5e8f01f434
gcc/ * rtl.h (set_src_cost, get_full_set_src_cost): New functions. * auto-inc-dec.c (attempt_change): Use set_src_cost instead of rtx_cost. * calls.c (precompute_register_parameters): Likewise. * combine.c (expand_compound_operation, make_extraction): Likewise. (force_to_mode, distribute_and_simplify_rtx): Likewise. * dse.c (find_shift_sequence): Likewise. * expmed.c (init_expmed, expand_mult, expand_smod_pow2): Likewise. * expr.c (compress_float_constant): Likewise. * fwprop.c (should_replace_address, try_fwprop_subst): Likewise. * gcse.c (want_to_gcse_p): Likewise. * ifcvt.c (noce_try_sign_mask): Likewise. * loop-doloop.c (doloop_optimize): Likewise. * loop-invariant.c (create_new_invariant): Likewise. * optabs.c (avoid_expensive_constant): Likewise. * postreload.c (reload_cse_simplify_set, reload_cse_simplify_operands) (try_replace_in_use, reload_cse_move2add): Likewise. * reload1.c (calculate_elim_costs_all_insns): Likewise. (note_reg_elim_costly): Likewise. * rtlanal.c (insn_rtx_cost): Likewise. * simplify-rtx.c (simplify_binary_operation_1): Likewise. * stmt.c (lshift_cheap_p): Likewise. * tree-ssa-loop-ivopts.c (seq_cost, computation_cost): Likewise. * config/avr/avr.c (final_prescan_insn): Likewise. * config/bfin/bfin.c (bfin_rtx_costs): Likewise. * config/mips/mips.c (mips_binary_cost, mips_rtx_costs): Likewise. From-SVN: r177851
3800 lines
110 KiB
C
3800 lines
110 KiB
C
/* Partial redundancy elimination / Hoisting for RTL.
|
||
Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
|
||
2006, 2007, 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* TODO
|
||
- reordering of memory allocation and freeing to be more space efficient
|
||
- do rough calc of how many regs are needed in each block, and a rough
|
||
calc of how many regs are available in each class and use that to
|
||
throttle back the code in cases where RTX_COST is minimal.
|
||
- a store to the same address as a load does not kill the load if the
|
||
source of the store is also the destination of the load. Handling this
|
||
allows more load motion, particularly out of loops.
|
||
|
||
*/
|
||
|
||
/* References searched while implementing this.
|
||
|
||
Compilers Principles, Techniques and Tools
|
||
Aho, Sethi, Ullman
|
||
Addison-Wesley, 1988
|
||
|
||
Global Optimization by Suppression of Partial Redundancies
|
||
E. Morel, C. Renvoise
|
||
communications of the acm, Vol. 22, Num. 2, Feb. 1979
|
||
|
||
A Portable Machine-Independent Global Optimizer - Design and Measurements
|
||
Frederick Chow
|
||
Stanford Ph.D. thesis, Dec. 1983
|
||
|
||
A Fast Algorithm for Code Movement Optimization
|
||
D.M. Dhamdhere
|
||
SIGPLAN Notices, Vol. 23, Num. 10, Oct. 1988
|
||
|
||
A Solution to a Problem with Morel and Renvoise's
|
||
Global Optimization by Suppression of Partial Redundancies
|
||
K-H Drechsler, M.P. Stadel
|
||
ACM TOPLAS, Vol. 10, Num. 4, Oct. 1988
|
||
|
||
Practical Adaptation of the Global Optimization
|
||
Algorithm of Morel and Renvoise
|
||
D.M. Dhamdhere
|
||
ACM TOPLAS, Vol. 13, Num. 2. Apr. 1991
|
||
|
||
Efficiently Computing Static Single Assignment Form and the Control
|
||
Dependence Graph
|
||
R. Cytron, J. Ferrante, B.K. Rosen, M.N. Wegman, and F.K. Zadeck
|
||
ACM TOPLAS, Vol. 13, Num. 4, Oct. 1991
|
||
|
||
Lazy Code Motion
|
||
J. Knoop, O. Ruthing, B. Steffen
|
||
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
||
|
||
What's In a Region? Or Computing Control Dependence Regions in Near-Linear
|
||
Time for Reducible Flow Control
|
||
Thomas Ball
|
||
ACM Letters on Programming Languages and Systems,
|
||
Vol. 2, Num. 1-4, Mar-Dec 1993
|
||
|
||
An Efficient Representation for Sparse Sets
|
||
Preston Briggs, Linda Torczon
|
||
ACM Letters on Programming Languages and Systems,
|
||
Vol. 2, Num. 1-4, Mar-Dec 1993
|
||
|
||
A Variation of Knoop, Ruthing, and Steffen's Lazy Code Motion
|
||
K-H Drechsler, M.P. Stadel
|
||
ACM SIGPLAN Notices, Vol. 28, Num. 5, May 1993
|
||
|
||
Partial Dead Code Elimination
|
||
J. Knoop, O. Ruthing, B. Steffen
|
||
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
||
|
||
Effective Partial Redundancy Elimination
|
||
P. Briggs, K.D. Cooper
|
||
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
||
|
||
The Program Structure Tree: Computing Control Regions in Linear Time
|
||
R. Johnson, D. Pearson, K. Pingali
|
||
ACM SIGPLAN Notices, Vol. 29, Num. 6, Jun. 1994
|
||
|
||
Optimal Code Motion: Theory and Practice
|
||
J. Knoop, O. Ruthing, B. Steffen
|
||
ACM TOPLAS, Vol. 16, Num. 4, Jul. 1994
|
||
|
||
The power of assignment motion
|
||
J. Knoop, O. Ruthing, B. Steffen
|
||
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
||
|
||
Global code motion / global value numbering
|
||
C. Click
|
||
ACM SIGPLAN Notices Vol. 30, Num. 6, Jun. 1995, '95 Conference on PLDI
|
||
|
||
Value Driven Redundancy Elimination
|
||
L.T. Simpson
|
||
Rice University Ph.D. thesis, Apr. 1996
|
||
|
||
Value Numbering
|
||
L.T. Simpson
|
||
Massively Scalar Compiler Project, Rice University, Sep. 1996
|
||
|
||
High Performance Compilers for Parallel Computing
|
||
Michael Wolfe
|
||
Addison-Wesley, 1996
|
||
|
||
Advanced Compiler Design and Implementation
|
||
Steven Muchnick
|
||
Morgan Kaufmann, 1997
|
||
|
||
Building an Optimizing Compiler
|
||
Robert Morgan
|
||
Digital Press, 1998
|
||
|
||
People wishing to speed up the code here should read:
|
||
Elimination Algorithms for Data Flow Analysis
|
||
B.G. Ryder, M.C. Paull
|
||
ACM Computing Surveys, Vol. 18, Num. 3, Sep. 1986
|
||
|
||
How to Analyze Large Programs Efficiently and Informatively
|
||
D.M. Dhamdhere, B.K. Rosen, F.K. Zadeck
|
||
ACM SIGPLAN Notices Vol. 27, Num. 7, Jul. 1992, '92 Conference on PLDI
|
||
|
||
People wishing to do something different can find various possibilities
|
||
in the above papers and elsewhere.
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "diagnostic-core.h"
|
||
#include "toplev.h"
|
||
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "tm_p.h"
|
||
#include "regs.h"
|
||
#include "hard-reg-set.h"
|
||
#include "flags.h"
|
||
#include "insn-config.h"
|
||
#include "recog.h"
|
||
#include "basic-block.h"
|
||
#include "output.h"
|
||
#include "function.h"
|
||
#include "expr.h"
|
||
#include "except.h"
|
||
#include "ggc.h"
|
||
#include "params.h"
|
||
#include "cselib.h"
|
||
#include "intl.h"
|
||
#include "obstack.h"
|
||
#include "timevar.h"
|
||
#include "tree-pass.h"
|
||
#include "hashtab.h"
|
||
#include "df.h"
|
||
#include "dbgcnt.h"
|
||
#include "target.h"
|
||
#include "gcse.h"
|
||
|
||
/* We support GCSE via Partial Redundancy Elimination. PRE optimizations
|
||
are a superset of those done by classic GCSE.
|
||
|
||
Two passes of copy/constant propagation are done around PRE or hoisting
|
||
because the first one enables more GCSE and the second one helps to clean
|
||
up the copies that PRE and HOIST create. This is needed more for PRE than
|
||
for HOIST because code hoisting will try to use an existing register
|
||
containing the common subexpression rather than create a new one. This is
|
||
harder to do for PRE because of the code motion (which HOIST doesn't do).
|
||
|
||
Expressions we are interested in GCSE-ing are of the form
|
||
(set (pseudo-reg) (expression)).
|
||
Function want_to_gcse_p says what these are.
|
||
|
||
In addition, expressions in REG_EQUAL notes are candidates for GCSE-ing.
|
||
This allows PRE to hoist expressions that are expressed in multiple insns,
|
||
such as complex address calculations (e.g. for PIC code, or loads with a
|
||
high part and a low part).
|
||
|
||
PRE handles moving invariant expressions out of loops (by treating them as
|
||
partially redundant).
|
||
|
||
**********************
|
||
|
||
We used to support multiple passes but there are diminishing returns in
|
||
doing so. The first pass usually makes 90% of the changes that are doable.
|
||
A second pass can make a few more changes made possible by the first pass.
|
||
Experiments show any further passes don't make enough changes to justify
|
||
the expense.
|
||
|
||
A study of spec92 using an unlimited number of passes:
|
||
[1 pass] = 1208 substitutions, [2] = 577, [3] = 202, [4] = 192, [5] = 83,
|
||
[6] = 34, [7] = 17, [8] = 9, [9] = 4, [10] = 4, [11] = 2,
|
||
[12] = 2, [13] = 1, [15] = 1, [16] = 2, [41] = 1
|
||
|
||
It was found doing copy propagation between each pass enables further
|
||
substitutions.
|
||
|
||
This study was done before expressions in REG_EQUAL notes were added as
|
||
candidate expressions for optimization, and before the GIMPLE optimizers
|
||
were added. Probably, multiple passes is even less efficient now than
|
||
at the time when the study was conducted.
|
||
|
||
PRE is quite expensive in complicated functions because the DFA can take
|
||
a while to converge. Hence we only perform one pass.
|
||
|
||
**********************
|
||
|
||
The steps for PRE are:
|
||
|
||
1) Build the hash table of expressions we wish to GCSE (expr_hash_table).
|
||
|
||
2) Perform the data flow analysis for PRE.
|
||
|
||
3) Delete the redundant instructions
|
||
|
||
4) Insert the required copies [if any] that make the partially
|
||
redundant instructions fully redundant.
|
||
|
||
5) For other reaching expressions, insert an instruction to copy the value
|
||
to a newly created pseudo that will reach the redundant instruction.
|
||
|
||
The deletion is done first so that when we do insertions we
|
||
know which pseudo reg to use.
|
||
|
||
Various papers have argued that PRE DFA is expensive (O(n^2)) and others
|
||
argue it is not. The number of iterations for the algorithm to converge
|
||
is typically 2-4 so I don't view it as that expensive (relatively speaking).
|
||
|
||
PRE GCSE depends heavily on the second CPROP pass to clean up the copies
|
||
we create. To make an expression reach the place where it's redundant,
|
||
the result of the expression is copied to a new register, and the redundant
|
||
expression is deleted by replacing it with this new register. Classic GCSE
|
||
doesn't have this problem as much as it computes the reaching defs of
|
||
each register in each block and thus can try to use an existing
|
||
register. */
|
||
|
||
/* GCSE global vars. */
|
||
|
||
struct target_gcse default_target_gcse;
|
||
#if SWITCHABLE_TARGET
|
||
struct target_gcse *this_target_gcse = &default_target_gcse;
|
||
#endif
|
||
|
||
/* Set to non-zero if CSE should run after all GCSE optimizations are done. */
|
||
int flag_rerun_cse_after_global_opts;
|
||
|
||
/* An obstack for our working variables. */
|
||
static struct obstack gcse_obstack;
|
||
|
||
struct reg_use {rtx reg_rtx; };
|
||
|
||
/* Hash table of expressions. */
|
||
|
||
struct expr
|
||
{
|
||
/* The expression (SET_SRC for expressions, PATTERN for assignments). */
|
||
rtx expr;
|
||
/* Index in the available expression bitmaps. */
|
||
int bitmap_index;
|
||
/* Next entry with the same hash. */
|
||
struct expr *next_same_hash;
|
||
/* List of anticipatable occurrences in basic blocks in the function.
|
||
An "anticipatable occurrence" is one that is the first occurrence in the
|
||
basic block, the operands are not modified in the basic block prior
|
||
to the occurrence and the output is not used between the start of
|
||
the block and the occurrence. */
|
||
struct occr *antic_occr;
|
||
/* List of available occurrence in basic blocks in the function.
|
||
An "available occurrence" is one that is the last occurrence in the
|
||
basic block and the operands are not modified by following statements in
|
||
the basic block [including this insn]. */
|
||
struct occr *avail_occr;
|
||
/* Non-null if the computation is PRE redundant.
|
||
The value is the newly created pseudo-reg to record a copy of the
|
||
expression in all the places that reach the redundant copy. */
|
||
rtx reaching_reg;
|
||
/* Maximum distance in instructions this expression can travel.
|
||
We avoid moving simple expressions for more than a few instructions
|
||
to keep register pressure under control.
|
||
A value of "0" removes restrictions on how far the expression can
|
||
travel. */
|
||
int max_distance;
|
||
};
|
||
|
||
/* Occurrence of an expression.
|
||
There is one per basic block. If a pattern appears more than once the
|
||
last appearance is used [or first for anticipatable expressions]. */
|
||
|
||
struct occr
|
||
{
|
||
/* Next occurrence of this expression. */
|
||
struct occr *next;
|
||
/* The insn that computes the expression. */
|
||
rtx insn;
|
||
/* Nonzero if this [anticipatable] occurrence has been deleted. */
|
||
char deleted_p;
|
||
/* Nonzero if this [available] occurrence has been copied to
|
||
reaching_reg. */
|
||
/* ??? This is mutually exclusive with deleted_p, so they could share
|
||
the same byte. */
|
||
char copied_p;
|
||
};
|
||
|
||
typedef struct occr *occr_t;
|
||
DEF_VEC_P (occr_t);
|
||
DEF_VEC_ALLOC_P (occr_t, heap);
|
||
|
||
/* Expression hash tables.
|
||
Each hash table is an array of buckets.
|
||
??? It is known that if it were an array of entries, structure elements
|
||
`next_same_hash' and `bitmap_index' wouldn't be necessary. However, it is
|
||
not clear whether in the final analysis a sufficient amount of memory would
|
||
be saved as the size of the available expression bitmaps would be larger
|
||
[one could build a mapping table without holes afterwards though].
|
||
Someday I'll perform the computation and figure it out. */
|
||
|
||
struct hash_table_d
|
||
{
|
||
/* The table itself.
|
||
This is an array of `expr_hash_table_size' elements. */
|
||
struct expr **table;
|
||
|
||
/* Size of the hash table, in elements. */
|
||
unsigned int size;
|
||
|
||
/* Number of hash table elements. */
|
||
unsigned int n_elems;
|
||
};
|
||
|
||
/* Expression hash table. */
|
||
static struct hash_table_d expr_hash_table;
|
||
|
||
/* This is a list of expressions which are MEMs and will be used by load
|
||
or store motion.
|
||
Load motion tracks MEMs which aren't killed by
|
||
anything except itself. (i.e., loads and stores to a single location).
|
||
We can then allow movement of these MEM refs with a little special
|
||
allowance. (all stores copy the same value to the reaching reg used
|
||
for the loads). This means all values used to store into memory must have
|
||
no side effects so we can re-issue the setter value.
|
||
Store Motion uses this structure as an expression table to track stores
|
||
which look interesting, and might be moveable towards the exit block. */
|
||
|
||
struct ls_expr
|
||
{
|
||
struct expr * expr; /* Gcse expression reference for LM. */
|
||
rtx pattern; /* Pattern of this mem. */
|
||
rtx pattern_regs; /* List of registers mentioned by the mem. */
|
||
rtx loads; /* INSN list of loads seen. */
|
||
rtx stores; /* INSN list of stores seen. */
|
||
struct ls_expr * next; /* Next in the list. */
|
||
int invalid; /* Invalid for some reason. */
|
||
int index; /* If it maps to a bitmap index. */
|
||
unsigned int hash_index; /* Index when in a hash table. */
|
||
rtx reaching_reg; /* Register to use when re-writing. */
|
||
};
|
||
|
||
/* Head of the list of load/store memory refs. */
|
||
static struct ls_expr * pre_ldst_mems = NULL;
|
||
|
||
/* Hashtable for the load/store memory refs. */
|
||
static htab_t pre_ldst_table = NULL;
|
||
|
||
/* Bitmap containing one bit for each register in the program.
|
||
Used when performing GCSE to track which registers have been set since
|
||
the start of the basic block. */
|
||
static regset reg_set_bitmap;
|
||
|
||
/* Array, indexed by basic block number for a list of insns which modify
|
||
memory within that block. */
|
||
static VEC (rtx,heap) **modify_mem_list;
|
||
static bitmap modify_mem_list_set;
|
||
|
||
typedef struct modify_pair_s
|
||
{
|
||
rtx dest; /* A MEM. */
|
||
rtx dest_addr; /* The canonical address of `dest'. */
|
||
} modify_pair;
|
||
|
||
DEF_VEC_O(modify_pair);
|
||
DEF_VEC_ALLOC_O(modify_pair,heap);
|
||
|
||
/* This array parallels modify_mem_list, except that it stores MEMs
|
||
being set and their canonicalized memory addresses. */
|
||
static VEC (modify_pair,heap) **canon_modify_mem_list;
|
||
|
||
/* Bitmap indexed by block numbers to record which blocks contain
|
||
function calls. */
|
||
static bitmap blocks_with_calls;
|
||
|
||
/* Various variables for statistics gathering. */
|
||
|
||
/* Memory used in a pass.
|
||
This isn't intended to be absolutely precise. Its intent is only
|
||
to keep an eye on memory usage. */
|
||
static int bytes_used;
|
||
|
||
/* GCSE substitutions made. */
|
||
static int gcse_subst_count;
|
||
/* Number of copy instructions created. */
|
||
static int gcse_create_count;
|
||
|
||
/* Doing code hoisting. */
|
||
static bool doing_code_hoisting_p = false;
|
||
|
||
/* For available exprs */
|
||
static sbitmap *ae_kill;
|
||
|
||
static void compute_can_copy (void);
|
||
static void *gmalloc (size_t) ATTRIBUTE_MALLOC;
|
||
static void *gcalloc (size_t, size_t) ATTRIBUTE_MALLOC;
|
||
static void *gcse_alloc (unsigned long);
|
||
static void alloc_gcse_mem (void);
|
||
static void free_gcse_mem (void);
|
||
static void hash_scan_insn (rtx, struct hash_table_d *);
|
||
static void hash_scan_set (rtx, rtx, struct hash_table_d *);
|
||
static void hash_scan_clobber (rtx, rtx, struct hash_table_d *);
|
||
static void hash_scan_call (rtx, rtx, struct hash_table_d *);
|
||
static int want_to_gcse_p (rtx, int *);
|
||
static int oprs_unchanged_p (const_rtx, const_rtx, int);
|
||
static int oprs_anticipatable_p (const_rtx, const_rtx);
|
||
static int oprs_available_p (const_rtx, const_rtx);
|
||
static void insert_expr_in_table (rtx, enum machine_mode, rtx, int, int, int,
|
||
struct hash_table_d *);
|
||
static unsigned int hash_expr (const_rtx, enum machine_mode, int *, int);
|
||
static int expr_equiv_p (const_rtx, const_rtx);
|
||
static void record_last_reg_set_info (rtx, int);
|
||
static void record_last_mem_set_info (rtx);
|
||
static void record_last_set_info (rtx, const_rtx, void *);
|
||
static void compute_hash_table (struct hash_table_d *);
|
||
static void alloc_hash_table (struct hash_table_d *);
|
||
static void free_hash_table (struct hash_table_d *);
|
||
static void compute_hash_table_work (struct hash_table_d *);
|
||
static void dump_hash_table (FILE *, const char *, struct hash_table_d *);
|
||
static void compute_transp (const_rtx, int, sbitmap *);
|
||
static void compute_local_properties (sbitmap *, sbitmap *, sbitmap *,
|
||
struct hash_table_d *);
|
||
static void mems_conflict_for_gcse_p (rtx, const_rtx, void *);
|
||
static int load_killed_in_block_p (const_basic_block, int, const_rtx, int);
|
||
static void canon_list_insert (rtx, const_rtx, void *);
|
||
static void alloc_pre_mem (int, int);
|
||
static void free_pre_mem (void);
|
||
static void compute_pre_data (void);
|
||
static int pre_expr_reaches_here_p (basic_block, struct expr *,
|
||
basic_block);
|
||
static void insert_insn_end_basic_block (struct expr *, basic_block);
|
||
static void pre_insert_copy_insn (struct expr *, rtx);
|
||
static void pre_insert_copies (void);
|
||
static int pre_delete (void);
|
||
static int pre_gcse (void);
|
||
static int one_pre_gcse_pass (void);
|
||
static void add_label_notes (rtx, rtx);
|
||
static void alloc_code_hoist_mem (int, int);
|
||
static void free_code_hoist_mem (void);
|
||
static void compute_code_hoist_vbeinout (void);
|
||
static void compute_code_hoist_data (void);
|
||
static int hoist_expr_reaches_here_p (basic_block, int, basic_block, char *,
|
||
int, int *);
|
||
static int hoist_code (void);
|
||
static int one_code_hoisting_pass (void);
|
||
static rtx process_insert_insn (struct expr *);
|
||
static int pre_edge_insert (struct edge_list *, struct expr **);
|
||
static int pre_expr_reaches_here_p_work (basic_block, struct expr *,
|
||
basic_block, char *);
|
||
static struct ls_expr * ldst_entry (rtx);
|
||
static void free_ldst_entry (struct ls_expr *);
|
||
static void free_ldst_mems (void);
|
||
static void print_ldst_list (FILE *);
|
||
static struct ls_expr * find_rtx_in_ldst (rtx);
|
||
static inline struct ls_expr * first_ls_expr (void);
|
||
static inline struct ls_expr * next_ls_expr (struct ls_expr *);
|
||
static int simple_mem (const_rtx);
|
||
static void invalidate_any_buried_refs (rtx);
|
||
static void compute_ld_motion_mems (void);
|
||
static void trim_ld_motion_mems (void);
|
||
static void update_ld_motion_stores (struct expr *);
|
||
static void clear_modify_mem_tables (void);
|
||
static void free_modify_mem_tables (void);
|
||
static rtx gcse_emit_move_after (rtx, rtx, rtx);
|
||
static bool is_too_expensive (const char *);
|
||
|
||
#define GNEW(T) ((T *) gmalloc (sizeof (T)))
|
||
#define GCNEW(T) ((T *) gcalloc (1, sizeof (T)))
|
||
|
||
#define GNEWVEC(T, N) ((T *) gmalloc (sizeof (T) * (N)))
|
||
#define GCNEWVEC(T, N) ((T *) gcalloc ((N), sizeof (T)))
|
||
|
||
#define GNEWVAR(T, S) ((T *) gmalloc ((S)))
|
||
#define GCNEWVAR(T, S) ((T *) gcalloc (1, (S)))
|
||
|
||
#define GOBNEW(T) ((T *) gcse_alloc (sizeof (T)))
|
||
#define GOBNEWVAR(T, S) ((T *) gcse_alloc ((S)))
|
||
|
||
/* Misc. utilities. */
|
||
|
||
#define can_copy \
|
||
(this_target_gcse->x_can_copy)
|
||
#define can_copy_init_p \
|
||
(this_target_gcse->x_can_copy_init_p)
|
||
|
||
/* Compute which modes support reg/reg copy operations. */
|
||
|
||
static void
|
||
compute_can_copy (void)
|
||
{
|
||
int i;
|
||
#ifndef AVOID_CCMODE_COPIES
|
||
rtx reg, insn;
|
||
#endif
|
||
memset (can_copy, 0, NUM_MACHINE_MODES);
|
||
|
||
start_sequence ();
|
||
for (i = 0; i < NUM_MACHINE_MODES; i++)
|
||
if (GET_MODE_CLASS (i) == MODE_CC)
|
||
{
|
||
#ifdef AVOID_CCMODE_COPIES
|
||
can_copy[i] = 0;
|
||
#else
|
||
reg = gen_rtx_REG ((enum machine_mode) i, LAST_VIRTUAL_REGISTER + 1);
|
||
insn = emit_insn (gen_rtx_SET (VOIDmode, reg, reg));
|
||
if (recog (PATTERN (insn), insn, NULL) >= 0)
|
||
can_copy[i] = 1;
|
||
#endif
|
||
}
|
||
else
|
||
can_copy[i] = 1;
|
||
|
||
end_sequence ();
|
||
}
|
||
|
||
/* Returns whether the mode supports reg/reg copy operations. */
|
||
|
||
bool
|
||
can_copy_p (enum machine_mode mode)
|
||
{
|
||
if (! can_copy_init_p)
|
||
{
|
||
compute_can_copy ();
|
||
can_copy_init_p = true;
|
||
}
|
||
|
||
return can_copy[mode] != 0;
|
||
}
|
||
|
||
|
||
/* Cover function to xmalloc to record bytes allocated. */
|
||
|
||
static void *
|
||
gmalloc (size_t size)
|
||
{
|
||
bytes_used += size;
|
||
return xmalloc (size);
|
||
}
|
||
|
||
/* Cover function to xcalloc to record bytes allocated. */
|
||
|
||
static void *
|
||
gcalloc (size_t nelem, size_t elsize)
|
||
{
|
||
bytes_used += nelem * elsize;
|
||
return xcalloc (nelem, elsize);
|
||
}
|
||
|
||
/* Cover function to obstack_alloc. */
|
||
|
||
static void *
|
||
gcse_alloc (unsigned long size)
|
||
{
|
||
bytes_used += size;
|
||
return obstack_alloc (&gcse_obstack, size);
|
||
}
|
||
|
||
/* Allocate memory for the reg/memory set tracking tables.
|
||
This is called at the start of each pass. */
|
||
|
||
static void
|
||
alloc_gcse_mem (void)
|
||
{
|
||
/* Allocate vars to track sets of regs. */
|
||
reg_set_bitmap = ALLOC_REG_SET (NULL);
|
||
|
||
/* Allocate array to keep a list of insns which modify memory in each
|
||
basic block. */
|
||
modify_mem_list = GCNEWVEC (VEC (rtx,heap) *, last_basic_block);
|
||
canon_modify_mem_list = GCNEWVEC (VEC (modify_pair,heap) *,
|
||
last_basic_block);
|
||
modify_mem_list_set = BITMAP_ALLOC (NULL);
|
||
blocks_with_calls = BITMAP_ALLOC (NULL);
|
||
}
|
||
|
||
/* Free memory allocated by alloc_gcse_mem. */
|
||
|
||
static void
|
||
free_gcse_mem (void)
|
||
{
|
||
FREE_REG_SET (reg_set_bitmap);
|
||
|
||
free_modify_mem_tables ();
|
||
BITMAP_FREE (modify_mem_list_set);
|
||
BITMAP_FREE (blocks_with_calls);
|
||
}
|
||
|
||
/* Compute the local properties of each recorded expression.
|
||
|
||
Local properties are those that are defined by the block, irrespective of
|
||
other blocks.
|
||
|
||
An expression is transparent in a block if its operands are not modified
|
||
in the block.
|
||
|
||
An expression is computed (locally available) in a block if it is computed
|
||
at least once and expression would contain the same value if the
|
||
computation was moved to the end of the block.
|
||
|
||
An expression is locally anticipatable in a block if it is computed at
|
||
least once and expression would contain the same value if the computation
|
||
was moved to the beginning of the block.
|
||
|
||
We call this routine for pre and code hoisting. They all compute
|
||
basically the same information and thus can easily share this code.
|
||
|
||
TRANSP, COMP, and ANTLOC are destination sbitmaps for recording local
|
||
properties. If NULL, then it is not necessary to compute or record that
|
||
particular property.
|
||
|
||
TABLE controls which hash table to look at. */
|
||
|
||
static void
|
||
compute_local_properties (sbitmap *transp, sbitmap *comp, sbitmap *antloc,
|
||
struct hash_table_d *table)
|
||
{
|
||
unsigned int i;
|
||
|
||
/* Initialize any bitmaps that were passed in. */
|
||
if (transp)
|
||
{
|
||
sbitmap_vector_ones (transp, last_basic_block);
|
||
}
|
||
|
||
if (comp)
|
||
sbitmap_vector_zero (comp, last_basic_block);
|
||
if (antloc)
|
||
sbitmap_vector_zero (antloc, last_basic_block);
|
||
|
||
for (i = 0; i < table->size; i++)
|
||
{
|
||
struct expr *expr;
|
||
|
||
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
||
{
|
||
int indx = expr->bitmap_index;
|
||
struct occr *occr;
|
||
|
||
/* The expression is transparent in this block if it is not killed.
|
||
We start by assuming all are transparent [none are killed], and
|
||
then reset the bits for those that are. */
|
||
if (transp)
|
||
compute_transp (expr->expr, indx, transp);
|
||
|
||
/* The occurrences recorded in antic_occr are exactly those that
|
||
we want to set to nonzero in ANTLOC. */
|
||
if (antloc)
|
||
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
SET_BIT (antloc[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
||
|
||
/* While we're scanning the table, this is a good place to
|
||
initialize this. */
|
||
occr->deleted_p = 0;
|
||
}
|
||
|
||
/* The occurrences recorded in avail_occr are exactly those that
|
||
we want to set to nonzero in COMP. */
|
||
if (comp)
|
||
for (occr = expr->avail_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
SET_BIT (comp[BLOCK_FOR_INSN (occr->insn)->index], indx);
|
||
|
||
/* While we're scanning the table, this is a good place to
|
||
initialize this. */
|
||
occr->copied_p = 0;
|
||
}
|
||
|
||
/* While we're scanning the table, this is a good place to
|
||
initialize this. */
|
||
expr->reaching_reg = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Hash table support. */
|
||
|
||
struct reg_avail_info
|
||
{
|
||
basic_block last_bb;
|
||
int first_set;
|
||
int last_set;
|
||
};
|
||
|
||
static struct reg_avail_info *reg_avail_info;
|
||
static basic_block current_bb;
|
||
|
||
|
||
/* See whether X, the source of a set, is something we want to consider for
|
||
GCSE. */
|
||
|
||
static int
|
||
want_to_gcse_p (rtx x, int *max_distance_ptr)
|
||
{
|
||
#ifdef STACK_REGS
|
||
/* On register stack architectures, don't GCSE constants from the
|
||
constant pool, as the benefits are often swamped by the overhead
|
||
of shuffling the register stack between basic blocks. */
|
||
if (IS_STACK_MODE (GET_MODE (x)))
|
||
x = avoid_constant_pool_reference (x);
|
||
#endif
|
||
|
||
/* GCSE'ing constants:
|
||
|
||
We do not specifically distinguish between constant and non-constant
|
||
expressions in PRE and Hoist. We use set_src_cost below to limit
|
||
the maximum distance simple expressions can travel.
|
||
|
||
Nevertheless, constants are much easier to GCSE, and, hence,
|
||
it is easy to overdo the optimizations. Usually, excessive PRE and
|
||
Hoisting of constant leads to increased register pressure.
|
||
|
||
RA can deal with this by rematerialing some of the constants.
|
||
Therefore, it is important that the back-end generates sets of constants
|
||
in a way that allows reload rematerialize them under high register
|
||
pressure, i.e., a pseudo register with REG_EQUAL to constant
|
||
is set only once. Failing to do so will result in IRA/reload
|
||
spilling such constants under high register pressure instead of
|
||
rematerializing them. */
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case REG:
|
||
case SUBREG:
|
||
case CALL:
|
||
return 0;
|
||
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
if (!doing_code_hoisting_p)
|
||
/* Do not PRE constants. */
|
||
return 0;
|
||
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (doing_code_hoisting_p)
|
||
/* PRE doesn't implement max_distance restriction. */
|
||
{
|
||
int cost;
|
||
int max_distance;
|
||
|
||
gcc_assert (!optimize_function_for_speed_p (cfun)
|
||
&& optimize_function_for_size_p (cfun));
|
||
cost = set_src_cost (x, 0);
|
||
|
||
if (cost < COSTS_N_INSNS (GCSE_UNRESTRICTED_COST))
|
||
{
|
||
max_distance = (GCSE_COST_DISTANCE_RATIO * cost) / 10;
|
||
if (max_distance == 0)
|
||
return 0;
|
||
|
||
gcc_assert (max_distance > 0);
|
||
}
|
||
else
|
||
max_distance = 0;
|
||
|
||
if (max_distance_ptr)
|
||
*max_distance_ptr = max_distance;
|
||
}
|
||
|
||
return can_assign_to_reg_without_clobbers_p (x);
|
||
}
|
||
}
|
||
|
||
/* Used internally by can_assign_to_reg_without_clobbers_p. */
|
||
|
||
static GTY(()) rtx test_insn;
|
||
|
||
/* Return true if we can assign X to a pseudo register such that the
|
||
resulting insn does not result in clobbering a hard register as a
|
||
side-effect.
|
||
|
||
Additionally, if the target requires it, check that the resulting insn
|
||
can be copied. If it cannot, this means that X is special and probably
|
||
has hidden side-effects we don't want to mess with.
|
||
|
||
This function is typically used by code motion passes, to verify
|
||
that it is safe to insert an insn without worrying about clobbering
|
||
maybe live hard regs. */
|
||
|
||
bool
|
||
can_assign_to_reg_without_clobbers_p (rtx x)
|
||
{
|
||
int num_clobbers = 0;
|
||
int icode;
|
||
|
||
/* If this is a valid operand, we are OK. If it's VOIDmode, we aren't. */
|
||
if (general_operand (x, GET_MODE (x)))
|
||
return 1;
|
||
else if (GET_MODE (x) == VOIDmode)
|
||
return 0;
|
||
|
||
/* Otherwise, check if we can make a valid insn from it. First initialize
|
||
our test insn if we haven't already. */
|
||
if (test_insn == 0)
|
||
{
|
||
test_insn
|
||
= make_insn_raw (gen_rtx_SET (VOIDmode,
|
||
gen_rtx_REG (word_mode,
|
||
FIRST_PSEUDO_REGISTER * 2),
|
||
const0_rtx));
|
||
NEXT_INSN (test_insn) = PREV_INSN (test_insn) = 0;
|
||
}
|
||
|
||
/* Now make an insn like the one we would make when GCSE'ing and see if
|
||
valid. */
|
||
PUT_MODE (SET_DEST (PATTERN (test_insn)), GET_MODE (x));
|
||
SET_SRC (PATTERN (test_insn)) = x;
|
||
|
||
icode = recog (PATTERN (test_insn), test_insn, &num_clobbers);
|
||
if (icode < 0)
|
||
return false;
|
||
|
||
if (num_clobbers > 0 && added_clobbers_hard_reg_p (icode))
|
||
return false;
|
||
|
||
if (targetm.cannot_copy_insn_p && targetm.cannot_copy_insn_p (test_insn))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return nonzero if the operands of expression X are unchanged from the
|
||
start of INSN's basic block up to but not including INSN (if AVAIL_P == 0),
|
||
or from INSN to the end of INSN's basic block (if AVAIL_P != 0). */
|
||
|
||
static int
|
||
oprs_unchanged_p (const_rtx x, const_rtx insn, int avail_p)
|
||
{
|
||
int i, j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
if (x == 0)
|
||
return 1;
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
{
|
||
struct reg_avail_info *info = ®_avail_info[REGNO (x)];
|
||
|
||
if (info->last_bb != current_bb)
|
||
return 1;
|
||
if (avail_p)
|
||
return info->last_set < DF_INSN_LUID (insn);
|
||
else
|
||
return info->first_set >= DF_INSN_LUID (insn);
|
||
}
|
||
|
||
case MEM:
|
||
if (load_killed_in_block_p (current_bb, DF_INSN_LUID (insn),
|
||
x, avail_p))
|
||
return 0;
|
||
else
|
||
return oprs_unchanged_p (XEXP (x, 0), insn, avail_p);
|
||
|
||
case PRE_DEC:
|
||
case PRE_INC:
|
||
case POST_DEC:
|
||
case POST_INC:
|
||
case PRE_MODIFY:
|
||
case POST_MODIFY:
|
||
return 0;
|
||
|
||
case PC:
|
||
case CC0: /*FIXME*/
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return 1;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
/* If we are about to do the last recursive call needed at this
|
||
level, change it into iteration. This function is called enough
|
||
to be worth it. */
|
||
if (i == 0)
|
||
return oprs_unchanged_p (XEXP (x, i), insn, avail_p);
|
||
|
||
else if (! oprs_unchanged_p (XEXP (x, i), insn, avail_p))
|
||
return 0;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (! oprs_unchanged_p (XVECEXP (x, i, j), insn, avail_p))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Used for communication between mems_conflict_for_gcse_p and
|
||
load_killed_in_block_p. Nonzero if mems_conflict_for_gcse_p finds a
|
||
conflict between two memory references. */
|
||
static int gcse_mems_conflict_p;
|
||
|
||
/* Used for communication between mems_conflict_for_gcse_p and
|
||
load_killed_in_block_p. A memory reference for a load instruction,
|
||
mems_conflict_for_gcse_p will see if a memory store conflicts with
|
||
this memory load. */
|
||
static const_rtx gcse_mem_operand;
|
||
|
||
/* DEST is the output of an instruction. If it is a memory reference, and
|
||
possibly conflicts with the load found in gcse_mem_operand, then set
|
||
gcse_mems_conflict_p to a nonzero value. */
|
||
|
||
static void
|
||
mems_conflict_for_gcse_p (rtx dest, const_rtx setter ATTRIBUTE_UNUSED,
|
||
void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
while (GET_CODE (dest) == SUBREG
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
/* If DEST is not a MEM, then it will not conflict with the load. Note
|
||
that function calls are assumed to clobber memory, but are handled
|
||
elsewhere. */
|
||
if (! MEM_P (dest))
|
||
return;
|
||
|
||
/* If we are setting a MEM in our list of specially recognized MEMs,
|
||
don't mark as killed this time. */
|
||
|
||
if (expr_equiv_p (dest, gcse_mem_operand) && pre_ldst_mems != NULL)
|
||
{
|
||
if (!find_rtx_in_ldst (dest))
|
||
gcse_mems_conflict_p = 1;
|
||
return;
|
||
}
|
||
|
||
if (true_dependence (dest, GET_MODE (dest), gcse_mem_operand,
|
||
rtx_addr_varies_p))
|
||
gcse_mems_conflict_p = 1;
|
||
}
|
||
|
||
/* Return nonzero if the expression in X (a memory reference) is killed
|
||
in block BB before or after the insn with the LUID in UID_LIMIT.
|
||
AVAIL_P is nonzero for kills after UID_LIMIT, and zero for kills
|
||
before UID_LIMIT.
|
||
|
||
To check the entire block, set UID_LIMIT to max_uid + 1 and
|
||
AVAIL_P to 0. */
|
||
|
||
static int
|
||
load_killed_in_block_p (const_basic_block bb, int uid_limit, const_rtx x, int avail_p)
|
||
{
|
||
VEC (rtx,heap) *list = modify_mem_list[bb->index];
|
||
rtx setter;
|
||
unsigned ix;
|
||
|
||
/* If this is a readonly then we aren't going to be changing it. */
|
||
if (MEM_READONLY_P (x))
|
||
return 0;
|
||
|
||
FOR_EACH_VEC_ELT_REVERSE (rtx, list, ix, setter)
|
||
{
|
||
/* Ignore entries in the list that do not apply. */
|
||
if ((avail_p
|
||
&& DF_INSN_LUID (setter) < uid_limit)
|
||
|| (! avail_p
|
||
&& DF_INSN_LUID (setter) > uid_limit))
|
||
continue;
|
||
|
||
/* If SETTER is a call everything is clobbered. Note that calls
|
||
to pure functions are never put on the list, so we need not
|
||
worry about them. */
|
||
if (CALL_P (setter))
|
||
return 1;
|
||
|
||
/* SETTER must be an INSN of some kind that sets memory. Call
|
||
note_stores to examine each hunk of memory that is modified.
|
||
|
||
The note_stores interface is pretty limited, so we have to
|
||
communicate via global variables. Yuk. */
|
||
gcse_mem_operand = x;
|
||
gcse_mems_conflict_p = 0;
|
||
note_stores (PATTERN (setter), mems_conflict_for_gcse_p, NULL);
|
||
if (gcse_mems_conflict_p)
|
||
return 1;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return nonzero if the operands of expression X are unchanged from
|
||
the start of INSN's basic block up to but not including INSN. */
|
||
|
||
static int
|
||
oprs_anticipatable_p (const_rtx x, const_rtx insn)
|
||
{
|
||
return oprs_unchanged_p (x, insn, 0);
|
||
}
|
||
|
||
/* Return nonzero if the operands of expression X are unchanged from
|
||
INSN to the end of INSN's basic block. */
|
||
|
||
static int
|
||
oprs_available_p (const_rtx x, const_rtx insn)
|
||
{
|
||
return oprs_unchanged_p (x, insn, 1);
|
||
}
|
||
|
||
/* Hash expression X.
|
||
|
||
MODE is only used if X is a CONST_INT. DO_NOT_RECORD_P is a boolean
|
||
indicating if a volatile operand is found or if the expression contains
|
||
something we don't want to insert in the table. HASH_TABLE_SIZE is
|
||
the current size of the hash table to be probed. */
|
||
|
||
static unsigned int
|
||
hash_expr (const_rtx x, enum machine_mode mode, int *do_not_record_p,
|
||
int hash_table_size)
|
||
{
|
||
unsigned int hash;
|
||
|
||
*do_not_record_p = 0;
|
||
|
||
hash = hash_rtx (x, mode, do_not_record_p,
|
||
NULL, /*have_reg_qty=*/false);
|
||
return hash % hash_table_size;
|
||
}
|
||
|
||
/* Return nonzero if exp1 is equivalent to exp2. */
|
||
|
||
static int
|
||
expr_equiv_p (const_rtx x, const_rtx y)
|
||
{
|
||
return exp_equiv_p (x, y, 0, true);
|
||
}
|
||
|
||
/* Insert expression X in INSN in the hash TABLE.
|
||
If it is already present, record it as the last occurrence in INSN's
|
||
basic block.
|
||
|
||
MODE is the mode of the value X is being stored into.
|
||
It is only used if X is a CONST_INT.
|
||
|
||
ANTIC_P is nonzero if X is an anticipatable expression.
|
||
AVAIL_P is nonzero if X is an available expression.
|
||
|
||
MAX_DISTANCE is the maximum distance in instructions this expression can
|
||
be moved. */
|
||
|
||
static void
|
||
insert_expr_in_table (rtx x, enum machine_mode mode, rtx insn, int antic_p,
|
||
int avail_p, int max_distance, struct hash_table_d *table)
|
||
{
|
||
int found, do_not_record_p;
|
||
unsigned int hash;
|
||
struct expr *cur_expr, *last_expr = NULL;
|
||
struct occr *antic_occr, *avail_occr;
|
||
|
||
hash = hash_expr (x, mode, &do_not_record_p, table->size);
|
||
|
||
/* Do not insert expression in table if it contains volatile operands,
|
||
or if hash_expr determines the expression is something we don't want
|
||
to or can't handle. */
|
||
if (do_not_record_p)
|
||
return;
|
||
|
||
cur_expr = table->table[hash];
|
||
found = 0;
|
||
|
||
while (cur_expr && 0 == (found = expr_equiv_p (cur_expr->expr, x)))
|
||
{
|
||
/* If the expression isn't found, save a pointer to the end of
|
||
the list. */
|
||
last_expr = cur_expr;
|
||
cur_expr = cur_expr->next_same_hash;
|
||
}
|
||
|
||
if (! found)
|
||
{
|
||
cur_expr = GOBNEW (struct expr);
|
||
bytes_used += sizeof (struct expr);
|
||
if (table->table[hash] == NULL)
|
||
/* This is the first pattern that hashed to this index. */
|
||
table->table[hash] = cur_expr;
|
||
else
|
||
/* Add EXPR to end of this hash chain. */
|
||
last_expr->next_same_hash = cur_expr;
|
||
|
||
/* Set the fields of the expr element. */
|
||
cur_expr->expr = x;
|
||
cur_expr->bitmap_index = table->n_elems++;
|
||
cur_expr->next_same_hash = NULL;
|
||
cur_expr->antic_occr = NULL;
|
||
cur_expr->avail_occr = NULL;
|
||
gcc_assert (max_distance >= 0);
|
||
cur_expr->max_distance = max_distance;
|
||
}
|
||
else
|
||
gcc_assert (cur_expr->max_distance == max_distance);
|
||
|
||
/* Now record the occurrence(s). */
|
||
if (antic_p)
|
||
{
|
||
antic_occr = cur_expr->antic_occr;
|
||
|
||
if (antic_occr
|
||
&& BLOCK_FOR_INSN (antic_occr->insn) != BLOCK_FOR_INSN (insn))
|
||
antic_occr = NULL;
|
||
|
||
if (antic_occr)
|
||
/* Found another instance of the expression in the same basic block.
|
||
Prefer the currently recorded one. We want the first one in the
|
||
block and the block is scanned from start to end. */
|
||
; /* nothing to do */
|
||
else
|
||
{
|
||
/* First occurrence of this expression in this basic block. */
|
||
antic_occr = GOBNEW (struct occr);
|
||
bytes_used += sizeof (struct occr);
|
||
antic_occr->insn = insn;
|
||
antic_occr->next = cur_expr->antic_occr;
|
||
antic_occr->deleted_p = 0;
|
||
cur_expr->antic_occr = antic_occr;
|
||
}
|
||
}
|
||
|
||
if (avail_p)
|
||
{
|
||
avail_occr = cur_expr->avail_occr;
|
||
|
||
if (avail_occr
|
||
&& BLOCK_FOR_INSN (avail_occr->insn) == BLOCK_FOR_INSN (insn))
|
||
{
|
||
/* Found another instance of the expression in the same basic block.
|
||
Prefer this occurrence to the currently recorded one. We want
|
||
the last one in the block and the block is scanned from start
|
||
to end. */
|
||
avail_occr->insn = insn;
|
||
}
|
||
else
|
||
{
|
||
/* First occurrence of this expression in this basic block. */
|
||
avail_occr = GOBNEW (struct occr);
|
||
bytes_used += sizeof (struct occr);
|
||
avail_occr->insn = insn;
|
||
avail_occr->next = cur_expr->avail_occr;
|
||
avail_occr->deleted_p = 0;
|
||
cur_expr->avail_occr = avail_occr;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Scan pattern PAT of INSN and add an entry to the hash TABLE. */
|
||
|
||
static void
|
||
hash_scan_set (rtx pat, rtx insn, struct hash_table_d *table)
|
||
{
|
||
rtx src = SET_SRC (pat);
|
||
rtx dest = SET_DEST (pat);
|
||
rtx note;
|
||
|
||
if (GET_CODE (src) == CALL)
|
||
hash_scan_call (src, insn, table);
|
||
|
||
else if (REG_P (dest))
|
||
{
|
||
unsigned int regno = REGNO (dest);
|
||
int max_distance = 0;
|
||
|
||
/* See if a REG_EQUAL note shows this equivalent to a simpler expression.
|
||
|
||
This allows us to do a single GCSE pass and still eliminate
|
||
redundant constants, addresses or other expressions that are
|
||
constructed with multiple instructions.
|
||
|
||
However, keep the original SRC if INSN is a simple reg-reg move.
|
||
In this case, there will almost always be a REG_EQUAL note on the
|
||
insn that sets SRC. By recording the REG_EQUAL value here as SRC
|
||
for INSN, we miss copy propagation opportunities and we perform the
|
||
same PRE GCSE operation repeatedly on the same REG_EQUAL value if we
|
||
do more than one PRE GCSE pass.
|
||
|
||
Note that this does not impede profitable constant propagations. We
|
||
"look through" reg-reg sets in lookup_avail_set. */
|
||
note = find_reg_equal_equiv_note (insn);
|
||
if (note != 0
|
||
&& REG_NOTE_KIND (note) == REG_EQUAL
|
||
&& !REG_P (src)
|
||
&& want_to_gcse_p (XEXP (note, 0), NULL))
|
||
src = XEXP (note, 0), pat = gen_rtx_SET (VOIDmode, dest, src);
|
||
|
||
/* Only record sets of pseudo-regs in the hash table. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER
|
||
/* Don't GCSE something if we can't do a reg/reg copy. */
|
||
&& can_copy_p (GET_MODE (dest))
|
||
/* GCSE commonly inserts instruction after the insn. We can't
|
||
do that easily for EH edges so disable GCSE on these for now. */
|
||
/* ??? We can now easily create new EH landing pads at the
|
||
gimple level, for splitting edges; there's no reason we
|
||
can't do the same thing at the rtl level. */
|
||
&& !can_throw_internal (insn)
|
||
/* Is SET_SRC something we want to gcse? */
|
||
&& want_to_gcse_p (src, &max_distance)
|
||
/* Don't CSE a nop. */
|
||
&& ! set_noop_p (pat)
|
||
/* Don't GCSE if it has attached REG_EQUIV note.
|
||
At this point this only function parameters should have
|
||
REG_EQUIV notes and if the argument slot is used somewhere
|
||
explicitly, it means address of parameter has been taken,
|
||
so we should not extend the lifetime of the pseudo. */
|
||
&& (note == NULL_RTX || ! MEM_P (XEXP (note, 0))))
|
||
{
|
||
/* An expression is not anticipatable if its operands are
|
||
modified before this insn or if this is not the only SET in
|
||
this insn. The latter condition does not have to mean that
|
||
SRC itself is not anticipatable, but we just will not be
|
||
able to handle code motion of insns with multiple sets. */
|
||
int antic_p = oprs_anticipatable_p (src, insn)
|
||
&& !multiple_sets (insn);
|
||
/* An expression is not available if its operands are
|
||
subsequently modified, including this insn. It's also not
|
||
available if this is a branch, because we can't insert
|
||
a set after the branch. */
|
||
int avail_p = (oprs_available_p (src, insn)
|
||
&& ! JUMP_P (insn));
|
||
|
||
insert_expr_in_table (src, GET_MODE (dest), insn, antic_p, avail_p,
|
||
max_distance, table);
|
||
}
|
||
}
|
||
/* In case of store we want to consider the memory value as available in
|
||
the REG stored in that memory. This makes it possible to remove
|
||
redundant loads from due to stores to the same location. */
|
||
else if (flag_gcse_las && REG_P (src) && MEM_P (dest))
|
||
{
|
||
unsigned int regno = REGNO (src);
|
||
int max_distance = 0;
|
||
|
||
/* Only record sets of pseudo-regs in the hash table. */
|
||
if (regno >= FIRST_PSEUDO_REGISTER
|
||
/* Don't GCSE something if we can't do a reg/reg copy. */
|
||
&& can_copy_p (GET_MODE (src))
|
||
/* GCSE commonly inserts instruction after the insn. We can't
|
||
do that easily for EH edges so disable GCSE on these for now. */
|
||
&& !can_throw_internal (insn)
|
||
/* Is SET_DEST something we want to gcse? */
|
||
&& want_to_gcse_p (dest, &max_distance)
|
||
/* Don't CSE a nop. */
|
||
&& ! set_noop_p (pat)
|
||
/* Don't GCSE if it has attached REG_EQUIV note.
|
||
At this point this only function parameters should have
|
||
REG_EQUIV notes and if the argument slot is used somewhere
|
||
explicitly, it means address of parameter has been taken,
|
||
so we should not extend the lifetime of the pseudo. */
|
||
&& ((note = find_reg_note (insn, REG_EQUIV, NULL_RTX)) == 0
|
||
|| ! MEM_P (XEXP (note, 0))))
|
||
{
|
||
/* Stores are never anticipatable. */
|
||
int antic_p = 0;
|
||
/* An expression is not available if its operands are
|
||
subsequently modified, including this insn. It's also not
|
||
available if this is a branch, because we can't insert
|
||
a set after the branch. */
|
||
int avail_p = oprs_available_p (dest, insn)
|
||
&& ! JUMP_P (insn);
|
||
|
||
/* Record the memory expression (DEST) in the hash table. */
|
||
insert_expr_in_table (dest, GET_MODE (dest), insn,
|
||
antic_p, avail_p, max_distance, table);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
hash_scan_clobber (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
||
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Currently nothing to do. */
|
||
}
|
||
|
||
static void
|
||
hash_scan_call (rtx x ATTRIBUTE_UNUSED, rtx insn ATTRIBUTE_UNUSED,
|
||
struct hash_table_d *table ATTRIBUTE_UNUSED)
|
||
{
|
||
/* Currently nothing to do. */
|
||
}
|
||
|
||
/* Process INSN and add hash table entries as appropriate.
|
||
|
||
Only available expressions that set a single pseudo-reg are recorded.
|
||
|
||
Single sets in a PARALLEL could be handled, but it's an extra complication
|
||
that isn't dealt with right now. The trick is handling the CLOBBERs that
|
||
are also in the PARALLEL. Later.
|
||
|
||
If SET_P is nonzero, this is for the assignment hash table,
|
||
otherwise it is for the expression hash table. */
|
||
|
||
static void
|
||
hash_scan_insn (rtx insn, struct hash_table_d *table)
|
||
{
|
||
rtx pat = PATTERN (insn);
|
||
int i;
|
||
|
||
/* Pick out the sets of INSN and for other forms of instructions record
|
||
what's been modified. */
|
||
|
||
if (GET_CODE (pat) == SET)
|
||
hash_scan_set (pat, insn, table);
|
||
else if (GET_CODE (pat) == PARALLEL)
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx x = XVECEXP (pat, 0, i);
|
||
|
||
if (GET_CODE (x) == SET)
|
||
hash_scan_set (x, insn, table);
|
||
else if (GET_CODE (x) == CLOBBER)
|
||
hash_scan_clobber (x, insn, table);
|
||
else if (GET_CODE (x) == CALL)
|
||
hash_scan_call (x, insn, table);
|
||
}
|
||
|
||
else if (GET_CODE (pat) == CLOBBER)
|
||
hash_scan_clobber (pat, insn, table);
|
||
else if (GET_CODE (pat) == CALL)
|
||
hash_scan_call (pat, insn, table);
|
||
}
|
||
|
||
static void
|
||
dump_hash_table (FILE *file, const char *name, struct hash_table_d *table)
|
||
{
|
||
int i;
|
||
/* Flattened out table, so it's printed in proper order. */
|
||
struct expr **flat_table;
|
||
unsigned int *hash_val;
|
||
struct expr *expr;
|
||
|
||
flat_table = XCNEWVEC (struct expr *, table->n_elems);
|
||
hash_val = XNEWVEC (unsigned int, table->n_elems);
|
||
|
||
for (i = 0; i < (int) table->size; i++)
|
||
for (expr = table->table[i]; expr != NULL; expr = expr->next_same_hash)
|
||
{
|
||
flat_table[expr->bitmap_index] = expr;
|
||
hash_val[expr->bitmap_index] = i;
|
||
}
|
||
|
||
fprintf (file, "%s hash table (%d buckets, %d entries)\n",
|
||
name, table->size, table->n_elems);
|
||
|
||
for (i = 0; i < (int) table->n_elems; i++)
|
||
if (flat_table[i] != 0)
|
||
{
|
||
expr = flat_table[i];
|
||
fprintf (file, "Index %d (hash value %d; max distance %d)\n ",
|
||
expr->bitmap_index, hash_val[i], expr->max_distance);
|
||
print_rtl (file, expr->expr);
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
fprintf (file, "\n");
|
||
|
||
free (flat_table);
|
||
free (hash_val);
|
||
}
|
||
|
||
/* Record register first/last/block set information for REGNO in INSN.
|
||
|
||
first_set records the first place in the block where the register
|
||
is set and is used to compute "anticipatability".
|
||
|
||
last_set records the last place in the block where the register
|
||
is set and is used to compute "availability".
|
||
|
||
last_bb records the block for which first_set and last_set are
|
||
valid, as a quick test to invalidate them. */
|
||
|
||
static void
|
||
record_last_reg_set_info (rtx insn, int regno)
|
||
{
|
||
struct reg_avail_info *info = ®_avail_info[regno];
|
||
int luid = DF_INSN_LUID (insn);
|
||
|
||
info->last_set = luid;
|
||
if (info->last_bb != current_bb)
|
||
{
|
||
info->last_bb = current_bb;
|
||
info->first_set = luid;
|
||
}
|
||
}
|
||
|
||
|
||
/* Record all of the canonicalized MEMs of record_last_mem_set_info's insn.
|
||
Note we store a pair of elements in the list, so they have to be
|
||
taken off pairwise. */
|
||
|
||
static void
|
||
canon_list_insert (rtx dest ATTRIBUTE_UNUSED, const_rtx unused1 ATTRIBUTE_UNUSED,
|
||
void * v_insn)
|
||
{
|
||
rtx dest_addr, insn;
|
||
int bb;
|
||
modify_pair *pair;
|
||
|
||
while (GET_CODE (dest) == SUBREG
|
||
|| GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
|
||
/* If DEST is not a MEM, then it will not conflict with a load. Note
|
||
that function calls are assumed to clobber memory, but are handled
|
||
elsewhere. */
|
||
|
||
if (! MEM_P (dest))
|
||
return;
|
||
|
||
dest_addr = get_addr (XEXP (dest, 0));
|
||
dest_addr = canon_rtx (dest_addr);
|
||
insn = (rtx) v_insn;
|
||
bb = BLOCK_FOR_INSN (insn)->index;
|
||
|
||
pair = VEC_safe_push (modify_pair, heap, canon_modify_mem_list[bb], NULL);
|
||
pair->dest = dest;
|
||
pair->dest_addr = dest_addr;
|
||
}
|
||
|
||
/* Record memory modification information for INSN. We do not actually care
|
||
about the memory location(s) that are set, or even how they are set (consider
|
||
a CALL_INSN). We merely need to record which insns modify memory. */
|
||
|
||
static void
|
||
record_last_mem_set_info (rtx insn)
|
||
{
|
||
int bb = BLOCK_FOR_INSN (insn)->index;
|
||
|
||
/* load_killed_in_block_p will handle the case of calls clobbering
|
||
everything. */
|
||
VEC_safe_push (rtx, heap, modify_mem_list[bb], insn);
|
||
bitmap_set_bit (modify_mem_list_set, bb);
|
||
|
||
if (CALL_P (insn))
|
||
bitmap_set_bit (blocks_with_calls, bb);
|
||
else
|
||
note_stores (PATTERN (insn), canon_list_insert, (void*) insn);
|
||
}
|
||
|
||
/* Called from compute_hash_table via note_stores to handle one
|
||
SET or CLOBBER in an insn. DATA is really the instruction in which
|
||
the SET is taking place. */
|
||
|
||
static void
|
||
record_last_set_info (rtx dest, const_rtx setter ATTRIBUTE_UNUSED, void *data)
|
||
{
|
||
rtx last_set_insn = (rtx) data;
|
||
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (REG_P (dest))
|
||
record_last_reg_set_info (last_set_insn, REGNO (dest));
|
||
else if (MEM_P (dest)
|
||
/* Ignore pushes, they clobber nothing. */
|
||
&& ! push_operand (dest, GET_MODE (dest)))
|
||
record_last_mem_set_info (last_set_insn);
|
||
}
|
||
|
||
/* Top level function to create an expression hash table.
|
||
|
||
Expression entries are placed in the hash table if
|
||
- they are of the form (set (pseudo-reg) src),
|
||
- src is something we want to perform GCSE on,
|
||
- none of the operands are subsequently modified in the block
|
||
|
||
Currently src must be a pseudo-reg or a const_int.
|
||
|
||
TABLE is the table computed. */
|
||
|
||
static void
|
||
compute_hash_table_work (struct hash_table_d *table)
|
||
{
|
||
int i;
|
||
|
||
/* re-Cache any INSN_LIST nodes we have allocated. */
|
||
clear_modify_mem_tables ();
|
||
/* Some working arrays used to track first and last set in each block. */
|
||
reg_avail_info = GNEWVEC (struct reg_avail_info, max_reg_num ());
|
||
|
||
for (i = 0; i < max_reg_num (); ++i)
|
||
reg_avail_info[i].last_bb = NULL;
|
||
|
||
FOR_EACH_BB (current_bb)
|
||
{
|
||
rtx insn;
|
||
unsigned int regno;
|
||
|
||
/* First pass over the instructions records information used to
|
||
determine when registers and memory are first and last set. */
|
||
FOR_BB_INSNS (current_bb, insn)
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
|
||
if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
|
||
record_last_reg_set_info (insn, regno);
|
||
|
||
if (! RTL_CONST_OR_PURE_CALL_P (insn))
|
||
record_last_mem_set_info (insn);
|
||
}
|
||
|
||
note_stores (PATTERN (insn), record_last_set_info, insn);
|
||
}
|
||
|
||
/* The next pass builds the hash table. */
|
||
FOR_BB_INSNS (current_bb, insn)
|
||
if (NONDEBUG_INSN_P (insn))
|
||
hash_scan_insn (insn, table);
|
||
}
|
||
|
||
free (reg_avail_info);
|
||
reg_avail_info = NULL;
|
||
}
|
||
|
||
/* Allocate space for the set/expr hash TABLE.
|
||
It is used to determine the number of buckets to use. */
|
||
|
||
static void
|
||
alloc_hash_table (struct hash_table_d *table)
|
||
{
|
||
int n;
|
||
|
||
n = get_max_insn_count ();
|
||
|
||
table->size = n / 4;
|
||
if (table->size < 11)
|
||
table->size = 11;
|
||
|
||
/* Attempt to maintain efficient use of hash table.
|
||
Making it an odd number is simplest for now.
|
||
??? Later take some measurements. */
|
||
table->size |= 1;
|
||
n = table->size * sizeof (struct expr *);
|
||
table->table = GNEWVAR (struct expr *, n);
|
||
}
|
||
|
||
/* Free things allocated by alloc_hash_table. */
|
||
|
||
static void
|
||
free_hash_table (struct hash_table_d *table)
|
||
{
|
||
free (table->table);
|
||
}
|
||
|
||
/* Compute the expression hash table TABLE. */
|
||
|
||
static void
|
||
compute_hash_table (struct hash_table_d *table)
|
||
{
|
||
/* Initialize count of number of entries in hash table. */
|
||
table->n_elems = 0;
|
||
memset (table->table, 0, table->size * sizeof (struct expr *));
|
||
|
||
compute_hash_table_work (table);
|
||
}
|
||
|
||
/* Expression tracking support. */
|
||
|
||
/* Clear canon_modify_mem_list and modify_mem_list tables. */
|
||
static void
|
||
clear_modify_mem_tables (void)
|
||
{
|
||
unsigned i;
|
||
bitmap_iterator bi;
|
||
|
||
EXECUTE_IF_SET_IN_BITMAP (modify_mem_list_set, 0, i, bi)
|
||
{
|
||
VEC_free (rtx, heap, modify_mem_list[i]);
|
||
VEC_free (modify_pair, heap, canon_modify_mem_list[i]);
|
||
}
|
||
bitmap_clear (modify_mem_list_set);
|
||
bitmap_clear (blocks_with_calls);
|
||
}
|
||
|
||
/* Release memory used by modify_mem_list_set. */
|
||
|
||
static void
|
||
free_modify_mem_tables (void)
|
||
{
|
||
clear_modify_mem_tables ();
|
||
free (modify_mem_list);
|
||
free (canon_modify_mem_list);
|
||
modify_mem_list = 0;
|
||
canon_modify_mem_list = 0;
|
||
}
|
||
|
||
|
||
/* For each block, compute whether X is transparent. X is either an
|
||
expression or an assignment [though we don't care which, for this context
|
||
an assignment is treated as an expression]. For each block where an
|
||
element of X is modified, reset the INDX bit in BMAP. */
|
||
|
||
static void
|
||
compute_transp (const_rtx x, int indx, sbitmap *bmap)
|
||
{
|
||
int i, j;
|
||
enum rtx_code code;
|
||
const char *fmt;
|
||
|
||
/* repeat is used to turn tail-recursion into iteration since GCC
|
||
can't do it when there's no return value. */
|
||
repeat:
|
||
|
||
if (x == 0)
|
||
return;
|
||
|
||
code = GET_CODE (x);
|
||
switch (code)
|
||
{
|
||
case REG:
|
||
{
|
||
df_ref def;
|
||
for (def = DF_REG_DEF_CHAIN (REGNO (x));
|
||
def;
|
||
def = DF_REF_NEXT_REG (def))
|
||
RESET_BIT (bmap[DF_REF_BB (def)->index], indx);
|
||
}
|
||
|
||
return;
|
||
|
||
case MEM:
|
||
if (! MEM_READONLY_P (x))
|
||
{
|
||
bitmap_iterator bi;
|
||
unsigned bb_index;
|
||
|
||
/* First handle all the blocks with calls. We don't need to
|
||
do any list walking for them. */
|
||
EXECUTE_IF_SET_IN_BITMAP (blocks_with_calls, 0, bb_index, bi)
|
||
{
|
||
RESET_BIT (bmap[bb_index], indx);
|
||
}
|
||
|
||
/* Now iterate over the blocks which have memory modifications
|
||
but which do not have any calls. */
|
||
EXECUTE_IF_AND_COMPL_IN_BITMAP (modify_mem_list_set,
|
||
blocks_with_calls,
|
||
0, bb_index, bi)
|
||
{
|
||
VEC (modify_pair,heap) *list
|
||
= canon_modify_mem_list[bb_index];
|
||
modify_pair *pair;
|
||
unsigned ix;
|
||
|
||
FOR_EACH_VEC_ELT_REVERSE (modify_pair, list, ix, pair)
|
||
{
|
||
rtx dest = pair->dest;
|
||
rtx dest_addr = pair->dest_addr;
|
||
|
||
if (canon_true_dependence (dest, GET_MODE (dest), dest_addr,
|
||
x, NULL_RTX, rtx_addr_varies_p))
|
||
RESET_BIT (bmap[bb_index], indx);
|
||
}
|
||
}
|
||
}
|
||
|
||
x = XEXP (x, 0);
|
||
goto repeat;
|
||
|
||
case PC:
|
||
case CC0: /*FIXME*/
|
||
case CONST:
|
||
case CONST_INT:
|
||
case CONST_DOUBLE:
|
||
case CONST_FIXED:
|
||
case CONST_VECTOR:
|
||
case SYMBOL_REF:
|
||
case LABEL_REF:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
/* If we are about to do the last recursive call
|
||
needed at this level, change it into iteration.
|
||
This function is called enough to be worth it. */
|
||
if (i == 0)
|
||
{
|
||
x = XEXP (x, i);
|
||
goto repeat;
|
||
}
|
||
|
||
compute_transp (XEXP (x, i), indx, bmap);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
compute_transp (XVECEXP (x, i, j), indx, bmap);
|
||
}
|
||
}
|
||
|
||
|
||
/* Compute PRE+LCM working variables. */
|
||
|
||
/* Local properties of expressions. */
|
||
/* Nonzero for expressions that are transparent in the block. */
|
||
static sbitmap *transp;
|
||
|
||
/* Nonzero for expressions that are computed (available) in the block. */
|
||
static sbitmap *comp;
|
||
|
||
/* Nonzero for expressions that are locally anticipatable in the block. */
|
||
static sbitmap *antloc;
|
||
|
||
/* Nonzero for expressions where this block is an optimal computation
|
||
point. */
|
||
static sbitmap *pre_optimal;
|
||
|
||
/* Nonzero for expressions which are redundant in a particular block. */
|
||
static sbitmap *pre_redundant;
|
||
|
||
/* Nonzero for expressions which should be inserted on a specific edge. */
|
||
static sbitmap *pre_insert_map;
|
||
|
||
/* Nonzero for expressions which should be deleted in a specific block. */
|
||
static sbitmap *pre_delete_map;
|
||
|
||
/* Contains the edge_list returned by pre_edge_lcm. */
|
||
static struct edge_list *edge_list;
|
||
|
||
/* Allocate vars used for PRE analysis. */
|
||
|
||
static void
|
||
alloc_pre_mem (int n_blocks, int n_exprs)
|
||
{
|
||
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
|
||
pre_optimal = NULL;
|
||
pre_redundant = NULL;
|
||
pre_insert_map = NULL;
|
||
pre_delete_map = NULL;
|
||
ae_kill = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
|
||
/* pre_insert and pre_delete are allocated later. */
|
||
}
|
||
|
||
/* Free vars used for PRE analysis. */
|
||
|
||
static void
|
||
free_pre_mem (void)
|
||
{
|
||
sbitmap_vector_free (transp);
|
||
sbitmap_vector_free (comp);
|
||
|
||
/* ANTLOC and AE_KILL are freed just after pre_lcm finishes. */
|
||
|
||
if (pre_optimal)
|
||
sbitmap_vector_free (pre_optimal);
|
||
if (pre_redundant)
|
||
sbitmap_vector_free (pre_redundant);
|
||
if (pre_insert_map)
|
||
sbitmap_vector_free (pre_insert_map);
|
||
if (pre_delete_map)
|
||
sbitmap_vector_free (pre_delete_map);
|
||
|
||
transp = comp = NULL;
|
||
pre_optimal = pre_redundant = pre_insert_map = pre_delete_map = NULL;
|
||
}
|
||
|
||
/* Remove certain expressions from anticipatable and transparent
|
||
sets of basic blocks that have incoming abnormal edge.
|
||
For PRE remove potentially trapping expressions to avoid placing
|
||
them on abnormal edges. For hoisting remove memory references that
|
||
can be clobbered by calls. */
|
||
|
||
static void
|
||
prune_expressions (bool pre_p)
|
||
{
|
||
sbitmap prune_exprs;
|
||
unsigned int ui;
|
||
basic_block bb;
|
||
|
||
prune_exprs = sbitmap_alloc (expr_hash_table.n_elems);
|
||
sbitmap_zero (prune_exprs);
|
||
for (ui = 0; ui < expr_hash_table.size; ui++)
|
||
{
|
||
struct expr *e;
|
||
for (e = expr_hash_table.table[ui]; e != NULL; e = e->next_same_hash)
|
||
{
|
||
/* Note potentially trapping expressions. */
|
||
if (may_trap_p (e->expr))
|
||
{
|
||
SET_BIT (prune_exprs, e->bitmap_index);
|
||
continue;
|
||
}
|
||
|
||
if (!pre_p && MEM_P (e->expr))
|
||
/* Note memory references that can be clobbered by a call.
|
||
We do not split abnormal edges in hoisting, so would
|
||
a memory reference get hoisted along an abnormal edge,
|
||
it would be placed /before/ the call. Therefore, only
|
||
constant memory references can be hoisted along abnormal
|
||
edges. */
|
||
{
|
||
if (GET_CODE (XEXP (e->expr, 0)) == SYMBOL_REF
|
||
&& CONSTANT_POOL_ADDRESS_P (XEXP (e->expr, 0)))
|
||
continue;
|
||
|
||
if (MEM_READONLY_P (e->expr)
|
||
&& !MEM_VOLATILE_P (e->expr)
|
||
&& MEM_NOTRAP_P (e->expr))
|
||
/* Constant memory reference, e.g., a PIC address. */
|
||
continue;
|
||
|
||
/* ??? Optimally, we would use interprocedural alias
|
||
analysis to determine if this mem is actually killed
|
||
by this call. */
|
||
|
||
SET_BIT (prune_exprs, e->bitmap_index);
|
||
}
|
||
}
|
||
}
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
/* If the current block is the destination of an abnormal edge, we
|
||
kill all trapping (for PRE) and memory (for hoist) expressions
|
||
because we won't be able to properly place the instruction on
|
||
the edge. So make them neither anticipatable nor transparent.
|
||
This is fairly conservative.
|
||
|
||
??? For hoisting it may be necessary to check for set-and-jump
|
||
instructions here, not just for abnormal edges. The general problem
|
||
is that when an expression cannot not be placed right at the end of
|
||
a basic block we should account for any side-effects of a subsequent
|
||
jump instructions that could clobber the expression. It would
|
||
be best to implement this check along the lines of
|
||
hoist_expr_reaches_here_p where the target block is already known
|
||
and, hence, there's no need to conservatively prune expressions on
|
||
"intermediate" set-and-jump instructions. */
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if ((e->flags & EDGE_ABNORMAL)
|
||
&& (pre_p || CALL_P (BB_END (e->src))))
|
||
{
|
||
sbitmap_difference (antloc[bb->index],
|
||
antloc[bb->index], prune_exprs);
|
||
sbitmap_difference (transp[bb->index],
|
||
transp[bb->index], prune_exprs);
|
||
break;
|
||
}
|
||
}
|
||
|
||
sbitmap_free (prune_exprs);
|
||
}
|
||
|
||
/* It may be necessary to insert a large number of insns on edges to
|
||
make the existing occurrences of expressions fully redundant. This
|
||
routine examines the set of insertions and deletions and if the ratio
|
||
of insertions to deletions is too high for a particular expression, then
|
||
the expression is removed from the insertion/deletion sets.
|
||
|
||
N_ELEMS is the number of elements in the hash table. */
|
||
|
||
static void
|
||
prune_insertions_deletions (int n_elems)
|
||
{
|
||
sbitmap_iterator sbi;
|
||
sbitmap prune_exprs;
|
||
|
||
/* We always use I to iterate over blocks/edges and J to iterate over
|
||
expressions. */
|
||
unsigned int i, j;
|
||
|
||
/* Counts for the number of times an expression needs to be inserted and
|
||
number of times an expression can be removed as a result. */
|
||
int *insertions = GCNEWVEC (int, n_elems);
|
||
int *deletions = GCNEWVEC (int, n_elems);
|
||
|
||
/* Set of expressions which require too many insertions relative to
|
||
the number of deletions achieved. We will prune these out of the
|
||
insertion/deletion sets. */
|
||
prune_exprs = sbitmap_alloc (n_elems);
|
||
sbitmap_zero (prune_exprs);
|
||
|
||
/* Iterate over the edges counting the number of times each expression
|
||
needs to be inserted. */
|
||
for (i = 0; i < (unsigned) n_edges; i++)
|
||
{
|
||
EXECUTE_IF_SET_IN_SBITMAP (pre_insert_map[i], 0, j, sbi)
|
||
insertions[j]++;
|
||
}
|
||
|
||
/* Similarly for deletions, but those occur in blocks rather than on
|
||
edges. */
|
||
for (i = 0; i < (unsigned) last_basic_block; i++)
|
||
{
|
||
EXECUTE_IF_SET_IN_SBITMAP (pre_delete_map[i], 0, j, sbi)
|
||
deletions[j]++;
|
||
}
|
||
|
||
/* Now that we have accurate counts, iterate over the elements in the
|
||
hash table and see if any need too many insertions relative to the
|
||
number of evaluations that can be removed. If so, mark them in
|
||
PRUNE_EXPRS. */
|
||
for (j = 0; j < (unsigned) n_elems; j++)
|
||
if (deletions[j]
|
||
&& ((unsigned) insertions[j] / deletions[j]) > MAX_GCSE_INSERTION_RATIO)
|
||
SET_BIT (prune_exprs, j);
|
||
|
||
/* Now prune PRE_INSERT_MAP and PRE_DELETE_MAP based on PRUNE_EXPRS. */
|
||
EXECUTE_IF_SET_IN_SBITMAP (prune_exprs, 0, j, sbi)
|
||
{
|
||
for (i = 0; i < (unsigned) n_edges; i++)
|
||
RESET_BIT (pre_insert_map[i], j);
|
||
|
||
for (i = 0; i < (unsigned) last_basic_block; i++)
|
||
RESET_BIT (pre_delete_map[i], j);
|
||
}
|
||
|
||
sbitmap_free (prune_exprs);
|
||
free (insertions);
|
||
free (deletions);
|
||
}
|
||
|
||
/* Top level routine to do the dataflow analysis needed by PRE. */
|
||
|
||
static void
|
||
compute_pre_data (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
||
prune_expressions (true);
|
||
sbitmap_vector_zero (ae_kill, last_basic_block);
|
||
|
||
/* Compute ae_kill for each basic block using:
|
||
|
||
~(TRANSP | COMP)
|
||
*/
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
sbitmap_a_or_b (ae_kill[bb->index], transp[bb->index], comp[bb->index]);
|
||
sbitmap_not (ae_kill[bb->index], ae_kill[bb->index]);
|
||
}
|
||
|
||
edge_list = pre_edge_lcm (expr_hash_table.n_elems, transp, comp, antloc,
|
||
ae_kill, &pre_insert_map, &pre_delete_map);
|
||
sbitmap_vector_free (antloc);
|
||
antloc = NULL;
|
||
sbitmap_vector_free (ae_kill);
|
||
ae_kill = NULL;
|
||
|
||
prune_insertions_deletions (expr_hash_table.n_elems);
|
||
}
|
||
|
||
/* PRE utilities */
|
||
|
||
/* Return nonzero if an occurrence of expression EXPR in OCCR_BB would reach
|
||
block BB.
|
||
|
||
VISITED is a pointer to a working buffer for tracking which BB's have
|
||
been visited. It is NULL for the top-level call.
|
||
|
||
We treat reaching expressions that go through blocks containing the same
|
||
reaching expression as "not reaching". E.g. if EXPR is generated in blocks
|
||
2 and 3, INSN is in block 4, and 2->3->4, we treat the expression in block
|
||
2 as not reaching. The intent is to improve the probability of finding
|
||
only one reaching expression and to reduce register lifetimes by picking
|
||
the closest such expression. */
|
||
|
||
static int
|
||
pre_expr_reaches_here_p_work (basic_block occr_bb, struct expr *expr, basic_block bb, char *visited)
|
||
{
|
||
edge pred;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (pred, ei, bb->preds)
|
||
{
|
||
basic_block pred_bb = pred->src;
|
||
|
||
if (pred->src == ENTRY_BLOCK_PTR
|
||
/* Has predecessor has already been visited? */
|
||
|| visited[pred_bb->index])
|
||
;/* Nothing to do. */
|
||
|
||
/* Does this predecessor generate this expression? */
|
||
else if (TEST_BIT (comp[pred_bb->index], expr->bitmap_index))
|
||
{
|
||
/* Is this the occurrence we're looking for?
|
||
Note that there's only one generating occurrence per block
|
||
so we just need to check the block number. */
|
||
if (occr_bb == pred_bb)
|
||
return 1;
|
||
|
||
visited[pred_bb->index] = 1;
|
||
}
|
||
/* Ignore this predecessor if it kills the expression. */
|
||
else if (! TEST_BIT (transp[pred_bb->index], expr->bitmap_index))
|
||
visited[pred_bb->index] = 1;
|
||
|
||
/* Neither gen nor kill. */
|
||
else
|
||
{
|
||
visited[pred_bb->index] = 1;
|
||
if (pre_expr_reaches_here_p_work (occr_bb, expr, pred_bb, visited))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
/* All paths have been checked. */
|
||
return 0;
|
||
}
|
||
|
||
/* The wrapper for pre_expr_reaches_here_work that ensures that any
|
||
memory allocated for that function is returned. */
|
||
|
||
static int
|
||
pre_expr_reaches_here_p (basic_block occr_bb, struct expr *expr, basic_block bb)
|
||
{
|
||
int rval;
|
||
char *visited = XCNEWVEC (char, last_basic_block);
|
||
|
||
rval = pre_expr_reaches_here_p_work (occr_bb, expr, bb, visited);
|
||
|
||
free (visited);
|
||
return rval;
|
||
}
|
||
|
||
|
||
/* Given an expr, generate RTL which we can insert at the end of a BB,
|
||
or on an edge. Set the block number of any insns generated to
|
||
the value of BB. */
|
||
|
||
static rtx
|
||
process_insert_insn (struct expr *expr)
|
||
{
|
||
rtx reg = expr->reaching_reg;
|
||
rtx exp = copy_rtx (expr->expr);
|
||
rtx pat;
|
||
|
||
start_sequence ();
|
||
|
||
/* If the expression is something that's an operand, like a constant,
|
||
just copy it to a register. */
|
||
if (general_operand (exp, GET_MODE (reg)))
|
||
emit_move_insn (reg, exp);
|
||
|
||
/* Otherwise, make a new insn to compute this expression and make sure the
|
||
insn will be recognized (this also adds any needed CLOBBERs). Copy the
|
||
expression to make sure we don't have any sharing issues. */
|
||
else
|
||
{
|
||
rtx insn = emit_insn (gen_rtx_SET (VOIDmode, reg, exp));
|
||
|
||
if (insn_invalid_p (insn))
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
|
||
pat = get_insns ();
|
||
end_sequence ();
|
||
|
||
return pat;
|
||
}
|
||
|
||
/* Add EXPR to the end of basic block BB.
|
||
|
||
This is used by both the PRE and code hoisting. */
|
||
|
||
static void
|
||
insert_insn_end_basic_block (struct expr *expr, basic_block bb)
|
||
{
|
||
rtx insn = BB_END (bb);
|
||
rtx new_insn;
|
||
rtx reg = expr->reaching_reg;
|
||
int regno = REGNO (reg);
|
||
rtx pat, pat_end;
|
||
|
||
pat = process_insert_insn (expr);
|
||
gcc_assert (pat && INSN_P (pat));
|
||
|
||
pat_end = pat;
|
||
while (NEXT_INSN (pat_end) != NULL_RTX)
|
||
pat_end = NEXT_INSN (pat_end);
|
||
|
||
/* If the last insn is a jump, insert EXPR in front [taking care to
|
||
handle cc0, etc. properly]. Similarly we need to care trapping
|
||
instructions in presence of non-call exceptions. */
|
||
|
||
if (JUMP_P (insn)
|
||
|| (NONJUMP_INSN_P (insn)
|
||
&& (!single_succ_p (bb)
|
||
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL)))
|
||
{
|
||
#ifdef HAVE_cc0
|
||
rtx note;
|
||
#endif
|
||
|
||
/* If this is a jump table, then we can't insert stuff here. Since
|
||
we know the previous real insn must be the tablejump, we insert
|
||
the new instruction just before the tablejump. */
|
||
if (GET_CODE (PATTERN (insn)) == ADDR_VEC
|
||
|| GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
|
||
insn = prev_active_insn (insn);
|
||
|
||
#ifdef HAVE_cc0
|
||
/* FIXME: 'twould be nice to call prev_cc0_setter here but it aborts
|
||
if cc0 isn't set. */
|
||
note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
|
||
if (note)
|
||
insn = XEXP (note, 0);
|
||
else
|
||
{
|
||
rtx maybe_cc0_setter = prev_nonnote_insn (insn);
|
||
if (maybe_cc0_setter
|
||
&& INSN_P (maybe_cc0_setter)
|
||
&& sets_cc0_p (PATTERN (maybe_cc0_setter)))
|
||
insn = maybe_cc0_setter;
|
||
}
|
||
#endif
|
||
/* FIXME: What if something in cc0/jump uses value set in new insn? */
|
||
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
||
}
|
||
|
||
/* Likewise if the last insn is a call, as will happen in the presence
|
||
of exception handling. */
|
||
else if (CALL_P (insn)
|
||
&& (!single_succ_p (bb)
|
||
|| single_succ_edge (bb)->flags & EDGE_ABNORMAL))
|
||
{
|
||
/* Keeping in mind targets with small register classes and parameters
|
||
in registers, we search backward and place the instructions before
|
||
the first parameter is loaded. Do this for everyone for consistency
|
||
and a presumption that we'll get better code elsewhere as well. */
|
||
|
||
/* Since different machines initialize their parameter registers
|
||
in different orders, assume nothing. Collect the set of all
|
||
parameter registers. */
|
||
insn = find_first_parameter_load (insn, BB_HEAD (bb));
|
||
|
||
/* If we found all the parameter loads, then we want to insert
|
||
before the first parameter load.
|
||
|
||
If we did not find all the parameter loads, then we might have
|
||
stopped on the head of the block, which could be a CODE_LABEL.
|
||
If we inserted before the CODE_LABEL, then we would be putting
|
||
the insn in the wrong basic block. In that case, put the insn
|
||
after the CODE_LABEL. Also, respect NOTE_INSN_BASIC_BLOCK. */
|
||
while (LABEL_P (insn)
|
||
|| NOTE_INSN_BASIC_BLOCK_P (insn))
|
||
insn = NEXT_INSN (insn);
|
||
|
||
new_insn = emit_insn_before_noloc (pat, insn, bb);
|
||
}
|
||
else
|
||
new_insn = emit_insn_after_noloc (pat, insn, bb);
|
||
|
||
while (1)
|
||
{
|
||
if (INSN_P (pat))
|
||
add_label_notes (PATTERN (pat), new_insn);
|
||
if (pat == pat_end)
|
||
break;
|
||
pat = NEXT_INSN (pat);
|
||
}
|
||
|
||
gcse_create_count++;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "PRE/HOIST: end of bb %d, insn %d, ",
|
||
bb->index, INSN_UID (new_insn));
|
||
fprintf (dump_file, "copying expression %d to reg %d\n",
|
||
expr->bitmap_index, regno);
|
||
}
|
||
}
|
||
|
||
/* Insert partially redundant expressions on edges in the CFG to make
|
||
the expressions fully redundant. */
|
||
|
||
static int
|
||
pre_edge_insert (struct edge_list *edge_list, struct expr **index_map)
|
||
{
|
||
int e, i, j, num_edges, set_size, did_insert = 0;
|
||
sbitmap *inserted;
|
||
|
||
/* Where PRE_INSERT_MAP is nonzero, we add the expression on that edge
|
||
if it reaches any of the deleted expressions. */
|
||
|
||
set_size = pre_insert_map[0]->size;
|
||
num_edges = NUM_EDGES (edge_list);
|
||
inserted = sbitmap_vector_alloc (num_edges, expr_hash_table.n_elems);
|
||
sbitmap_vector_zero (inserted, num_edges);
|
||
|
||
for (e = 0; e < num_edges; e++)
|
||
{
|
||
int indx;
|
||
basic_block bb = INDEX_EDGE_PRED_BB (edge_list, e);
|
||
|
||
for (i = indx = 0; i < set_size; i++, indx += SBITMAP_ELT_BITS)
|
||
{
|
||
SBITMAP_ELT_TYPE insert = pre_insert_map[e]->elms[i];
|
||
|
||
for (j = indx; insert && j < (int) expr_hash_table.n_elems; j++, insert >>= 1)
|
||
if ((insert & 1) != 0 && index_map[j]->reaching_reg != NULL_RTX)
|
||
{
|
||
struct expr *expr = index_map[j];
|
||
struct occr *occr;
|
||
|
||
/* Now look at each deleted occurrence of this expression. */
|
||
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
if (! occr->deleted_p)
|
||
continue;
|
||
|
||
/* Insert this expression on this edge if it would
|
||
reach the deleted occurrence in BB. */
|
||
if (!TEST_BIT (inserted[e], j))
|
||
{
|
||
rtx insn;
|
||
edge eg = INDEX_EDGE (edge_list, e);
|
||
|
||
/* We can't insert anything on an abnormal and
|
||
critical edge, so we insert the insn at the end of
|
||
the previous block. There are several alternatives
|
||
detailed in Morgans book P277 (sec 10.5) for
|
||
handling this situation. This one is easiest for
|
||
now. */
|
||
|
||
if (eg->flags & EDGE_ABNORMAL)
|
||
insert_insn_end_basic_block (index_map[j], bb);
|
||
else
|
||
{
|
||
insn = process_insert_insn (index_map[j]);
|
||
insert_insn_on_edge (insn, eg);
|
||
}
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "PRE: edge (%d,%d), ",
|
||
bb->index,
|
||
INDEX_EDGE_SUCC_BB (edge_list, e)->index);
|
||
fprintf (dump_file, "copy expression %d\n",
|
||
expr->bitmap_index);
|
||
}
|
||
|
||
update_ld_motion_stores (expr);
|
||
SET_BIT (inserted[e], j);
|
||
did_insert = 1;
|
||
gcse_create_count++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
sbitmap_vector_free (inserted);
|
||
return did_insert;
|
||
}
|
||
|
||
/* Copy the result of EXPR->EXPR generated by INSN to EXPR->REACHING_REG.
|
||
Given "old_reg <- expr" (INSN), instead of adding after it
|
||
reaching_reg <- old_reg
|
||
it's better to do the following:
|
||
reaching_reg <- expr
|
||
old_reg <- reaching_reg
|
||
because this way copy propagation can discover additional PRE
|
||
opportunities. But if this fails, we try the old way.
|
||
When "expr" is a store, i.e.
|
||
given "MEM <- old_reg", instead of adding after it
|
||
reaching_reg <- old_reg
|
||
it's better to add it before as follows:
|
||
reaching_reg <- old_reg
|
||
MEM <- reaching_reg. */
|
||
|
||
static void
|
||
pre_insert_copy_insn (struct expr *expr, rtx insn)
|
||
{
|
||
rtx reg = expr->reaching_reg;
|
||
int regno = REGNO (reg);
|
||
int indx = expr->bitmap_index;
|
||
rtx pat = PATTERN (insn);
|
||
rtx set, first_set, new_insn;
|
||
rtx old_reg;
|
||
int i;
|
||
|
||
/* This block matches the logic in hash_scan_insn. */
|
||
switch (GET_CODE (pat))
|
||
{
|
||
case SET:
|
||
set = pat;
|
||
break;
|
||
|
||
case PARALLEL:
|
||
/* Search through the parallel looking for the set whose
|
||
source was the expression that we're interested in. */
|
||
first_set = NULL_RTX;
|
||
set = NULL_RTX;
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx x = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
/* If the source was a REG_EQUAL or REG_EQUIV note, we
|
||
may not find an equivalent expression, but in this
|
||
case the PARALLEL will have a single set. */
|
||
if (first_set == NULL_RTX)
|
||
first_set = x;
|
||
if (expr_equiv_p (SET_SRC (x), expr->expr))
|
||
{
|
||
set = x;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
gcc_assert (first_set);
|
||
if (set == NULL_RTX)
|
||
set = first_set;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (REG_P (SET_DEST (set)))
|
||
{
|
||
old_reg = SET_DEST (set);
|
||
/* Check if we can modify the set destination in the original insn. */
|
||
if (validate_change (insn, &SET_DEST (set), reg, 0))
|
||
{
|
||
new_insn = gen_move_insn (old_reg, reg);
|
||
new_insn = emit_insn_after (new_insn, insn);
|
||
}
|
||
else
|
||
{
|
||
new_insn = gen_move_insn (reg, old_reg);
|
||
new_insn = emit_insn_after (new_insn, insn);
|
||
}
|
||
}
|
||
else /* This is possible only in case of a store to memory. */
|
||
{
|
||
old_reg = SET_SRC (set);
|
||
new_insn = gen_move_insn (reg, old_reg);
|
||
|
||
/* Check if we can modify the set source in the original insn. */
|
||
if (validate_change (insn, &SET_SRC (set), reg, 0))
|
||
new_insn = emit_insn_before (new_insn, insn);
|
||
else
|
||
new_insn = emit_insn_after (new_insn, insn);
|
||
}
|
||
|
||
gcse_create_count++;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"PRE: bb %d, insn %d, copy expression %d in insn %d to reg %d\n",
|
||
BLOCK_FOR_INSN (insn)->index, INSN_UID (new_insn), indx,
|
||
INSN_UID (insn), regno);
|
||
}
|
||
|
||
/* Copy available expressions that reach the redundant expression
|
||
to `reaching_reg'. */
|
||
|
||
static void
|
||
pre_insert_copies (void)
|
||
{
|
||
unsigned int i, added_copy;
|
||
struct expr *expr;
|
||
struct occr *occr;
|
||
struct occr *avail;
|
||
|
||
/* For each available expression in the table, copy the result to
|
||
`reaching_reg' if the expression reaches a deleted one.
|
||
|
||
??? The current algorithm is rather brute force.
|
||
Need to do some profiling. */
|
||
|
||
for (i = 0; i < expr_hash_table.size; i++)
|
||
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
|
||
{
|
||
/* If the basic block isn't reachable, PPOUT will be TRUE. However,
|
||
we don't want to insert a copy here because the expression may not
|
||
really be redundant. So only insert an insn if the expression was
|
||
deleted. This test also avoids further processing if the
|
||
expression wasn't deleted anywhere. */
|
||
if (expr->reaching_reg == NULL)
|
||
continue;
|
||
|
||
/* Set when we add a copy for that expression. */
|
||
added_copy = 0;
|
||
|
||
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
if (! occr->deleted_p)
|
||
continue;
|
||
|
||
for (avail = expr->avail_occr; avail != NULL; avail = avail->next)
|
||
{
|
||
rtx insn = avail->insn;
|
||
|
||
/* No need to handle this one if handled already. */
|
||
if (avail->copied_p)
|
||
continue;
|
||
|
||
/* Don't handle this one if it's a redundant one. */
|
||
if (INSN_DELETED_P (insn))
|
||
continue;
|
||
|
||
/* Or if the expression doesn't reach the deleted one. */
|
||
if (! pre_expr_reaches_here_p (BLOCK_FOR_INSN (avail->insn),
|
||
expr,
|
||
BLOCK_FOR_INSN (occr->insn)))
|
||
continue;
|
||
|
||
added_copy = 1;
|
||
|
||
/* Copy the result of avail to reaching_reg. */
|
||
pre_insert_copy_insn (expr, insn);
|
||
avail->copied_p = 1;
|
||
}
|
||
}
|
||
|
||
if (added_copy)
|
||
update_ld_motion_stores (expr);
|
||
}
|
||
}
|
||
|
||
/* Emit move from SRC to DEST noting the equivalence with expression computed
|
||
in INSN. */
|
||
static rtx
|
||
gcse_emit_move_after (rtx src, rtx dest, rtx insn)
|
||
{
|
||
rtx new_rtx;
|
||
rtx set = single_set (insn), set2;
|
||
rtx note;
|
||
rtx eqv;
|
||
|
||
/* This should never fail since we're creating a reg->reg copy
|
||
we've verified to be valid. */
|
||
|
||
new_rtx = emit_insn_after (gen_move_insn (dest, src), insn);
|
||
|
||
/* Note the equivalence for local CSE pass. */
|
||
set2 = single_set (new_rtx);
|
||
if (!set2 || !rtx_equal_p (SET_DEST (set2), dest))
|
||
return new_rtx;
|
||
if ((note = find_reg_equal_equiv_note (insn)))
|
||
eqv = XEXP (note, 0);
|
||
else
|
||
eqv = SET_SRC (set);
|
||
|
||
set_unique_reg_note (new_rtx, REG_EQUAL, copy_insn_1 (eqv));
|
||
|
||
return new_rtx;
|
||
}
|
||
|
||
/* Delete redundant computations.
|
||
Deletion is done by changing the insn to copy the `reaching_reg' of
|
||
the expression into the result of the SET. It is left to later passes
|
||
(cprop, cse2, flow, combine, regmove) to propagate the copy or eliminate it.
|
||
|
||
Returns nonzero if a change is made. */
|
||
|
||
static int
|
||
pre_delete (void)
|
||
{
|
||
unsigned int i;
|
||
int changed;
|
||
struct expr *expr;
|
||
struct occr *occr;
|
||
|
||
changed = 0;
|
||
for (i = 0; i < expr_hash_table.size; i++)
|
||
for (expr = expr_hash_table.table[i];
|
||
expr != NULL;
|
||
expr = expr->next_same_hash)
|
||
{
|
||
int indx = expr->bitmap_index;
|
||
|
||
/* We only need to search antic_occr since we require
|
||
ANTLOC != 0. */
|
||
|
||
for (occr = expr->antic_occr; occr != NULL; occr = occr->next)
|
||
{
|
||
rtx insn = occr->insn;
|
||
rtx set;
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
|
||
/* We only delete insns that have a single_set. */
|
||
if (TEST_BIT (pre_delete_map[bb->index], indx)
|
||
&& (set = single_set (insn)) != 0
|
||
&& dbg_cnt (pre_insn))
|
||
{
|
||
/* Create a pseudo-reg to store the result of reaching
|
||
expressions into. Get the mode for the new pseudo from
|
||
the mode of the original destination pseudo. */
|
||
if (expr->reaching_reg == NULL)
|
||
expr->reaching_reg = gen_reg_rtx_and_attrs (SET_DEST (set));
|
||
|
||
gcse_emit_move_after (expr->reaching_reg, SET_DEST (set), insn);
|
||
delete_insn (insn);
|
||
occr->deleted_p = 1;
|
||
changed = 1;
|
||
gcse_subst_count++;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file,
|
||
"PRE: redundant insn %d (expression %d) in ",
|
||
INSN_UID (insn), indx);
|
||
fprintf (dump_file, "bb %d, reaching reg is %d\n",
|
||
bb->index, REGNO (expr->reaching_reg));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Perform GCSE optimizations using PRE.
|
||
This is called by one_pre_gcse_pass after all the dataflow analysis
|
||
has been done.
|
||
|
||
This is based on the original Morel-Renvoise paper Fred Chow's thesis, and
|
||
lazy code motion from Knoop, Ruthing and Steffen as described in Advanced
|
||
Compiler Design and Implementation.
|
||
|
||
??? A new pseudo reg is created to hold the reaching expression. The nice
|
||
thing about the classical approach is that it would try to use an existing
|
||
reg. If the register can't be adequately optimized [i.e. we introduce
|
||
reload problems], one could add a pass here to propagate the new register
|
||
through the block.
|
||
|
||
??? We don't handle single sets in PARALLELs because we're [currently] not
|
||
able to copy the rest of the parallel when we insert copies to create full
|
||
redundancies from partial redundancies. However, there's no reason why we
|
||
can't handle PARALLELs in the cases where there are no partial
|
||
redundancies. */
|
||
|
||
static int
|
||
pre_gcse (void)
|
||
{
|
||
unsigned int i;
|
||
int did_insert, changed;
|
||
struct expr **index_map;
|
||
struct expr *expr;
|
||
|
||
/* Compute a mapping from expression number (`bitmap_index') to
|
||
hash table entry. */
|
||
|
||
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
||
for (i = 0; i < expr_hash_table.size; i++)
|
||
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
|
||
index_map[expr->bitmap_index] = expr;
|
||
|
||
/* Delete the redundant insns first so that
|
||
- we know what register to use for the new insns and for the other
|
||
ones with reaching expressions
|
||
- we know which insns are redundant when we go to create copies */
|
||
|
||
changed = pre_delete ();
|
||
did_insert = pre_edge_insert (edge_list, index_map);
|
||
|
||
/* In other places with reaching expressions, copy the expression to the
|
||
specially allocated pseudo-reg that reaches the redundant expr. */
|
||
pre_insert_copies ();
|
||
if (did_insert)
|
||
{
|
||
commit_edge_insertions ();
|
||
changed = 1;
|
||
}
|
||
|
||
free (index_map);
|
||
return changed;
|
||
}
|
||
|
||
/* Top level routine to perform one PRE GCSE pass.
|
||
|
||
Return nonzero if a change was made. */
|
||
|
||
static int
|
||
one_pre_gcse_pass (void)
|
||
{
|
||
int changed = 0;
|
||
|
||
gcse_subst_count = 0;
|
||
gcse_create_count = 0;
|
||
|
||
/* Return if there's nothing to do, or it is too expensive. */
|
||
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
||
|| is_too_expensive (_("PRE disabled")))
|
||
return 0;
|
||
|
||
/* We need alias. */
|
||
init_alias_analysis ();
|
||
|
||
bytes_used = 0;
|
||
gcc_obstack_init (&gcse_obstack);
|
||
alloc_gcse_mem ();
|
||
|
||
alloc_hash_table (&expr_hash_table);
|
||
add_noreturn_fake_exit_edges ();
|
||
if (flag_gcse_lm)
|
||
compute_ld_motion_mems ();
|
||
|
||
compute_hash_table (&expr_hash_table);
|
||
trim_ld_motion_mems ();
|
||
if (dump_file)
|
||
dump_hash_table (dump_file, "Expression", &expr_hash_table);
|
||
|
||
if (expr_hash_table.n_elems > 0)
|
||
{
|
||
alloc_pre_mem (last_basic_block, expr_hash_table.n_elems);
|
||
compute_pre_data ();
|
||
changed |= pre_gcse ();
|
||
free_edge_list (edge_list);
|
||
free_pre_mem ();
|
||
}
|
||
|
||
free_ldst_mems ();
|
||
remove_fake_exit_edges ();
|
||
free_hash_table (&expr_hash_table);
|
||
|
||
free_gcse_mem ();
|
||
obstack_free (&gcse_obstack, NULL);
|
||
|
||
/* We are finished with alias. */
|
||
end_alias_analysis ();
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "PRE GCSE of %s, %d basic blocks, %d bytes needed, ",
|
||
current_function_name (), n_basic_blocks, bytes_used);
|
||
fprintf (dump_file, "%d substs, %d insns created\n",
|
||
gcse_subst_count, gcse_create_count);
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* If X contains any LABEL_REF's, add REG_LABEL_OPERAND notes for them
|
||
to INSN. If such notes are added to an insn which references a
|
||
CODE_LABEL, the LABEL_NUSES count is incremented. We have to add
|
||
that note, because the following loop optimization pass requires
|
||
them. */
|
||
|
||
/* ??? If there was a jump optimization pass after gcse and before loop,
|
||
then we would not need to do this here, because jump would add the
|
||
necessary REG_LABEL_OPERAND and REG_LABEL_TARGET notes. */
|
||
|
||
static void
|
||
add_label_notes (rtx x, rtx insn)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int i, j;
|
||
const char *fmt;
|
||
|
||
if (code == LABEL_REF && !LABEL_REF_NONLOCAL_P (x))
|
||
{
|
||
/* This code used to ignore labels that referred to dispatch tables to
|
||
avoid flow generating (slightly) worse code.
|
||
|
||
We no longer ignore such label references (see LABEL_REF handling in
|
||
mark_jump_label for additional information). */
|
||
|
||
/* There's no reason for current users to emit jump-insns with
|
||
such a LABEL_REF, so we don't have to handle REG_LABEL_TARGET
|
||
notes. */
|
||
gcc_assert (!JUMP_P (insn));
|
||
add_reg_note (insn, REG_LABEL_OPERAND, XEXP (x, 0));
|
||
|
||
if (LABEL_P (XEXP (x, 0)))
|
||
LABEL_NUSES (XEXP (x, 0))++;
|
||
|
||
return;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1, fmt = GET_RTX_FORMAT (code); i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
add_label_notes (XEXP (x, i), insn);
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
add_label_notes (XVECEXP (x, i, j), insn);
|
||
}
|
||
}
|
||
|
||
/* Code Hoisting variables and subroutines. */
|
||
|
||
/* Very busy expressions. */
|
||
static sbitmap *hoist_vbein;
|
||
static sbitmap *hoist_vbeout;
|
||
|
||
/* ??? We could compute post dominators and run this algorithm in
|
||
reverse to perform tail merging, doing so would probably be
|
||
more effective than the tail merging code in jump.c.
|
||
|
||
It's unclear if tail merging could be run in parallel with
|
||
code hoisting. It would be nice. */
|
||
|
||
/* Allocate vars used for code hoisting analysis. */
|
||
|
||
static void
|
||
alloc_code_hoist_mem (int n_blocks, int n_exprs)
|
||
{
|
||
antloc = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
transp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
comp = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
|
||
hoist_vbein = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
hoist_vbeout = sbitmap_vector_alloc (n_blocks, n_exprs);
|
||
}
|
||
|
||
/* Free vars used for code hoisting analysis. */
|
||
|
||
static void
|
||
free_code_hoist_mem (void)
|
||
{
|
||
sbitmap_vector_free (antloc);
|
||
sbitmap_vector_free (transp);
|
||
sbitmap_vector_free (comp);
|
||
|
||
sbitmap_vector_free (hoist_vbein);
|
||
sbitmap_vector_free (hoist_vbeout);
|
||
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
}
|
||
|
||
/* Compute the very busy expressions at entry/exit from each block.
|
||
|
||
An expression is very busy if all paths from a given point
|
||
compute the expression. */
|
||
|
||
static void
|
||
compute_code_hoist_vbeinout (void)
|
||
{
|
||
int changed, passes;
|
||
basic_block bb;
|
||
|
||
sbitmap_vector_zero (hoist_vbeout, last_basic_block);
|
||
sbitmap_vector_zero (hoist_vbein, last_basic_block);
|
||
|
||
passes = 0;
|
||
changed = 1;
|
||
|
||
while (changed)
|
||
{
|
||
changed = 0;
|
||
|
||
/* We scan the blocks in the reverse order to speed up
|
||
the convergence. */
|
||
FOR_EACH_BB_REVERSE (bb)
|
||
{
|
||
if (bb->next_bb != EXIT_BLOCK_PTR)
|
||
{
|
||
sbitmap_intersection_of_succs (hoist_vbeout[bb->index],
|
||
hoist_vbein, bb->index);
|
||
|
||
/* Include expressions in VBEout that are calculated
|
||
in BB and available at its end. */
|
||
sbitmap_a_or_b (hoist_vbeout[bb->index],
|
||
hoist_vbeout[bb->index], comp[bb->index]);
|
||
}
|
||
|
||
changed |= sbitmap_a_or_b_and_c_cg (hoist_vbein[bb->index],
|
||
antloc[bb->index],
|
||
hoist_vbeout[bb->index],
|
||
transp[bb->index]);
|
||
}
|
||
|
||
passes++;
|
||
}
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "hoisting vbeinout computation: %d passes\n", passes);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
fprintf (dump_file, "vbein (%d): ", bb->index);
|
||
dump_sbitmap_file (dump_file, hoist_vbein[bb->index]);
|
||
fprintf (dump_file, "vbeout(%d): ", bb->index);
|
||
dump_sbitmap_file (dump_file, hoist_vbeout[bb->index]);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Top level routine to do the dataflow analysis needed by code hoisting. */
|
||
|
||
static void
|
||
compute_code_hoist_data (void)
|
||
{
|
||
compute_local_properties (transp, comp, antloc, &expr_hash_table);
|
||
prune_expressions (false);
|
||
compute_code_hoist_vbeinout ();
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
if (dump_file)
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
/* Determine if the expression identified by EXPR_INDEX would
|
||
reach BB unimpared if it was placed at the end of EXPR_BB.
|
||
Stop the search if the expression would need to be moved more
|
||
than DISTANCE instructions.
|
||
|
||
It's unclear exactly what Muchnick meant by "unimpared". It seems
|
||
to me that the expression must either be computed or transparent in
|
||
*every* block in the path(s) from EXPR_BB to BB. Any other definition
|
||
would allow the expression to be hoisted out of loops, even if
|
||
the expression wasn't a loop invariant.
|
||
|
||
Contrast this to reachability for PRE where an expression is
|
||
considered reachable if *any* path reaches instead of *all*
|
||
paths. */
|
||
|
||
static int
|
||
hoist_expr_reaches_here_p (basic_block expr_bb, int expr_index, basic_block bb,
|
||
char *visited, int distance, int *bb_size)
|
||
{
|
||
edge pred;
|
||
edge_iterator ei;
|
||
int visited_allocated_locally = 0;
|
||
|
||
/* Terminate the search if distance, for which EXPR is allowed to move,
|
||
is exhausted. */
|
||
if (distance > 0)
|
||
{
|
||
distance -= bb_size[bb->index];
|
||
|
||
if (distance <= 0)
|
||
return 0;
|
||
}
|
||
else
|
||
gcc_assert (distance == 0);
|
||
|
||
if (visited == NULL)
|
||
{
|
||
visited_allocated_locally = 1;
|
||
visited = XCNEWVEC (char, last_basic_block);
|
||
}
|
||
|
||
FOR_EACH_EDGE (pred, ei, bb->preds)
|
||
{
|
||
basic_block pred_bb = pred->src;
|
||
|
||
if (pred->src == ENTRY_BLOCK_PTR)
|
||
break;
|
||
else if (pred_bb == expr_bb)
|
||
continue;
|
||
else if (visited[pred_bb->index])
|
||
continue;
|
||
|
||
else if (! TEST_BIT (transp[pred_bb->index], expr_index))
|
||
break;
|
||
|
||
/* Not killed. */
|
||
else
|
||
{
|
||
visited[pred_bb->index] = 1;
|
||
if (! hoist_expr_reaches_here_p (expr_bb, expr_index, pred_bb,
|
||
visited, distance, bb_size))
|
||
break;
|
||
}
|
||
}
|
||
if (visited_allocated_locally)
|
||
free (visited);
|
||
|
||
return (pred == NULL);
|
||
}
|
||
|
||
/* Find occurence in BB. */
|
||
static struct occr *
|
||
find_occr_in_bb (struct occr *occr, basic_block bb)
|
||
{
|
||
/* Find the right occurrence of this expression. */
|
||
while (occr && BLOCK_FOR_INSN (occr->insn) != bb)
|
||
occr = occr->next;
|
||
|
||
return occr;
|
||
}
|
||
|
||
/* Actually perform code hoisting. */
|
||
|
||
static int
|
||
hoist_code (void)
|
||
{
|
||
basic_block bb, dominated;
|
||
VEC (basic_block, heap) *dom_tree_walk;
|
||
unsigned int dom_tree_walk_index;
|
||
VEC (basic_block, heap) *domby;
|
||
unsigned int i,j;
|
||
struct expr **index_map;
|
||
struct expr *expr;
|
||
int *to_bb_head;
|
||
int *bb_size;
|
||
int changed = 0;
|
||
|
||
/* Compute a mapping from expression number (`bitmap_index') to
|
||
hash table entry. */
|
||
|
||
index_map = XCNEWVEC (struct expr *, expr_hash_table.n_elems);
|
||
for (i = 0; i < expr_hash_table.size; i++)
|
||
for (expr = expr_hash_table.table[i]; expr != NULL; expr = expr->next_same_hash)
|
||
index_map[expr->bitmap_index] = expr;
|
||
|
||
/* Calculate sizes of basic blocks and note how far
|
||
each instruction is from the start of its block. We then use this
|
||
data to restrict distance an expression can travel. */
|
||
|
||
to_bb_head = XCNEWVEC (int, get_max_uid ());
|
||
bb_size = XCNEWVEC (int, last_basic_block);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
rtx insn;
|
||
int to_head;
|
||
|
||
to_head = 0;
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
/* Don't count debug instructions to avoid them affecting
|
||
decision choices. */
|
||
if (NONDEBUG_INSN_P (insn))
|
||
to_bb_head[INSN_UID (insn)] = to_head++;
|
||
}
|
||
|
||
bb_size[bb->index] = to_head;
|
||
}
|
||
|
||
gcc_assert (EDGE_COUNT (ENTRY_BLOCK_PTR->succs) == 1
|
||
&& (EDGE_SUCC (ENTRY_BLOCK_PTR, 0)->dest
|
||
== ENTRY_BLOCK_PTR->next_bb));
|
||
|
||
dom_tree_walk = get_all_dominated_blocks (CDI_DOMINATORS,
|
||
ENTRY_BLOCK_PTR->next_bb);
|
||
|
||
/* Walk over each basic block looking for potentially hoistable
|
||
expressions, nothing gets hoisted from the entry block. */
|
||
FOR_EACH_VEC_ELT (basic_block, dom_tree_walk, dom_tree_walk_index, bb)
|
||
{
|
||
domby = get_dominated_to_depth (CDI_DOMINATORS, bb, MAX_HOIST_DEPTH);
|
||
|
||
if (VEC_length (basic_block, domby) == 0)
|
||
continue;
|
||
|
||
/* Examine each expression that is very busy at the exit of this
|
||
block. These are the potentially hoistable expressions. */
|
||
for (i = 0; i < hoist_vbeout[bb->index]->n_bits; i++)
|
||
{
|
||
if (TEST_BIT (hoist_vbeout[bb->index], i))
|
||
{
|
||
/* Current expression. */
|
||
struct expr *expr = index_map[i];
|
||
/* Number of occurences of EXPR that can be hoisted to BB. */
|
||
int hoistable = 0;
|
||
/* Basic blocks that have occurences reachable from BB. */
|
||
bitmap_head _from_bbs, *from_bbs = &_from_bbs;
|
||
/* Occurences reachable from BB. */
|
||
VEC (occr_t, heap) *occrs_to_hoist = NULL;
|
||
/* We want to insert the expression into BB only once, so
|
||
note when we've inserted it. */
|
||
int insn_inserted_p;
|
||
occr_t occr;
|
||
|
||
bitmap_initialize (from_bbs, 0);
|
||
|
||
/* If an expression is computed in BB and is available at end of
|
||
BB, hoist all occurences dominated by BB to BB. */
|
||
if (TEST_BIT (comp[bb->index], i))
|
||
{
|
||
occr = find_occr_in_bb (expr->antic_occr, bb);
|
||
|
||
if (occr)
|
||
{
|
||
/* An occurence might've been already deleted
|
||
while processing a dominator of BB. */
|
||
if (!occr->deleted_p)
|
||
{
|
||
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
||
hoistable++;
|
||
}
|
||
}
|
||
else
|
||
hoistable++;
|
||
}
|
||
|
||
/* We've found a potentially hoistable expression, now
|
||
we look at every block BB dominates to see if it
|
||
computes the expression. */
|
||
FOR_EACH_VEC_ELT (basic_block, domby, j, dominated)
|
||
{
|
||
int max_distance;
|
||
|
||
/* Ignore self dominance. */
|
||
if (bb == dominated)
|
||
continue;
|
||
/* We've found a dominated block, now see if it computes
|
||
the busy expression and whether or not moving that
|
||
expression to the "beginning" of that block is safe. */
|
||
if (!TEST_BIT (antloc[dominated->index], i))
|
||
continue;
|
||
|
||
occr = find_occr_in_bb (expr->antic_occr, dominated);
|
||
gcc_assert (occr);
|
||
|
||
/* An occurence might've been already deleted
|
||
while processing a dominator of BB. */
|
||
if (occr->deleted_p)
|
||
continue;
|
||
gcc_assert (NONDEBUG_INSN_P (occr->insn));
|
||
|
||
max_distance = expr->max_distance;
|
||
if (max_distance > 0)
|
||
/* Adjust MAX_DISTANCE to account for the fact that
|
||
OCCR won't have to travel all of DOMINATED, but
|
||
only part of it. */
|
||
max_distance += (bb_size[dominated->index]
|
||
- to_bb_head[INSN_UID (occr->insn)]);
|
||
|
||
/* Note if the expression would reach the dominated block
|
||
unimpared if it was placed at the end of BB.
|
||
|
||
Keep track of how many times this expression is hoistable
|
||
from a dominated block into BB. */
|
||
if (hoist_expr_reaches_here_p (bb, i, dominated, NULL,
|
||
max_distance, bb_size))
|
||
{
|
||
hoistable++;
|
||
VEC_safe_push (occr_t, heap,
|
||
occrs_to_hoist, occr);
|
||
bitmap_set_bit (from_bbs, dominated->index);
|
||
}
|
||
}
|
||
|
||
/* If we found more than one hoistable occurrence of this
|
||
expression, then note it in the vector of expressions to
|
||
hoist. It makes no sense to hoist things which are computed
|
||
in only one BB, and doing so tends to pessimize register
|
||
allocation. One could increase this value to try harder
|
||
to avoid any possible code expansion due to register
|
||
allocation issues; however experiments have shown that
|
||
the vast majority of hoistable expressions are only movable
|
||
from two successors, so raising this threshold is likely
|
||
to nullify any benefit we get from code hoisting. */
|
||
if (hoistable > 1 && dbg_cnt (hoist_insn))
|
||
{
|
||
/* If (hoistable != VEC_length), then there is
|
||
an occurence of EXPR in BB itself. Don't waste
|
||
time looking for LCA in this case. */
|
||
if ((unsigned) hoistable
|
||
== VEC_length (occr_t, occrs_to_hoist))
|
||
{
|
||
basic_block lca;
|
||
|
||
lca = nearest_common_dominator_for_set (CDI_DOMINATORS,
|
||
from_bbs);
|
||
if (lca != bb)
|
||
/* Punt, it's better to hoist these occurences to
|
||
LCA. */
|
||
VEC_free (occr_t, heap, occrs_to_hoist);
|
||
}
|
||
}
|
||
else
|
||
/* Punt, no point hoisting a single occurence. */
|
||
VEC_free (occr_t, heap, occrs_to_hoist);
|
||
|
||
insn_inserted_p = 0;
|
||
|
||
/* Walk through occurences of I'th expressions we want
|
||
to hoist to BB and make the transformations. */
|
||
FOR_EACH_VEC_ELT (occr_t, occrs_to_hoist, j, occr)
|
||
{
|
||
rtx insn;
|
||
rtx set;
|
||
|
||
gcc_assert (!occr->deleted_p);
|
||
|
||
insn = occr->insn;
|
||
set = single_set (insn);
|
||
gcc_assert (set);
|
||
|
||
/* Create a pseudo-reg to store the result of reaching
|
||
expressions into. Get the mode for the new pseudo
|
||
from the mode of the original destination pseudo.
|
||
|
||
It is important to use new pseudos whenever we
|
||
emit a set. This will allow reload to use
|
||
rematerialization for such registers. */
|
||
if (!insn_inserted_p)
|
||
expr->reaching_reg
|
||
= gen_reg_rtx_and_attrs (SET_DEST (set));
|
||
|
||
gcse_emit_move_after (expr->reaching_reg, SET_DEST (set),
|
||
insn);
|
||
delete_insn (insn);
|
||
occr->deleted_p = 1;
|
||
changed = 1;
|
||
gcse_subst_count++;
|
||
|
||
if (!insn_inserted_p)
|
||
{
|
||
insert_insn_end_basic_block (expr, bb);
|
||
insn_inserted_p = 1;
|
||
}
|
||
}
|
||
|
||
VEC_free (occr_t, heap, occrs_to_hoist);
|
||
bitmap_clear (from_bbs);
|
||
}
|
||
}
|
||
VEC_free (basic_block, heap, domby);
|
||
}
|
||
|
||
VEC_free (basic_block, heap, dom_tree_walk);
|
||
free (bb_size);
|
||
free (to_bb_head);
|
||
free (index_map);
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Top level routine to perform one code hoisting (aka unification) pass
|
||
|
||
Return nonzero if a change was made. */
|
||
|
||
static int
|
||
one_code_hoisting_pass (void)
|
||
{
|
||
int changed = 0;
|
||
|
||
gcse_subst_count = 0;
|
||
gcse_create_count = 0;
|
||
|
||
/* Return if there's nothing to do, or it is too expensive. */
|
||
if (n_basic_blocks <= NUM_FIXED_BLOCKS + 1
|
||
|| is_too_expensive (_("GCSE disabled")))
|
||
return 0;
|
||
|
||
doing_code_hoisting_p = true;
|
||
|
||
/* We need alias. */
|
||
init_alias_analysis ();
|
||
|
||
bytes_used = 0;
|
||
gcc_obstack_init (&gcse_obstack);
|
||
alloc_gcse_mem ();
|
||
|
||
alloc_hash_table (&expr_hash_table);
|
||
compute_hash_table (&expr_hash_table);
|
||
if (dump_file)
|
||
dump_hash_table (dump_file, "Code Hosting Expressions", &expr_hash_table);
|
||
|
||
if (expr_hash_table.n_elems > 0)
|
||
{
|
||
alloc_code_hoist_mem (last_basic_block, expr_hash_table.n_elems);
|
||
compute_code_hoist_data ();
|
||
changed = hoist_code ();
|
||
free_code_hoist_mem ();
|
||
}
|
||
|
||
free_hash_table (&expr_hash_table);
|
||
free_gcse_mem ();
|
||
obstack_free (&gcse_obstack, NULL);
|
||
|
||
/* We are finished with alias. */
|
||
end_alias_analysis ();
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "HOIST of %s, %d basic blocks, %d bytes needed, ",
|
||
current_function_name (), n_basic_blocks, bytes_used);
|
||
fprintf (dump_file, "%d substs, %d insns created\n",
|
||
gcse_subst_count, gcse_create_count);
|
||
}
|
||
|
||
doing_code_hoisting_p = false;
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Here we provide the things required to do store motion towards
|
||
the exit. In order for this to be effective, gcse also needed to
|
||
be taught how to move a load when it is kill only by a store to itself.
|
||
|
||
int i;
|
||
float a[10];
|
||
|
||
void foo(float scale)
|
||
{
|
||
for (i=0; i<10; i++)
|
||
a[i] *= scale;
|
||
}
|
||
|
||
'i' is both loaded and stored to in the loop. Normally, gcse cannot move
|
||
the load out since its live around the loop, and stored at the bottom
|
||
of the loop.
|
||
|
||
The 'Load Motion' referred to and implemented in this file is
|
||
an enhancement to gcse which when using edge based lcm, recognizes
|
||
this situation and allows gcse to move the load out of the loop.
|
||
|
||
Once gcse has hoisted the load, store motion can then push this
|
||
load towards the exit, and we end up with no loads or stores of 'i'
|
||
in the loop. */
|
||
|
||
static hashval_t
|
||
pre_ldst_expr_hash (const void *p)
|
||
{
|
||
int do_not_record_p = 0;
|
||
const struct ls_expr *const x = (const struct ls_expr *) p;
|
||
return hash_rtx (x->pattern, GET_MODE (x->pattern), &do_not_record_p, NULL, false);
|
||
}
|
||
|
||
static int
|
||
pre_ldst_expr_eq (const void *p1, const void *p2)
|
||
{
|
||
const struct ls_expr *const ptr1 = (const struct ls_expr *) p1,
|
||
*const ptr2 = (const struct ls_expr *) p2;
|
||
return expr_equiv_p (ptr1->pattern, ptr2->pattern);
|
||
}
|
||
|
||
/* This will search the ldst list for a matching expression. If it
|
||
doesn't find one, we create one and initialize it. */
|
||
|
||
static struct ls_expr *
|
||
ldst_entry (rtx x)
|
||
{
|
||
int do_not_record_p = 0;
|
||
struct ls_expr * ptr;
|
||
unsigned int hash;
|
||
void **slot;
|
||
struct ls_expr e;
|
||
|
||
hash = hash_rtx (x, GET_MODE (x), &do_not_record_p,
|
||
NULL, /*have_reg_qty=*/false);
|
||
|
||
e.pattern = x;
|
||
slot = htab_find_slot_with_hash (pre_ldst_table, &e, hash, INSERT);
|
||
if (*slot)
|
||
return (struct ls_expr *)*slot;
|
||
|
||
ptr = XNEW (struct ls_expr);
|
||
|
||
ptr->next = pre_ldst_mems;
|
||
ptr->expr = NULL;
|
||
ptr->pattern = x;
|
||
ptr->pattern_regs = NULL_RTX;
|
||
ptr->loads = NULL_RTX;
|
||
ptr->stores = NULL_RTX;
|
||
ptr->reaching_reg = NULL_RTX;
|
||
ptr->invalid = 0;
|
||
ptr->index = 0;
|
||
ptr->hash_index = hash;
|
||
pre_ldst_mems = ptr;
|
||
*slot = ptr;
|
||
|
||
return ptr;
|
||
}
|
||
|
||
/* Free up an individual ldst entry. */
|
||
|
||
static void
|
||
free_ldst_entry (struct ls_expr * ptr)
|
||
{
|
||
free_INSN_LIST_list (& ptr->loads);
|
||
free_INSN_LIST_list (& ptr->stores);
|
||
|
||
free (ptr);
|
||
}
|
||
|
||
/* Free up all memory associated with the ldst list. */
|
||
|
||
static void
|
||
free_ldst_mems (void)
|
||
{
|
||
if (pre_ldst_table)
|
||
htab_delete (pre_ldst_table);
|
||
pre_ldst_table = NULL;
|
||
|
||
while (pre_ldst_mems)
|
||
{
|
||
struct ls_expr * tmp = pre_ldst_mems;
|
||
|
||
pre_ldst_mems = pre_ldst_mems->next;
|
||
|
||
free_ldst_entry (tmp);
|
||
}
|
||
|
||
pre_ldst_mems = NULL;
|
||
}
|
||
|
||
/* Dump debugging info about the ldst list. */
|
||
|
||
static void
|
||
print_ldst_list (FILE * file)
|
||
{
|
||
struct ls_expr * ptr;
|
||
|
||
fprintf (file, "LDST list: \n");
|
||
|
||
for (ptr = first_ls_expr (); ptr != NULL; ptr = next_ls_expr (ptr))
|
||
{
|
||
fprintf (file, " Pattern (%3d): ", ptr->index);
|
||
|
||
print_rtl (file, ptr->pattern);
|
||
|
||
fprintf (file, "\n Loads : ");
|
||
|
||
if (ptr->loads)
|
||
print_rtl (file, ptr->loads);
|
||
else
|
||
fprintf (file, "(nil)");
|
||
|
||
fprintf (file, "\n Stores : ");
|
||
|
||
if (ptr->stores)
|
||
print_rtl (file, ptr->stores);
|
||
else
|
||
fprintf (file, "(nil)");
|
||
|
||
fprintf (file, "\n\n");
|
||
}
|
||
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
/* Returns 1 if X is in the list of ldst only expressions. */
|
||
|
||
static struct ls_expr *
|
||
find_rtx_in_ldst (rtx x)
|
||
{
|
||
struct ls_expr e;
|
||
void **slot;
|
||
if (!pre_ldst_table)
|
||
return NULL;
|
||
e.pattern = x;
|
||
slot = htab_find_slot (pre_ldst_table, &e, NO_INSERT);
|
||
if (!slot || ((struct ls_expr *)*slot)->invalid)
|
||
return NULL;
|
||
return (struct ls_expr *) *slot;
|
||
}
|
||
|
||
/* Return first item in the list. */
|
||
|
||
static inline struct ls_expr *
|
||
first_ls_expr (void)
|
||
{
|
||
return pre_ldst_mems;
|
||
}
|
||
|
||
/* Return the next item in the list after the specified one. */
|
||
|
||
static inline struct ls_expr *
|
||
next_ls_expr (struct ls_expr * ptr)
|
||
{
|
||
return ptr->next;
|
||
}
|
||
|
||
/* Load Motion for loads which only kill themselves. */
|
||
|
||
/* Return true if x is a simple MEM operation, with no registers or
|
||
side effects. These are the types of loads we consider for the
|
||
ld_motion list, otherwise we let the usual aliasing take care of it. */
|
||
|
||
static int
|
||
simple_mem (const_rtx x)
|
||
{
|
||
if (! MEM_P (x))
|
||
return 0;
|
||
|
||
if (MEM_VOLATILE_P (x))
|
||
return 0;
|
||
|
||
if (GET_MODE (x) == BLKmode)
|
||
return 0;
|
||
|
||
/* If we are handling exceptions, we must be careful with memory references
|
||
that may trap. If we are not, the behavior is undefined, so we may just
|
||
continue. */
|
||
if (cfun->can_throw_non_call_exceptions && may_trap_p (x))
|
||
return 0;
|
||
|
||
if (side_effects_p (x))
|
||
return 0;
|
||
|
||
/* Do not consider function arguments passed on stack. */
|
||
if (reg_mentioned_p (stack_pointer_rtx, x))
|
||
return 0;
|
||
|
||
if (flag_float_store && FLOAT_MODE_P (GET_MODE (x)))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Make sure there isn't a buried reference in this pattern anywhere.
|
||
If there is, invalidate the entry for it since we're not capable
|
||
of fixing it up just yet.. We have to be sure we know about ALL
|
||
loads since the aliasing code will allow all entries in the
|
||
ld_motion list to not-alias itself. If we miss a load, we will get
|
||
the wrong value since gcse might common it and we won't know to
|
||
fix it up. */
|
||
|
||
static void
|
||
invalidate_any_buried_refs (rtx x)
|
||
{
|
||
const char * fmt;
|
||
int i, j;
|
||
struct ls_expr * ptr;
|
||
|
||
/* Invalidate it in the list. */
|
||
if (MEM_P (x) && simple_mem (x))
|
||
{
|
||
ptr = ldst_entry (x);
|
||
ptr->invalid = 1;
|
||
}
|
||
|
||
/* Recursively process the insn. */
|
||
fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
|
||
for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
invalidate_any_buried_refs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
invalidate_any_buried_refs (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
|
||
/* Find all the 'simple' MEMs which are used in LOADs and STORES. Simple
|
||
being defined as MEM loads and stores to symbols, with no side effects
|
||
and no registers in the expression. For a MEM destination, we also
|
||
check that the insn is still valid if we replace the destination with a
|
||
REG, as is done in update_ld_motion_stores. If there are any uses/defs
|
||
which don't match this criteria, they are invalidated and trimmed out
|
||
later. */
|
||
|
||
static void
|
||
compute_ld_motion_mems (void)
|
||
{
|
||
struct ls_expr * ptr;
|
||
basic_block bb;
|
||
rtx insn;
|
||
|
||
pre_ldst_mems = NULL;
|
||
pre_ldst_table = htab_create (13, pre_ldst_expr_hash,
|
||
pre_ldst_expr_eq, NULL);
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (NONDEBUG_INSN_P (insn))
|
||
{
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
{
|
||
rtx src = SET_SRC (PATTERN (insn));
|
||
rtx dest = SET_DEST (PATTERN (insn));
|
||
|
||
/* Check for a simple LOAD... */
|
||
if (MEM_P (src) && simple_mem (src))
|
||
{
|
||
ptr = ldst_entry (src);
|
||
if (REG_P (dest))
|
||
ptr->loads = alloc_INSN_LIST (insn, ptr->loads);
|
||
else
|
||
ptr->invalid = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Make sure there isn't a buried load somewhere. */
|
||
invalidate_any_buried_refs (src);
|
||
}
|
||
|
||
/* Check for stores. Don't worry about aliased ones, they
|
||
will block any movement we might do later. We only care
|
||
about this exact pattern since those are the only
|
||
circumstance that we will ignore the aliasing info. */
|
||
if (MEM_P (dest) && simple_mem (dest))
|
||
{
|
||
ptr = ldst_entry (dest);
|
||
|
||
if (! MEM_P (src)
|
||
&& GET_CODE (src) != ASM_OPERANDS
|
||
/* Check for REG manually since want_to_gcse_p
|
||
returns 0 for all REGs. */
|
||
&& can_assign_to_reg_without_clobbers_p (src))
|
||
ptr->stores = alloc_INSN_LIST (insn, ptr->stores);
|
||
else
|
||
ptr->invalid = 1;
|
||
}
|
||
}
|
||
else
|
||
invalidate_any_buried_refs (PATTERN (insn));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove any references that have been either invalidated or are not in the
|
||
expression list for pre gcse. */
|
||
|
||
static void
|
||
trim_ld_motion_mems (void)
|
||
{
|
||
struct ls_expr * * last = & pre_ldst_mems;
|
||
struct ls_expr * ptr = pre_ldst_mems;
|
||
|
||
while (ptr != NULL)
|
||
{
|
||
struct expr * expr;
|
||
|
||
/* Delete if entry has been made invalid. */
|
||
if (! ptr->invalid)
|
||
{
|
||
/* Delete if we cannot find this mem in the expression list. */
|
||
unsigned int hash = ptr->hash_index % expr_hash_table.size;
|
||
|
||
for (expr = expr_hash_table.table[hash];
|
||
expr != NULL;
|
||
expr = expr->next_same_hash)
|
||
if (expr_equiv_p (expr->expr, ptr->pattern))
|
||
break;
|
||
}
|
||
else
|
||
expr = (struct expr *) 0;
|
||
|
||
if (expr)
|
||
{
|
||
/* Set the expression field if we are keeping it. */
|
||
ptr->expr = expr;
|
||
last = & ptr->next;
|
||
ptr = ptr->next;
|
||
}
|
||
else
|
||
{
|
||
*last = ptr->next;
|
||
htab_remove_elt_with_hash (pre_ldst_table, ptr, ptr->hash_index);
|
||
free_ldst_entry (ptr);
|
||
ptr = * last;
|
||
}
|
||
}
|
||
|
||
/* Show the world what we've found. */
|
||
if (dump_file && pre_ldst_mems != NULL)
|
||
print_ldst_list (dump_file);
|
||
}
|
||
|
||
/* This routine will take an expression which we are replacing with
|
||
a reaching register, and update any stores that are needed if
|
||
that expression is in the ld_motion list. Stores are updated by
|
||
copying their SRC to the reaching register, and then storing
|
||
the reaching register into the store location. These keeps the
|
||
correct value in the reaching register for the loads. */
|
||
|
||
static void
|
||
update_ld_motion_stores (struct expr * expr)
|
||
{
|
||
struct ls_expr * mem_ptr;
|
||
|
||
if ((mem_ptr = find_rtx_in_ldst (expr->expr)))
|
||
{
|
||
/* We can try to find just the REACHED stores, but is shouldn't
|
||
matter to set the reaching reg everywhere... some might be
|
||
dead and should be eliminated later. */
|
||
|
||
/* We replace (set mem expr) with (set reg expr) (set mem reg)
|
||
where reg is the reaching reg used in the load. We checked in
|
||
compute_ld_motion_mems that we can replace (set mem expr) with
|
||
(set reg expr) in that insn. */
|
||
rtx list = mem_ptr->stores;
|
||
|
||
for ( ; list != NULL_RTX; list = XEXP (list, 1))
|
||
{
|
||
rtx insn = XEXP (list, 0);
|
||
rtx pat = PATTERN (insn);
|
||
rtx src = SET_SRC (pat);
|
||
rtx reg = expr->reaching_reg;
|
||
rtx copy;
|
||
|
||
/* If we've already copied it, continue. */
|
||
if (expr->reaching_reg == src)
|
||
continue;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "PRE: store updated with reaching reg ");
|
||
print_rtl (dump_file, expr->reaching_reg);
|
||
fprintf (dump_file, ":\n ");
|
||
print_inline_rtx (dump_file, insn, 8);
|
||
fprintf (dump_file, "\n");
|
||
}
|
||
|
||
copy = gen_move_insn (reg, copy_rtx (SET_SRC (pat)));
|
||
emit_insn_before (copy, insn);
|
||
SET_SRC (pat) = reg;
|
||
df_insn_rescan (insn);
|
||
|
||
/* un-recognize this pattern since it's probably different now. */
|
||
INSN_CODE (insn) = -1;
|
||
gcse_create_count++;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true if the graph is too expensive to optimize. PASS is the
|
||
optimization about to be performed. */
|
||
|
||
static bool
|
||
is_too_expensive (const char *pass)
|
||
{
|
||
/* Trying to perform global optimizations on flow graphs which have
|
||
a high connectivity will take a long time and is unlikely to be
|
||
particularly useful.
|
||
|
||
In normal circumstances a cfg should have about twice as many
|
||
edges as blocks. But we do not want to punish small functions
|
||
which have a couple switch statements. Rather than simply
|
||
threshold the number of blocks, uses something with a more
|
||
graceful degradation. */
|
||
if (n_edges > 20000 + n_basic_blocks * 4)
|
||
{
|
||
warning (OPT_Wdisabled_optimization,
|
||
"%s: %d basic blocks and %d edges/basic block",
|
||
pass, n_basic_blocks, n_edges / n_basic_blocks);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* If allocating memory for the dataflow bitmaps would take up too much
|
||
storage it's better just to disable the optimization. */
|
||
if ((n_basic_blocks
|
||
* SBITMAP_SET_SIZE (max_reg_num ())
|
||
* sizeof (SBITMAP_ELT_TYPE)) > MAX_GCSE_MEMORY)
|
||
{
|
||
warning (OPT_Wdisabled_optimization,
|
||
"%s: %d basic blocks and %d registers",
|
||
pass, n_basic_blocks, max_reg_num ());
|
||
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* All the passes implemented in this file. Each pass has its
|
||
own gate and execute function, and at the end of the file a
|
||
pass definition for passes.c.
|
||
|
||
We do not construct an accurate cfg in functions which call
|
||
setjmp, so none of these passes runs if the function calls
|
||
setjmp.
|
||
FIXME: Should just handle setjmp via REG_SETJMP notes. */
|
||
|
||
static bool
|
||
gate_rtl_pre (void)
|
||
{
|
||
return optimize > 0 && flag_gcse
|
||
&& !cfun->calls_setjmp
|
||
&& optimize_function_for_speed_p (cfun)
|
||
&& dbg_cnt (pre);
|
||
}
|
||
|
||
static unsigned int
|
||
execute_rtl_pre (void)
|
||
{
|
||
int changed;
|
||
delete_unreachable_blocks ();
|
||
df_analyze ();
|
||
changed = one_pre_gcse_pass ();
|
||
flag_rerun_cse_after_global_opts |= changed;
|
||
if (changed)
|
||
cleanup_cfg (0);
|
||
return 0;
|
||
}
|
||
|
||
static bool
|
||
gate_rtl_hoist (void)
|
||
{
|
||
return optimize > 0 && flag_gcse
|
||
&& !cfun->calls_setjmp
|
||
/* It does not make sense to run code hoisting unless we are optimizing
|
||
for code size -- it rarely makes programs faster, and can make then
|
||
bigger if we did PRE (when optimizing for space, we don't run PRE). */
|
||
&& optimize_function_for_size_p (cfun)
|
||
&& dbg_cnt (hoist);
|
||
}
|
||
|
||
static unsigned int
|
||
execute_rtl_hoist (void)
|
||
{
|
||
int changed;
|
||
delete_unreachable_blocks ();
|
||
df_analyze ();
|
||
changed = one_code_hoisting_pass ();
|
||
flag_rerun_cse_after_global_opts |= changed;
|
||
if (changed)
|
||
cleanup_cfg (0);
|
||
return 0;
|
||
}
|
||
|
||
struct rtl_opt_pass pass_rtl_pre =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"rtl pre", /* name */
|
||
gate_rtl_pre, /* gate */
|
||
execute_rtl_pre, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_PRE, /* tv_id */
|
||
PROP_cfglayout, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish | TODO_verify_rtl_sharing |
|
||
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
struct rtl_opt_pass pass_rtl_hoist =
|
||
{
|
||
{
|
||
RTL_PASS,
|
||
"hoist", /* name */
|
||
gate_rtl_hoist, /* gate */
|
||
execute_rtl_hoist, /* execute */
|
||
NULL, /* sub */
|
||
NULL, /* next */
|
||
0, /* static_pass_number */
|
||
TV_HOIST, /* tv_id */
|
||
PROP_cfglayout, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish | TODO_verify_rtl_sharing |
|
||
TODO_verify_flow | TODO_ggc_collect /* todo_flags_finish */
|
||
}
|
||
};
|
||
|
||
#include "gt-gcse.h"
|