) \
(VEC(T,base) *vec_, unsigned ix_ VEC_CHECK_DECL) \
{ \
VEC_ASSERT (ix_ < vec_->num, "remove", T, base); \
vec_->vec[ix_] = vec_->vec[--vec_->num]; \
} \
\
static inline T *VEC_OP (T,base,address) \
(VEC(T,base) *vec_) \
{ \
return vec_ ? vec_->vec : 0; \
} \
\
static inline unsigned VEC_OP (T,base,lower_bound) \
(VEC(T,base) *vec_, const T *obj_, \
bool (*lessthan_)(const T *, const T *) VEC_CHECK_DECL) \
{ \
unsigned int len_ = VEC_OP (T, base, length) (vec_); \
unsigned int half_, middle_; \
unsigned int first_ = 0; \
while (len_ > 0) \
{ \
T *middle_elem_; \
half_ = len_ >> 1; \
middle_ = first_; \
middle_ += half_; \
middle_elem_ = VEC_OP (T,base,index) (vec_, middle_ VEC_CHECK_PASS); \
if (lessthan_ (middle_elem_, obj_)) \
{ \
first_ = middle_; \
++first_; \
len_ = len_ - half_ - 1; \
} \
else \
len_ = half_; \
} \
return first_; \
} \
\
VEC_TA(T,base,none,)
#define DEF_VEC_ALLOC_O(T,A) \
VEC_TA(T,base,A,); \
\
static inline VEC(T,A) *VEC_OP (T,A,alloc) \
(int alloc_ MEM_STAT_DECL) \
{ \
/* We must request exact size allocation, hence the negation. */ \
return (VEC(T,A) *) vec_##A##_o_reserve (NULL, -alloc_, \
offsetof (VEC(T,A),base.vec), \
sizeof (T) \
PASS_MEM_STAT); \
} \
\
static inline void VEC_OP (T,A,free) \
(VEC(T,A) **vec_) \
{ \
if (*vec_) \
vec_##A##_free (*vec_); \
*vec_ = NULL; \
} \
\
static inline int VEC_OP (T,A,reserve) \
(VEC(T,A) **vec_, int alloc_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
int extend = !VEC_OP (T,base,space) (VEC_BASE(*vec_), \
alloc_ < 0 ? -alloc_ : alloc_ \
VEC_CHECK_PASS); \
\
if (extend) \
*vec_ = (VEC(T,A) *) vec_##A##_o_reserve (*vec_, alloc_, \
offsetof (VEC(T,A),base.vec),\
sizeof (T) \
PASS_MEM_STAT); \
\
return extend; \
} \
\
static inline void VEC_OP (T,A,safe_grow) \
(VEC(T,A) **vec_, int size_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_ASSERT (size_ >= 0 \
&& VEC_OP(T,base,length) VEC_BASE(*vec_) <= (unsigned)size_, \
"grow", T, A); \
VEC_OP (T,A,reserve) (vec_, (int)(*vec_ ? VEC_BASE(*vec_)->num : 0) - size_ \
VEC_CHECK_PASS PASS_MEM_STAT); \
VEC_BASE (*vec_)->num = size_; \
VEC_BASE (*vec_)->num = size_; \
} \
\
static inline T *VEC_OP (T,A,safe_push) \
(VEC(T,A) **vec_, const T *obj_ VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
\
return VEC_OP (T,base,quick_push) (VEC_BASE(*vec_), obj_ VEC_CHECK_PASS); \
} \
\
static inline T *VEC_OP (T,A,safe_insert) \
(VEC(T,A) **vec_, unsigned ix_, const T *obj_ \
VEC_CHECK_DECL MEM_STAT_DECL) \
{ \
VEC_OP (T,A,reserve) (vec_, 1 VEC_CHECK_PASS PASS_MEM_STAT); \
\
return VEC_OP (T,base,quick_insert) (VEC_BASE(*vec_), ix_, obj_ \
VEC_CHECK_PASS); \
} \
\
struct vec_swallow_trailing_semi
#endif
#endif /* GCC_VEC_H */