fa3c4d47b9
2018-01-07 Thomas Koenig <tkoenig@gcc.gnu.org> * libgfortran.h (GFC_DTYPE_COPY): New macro. (GFC_DTYPE_COPY_SETRANK): New macro. (GFC_DTYPE_IS_UNSET): New macro. * intrinsics/cshift0.c (cshift0): Use new macros. * intrinsics/eoshift0.c (eoshift0): Likewise. * intrinsics/eoshift2.c (eoshift2): Likewise. * intrinsics/move_alloc.c (move_alloc): Likewise. * intrinsics/reshape_generic.c (reshape_internal): Likewise. * intrinsics/spread_generic.c (spread_internal): Likewise. * intrinsics/spread_generic.c (spread_scalar): Likewise. * intrinsics/spread_generic.c (spread_char_scalar): Likewise. * intrinsics/spread_generic.c (spread_char4_scalar): Likewise. * intrinsics/unpack_generic.c (unpack0): Likewise. * intrinsics/unpack_generic.c (unpack0_char): Likewise. * intrinsics/unpack_generic.c (unpack0_char4): Likewise. * m4/cshift1.m4 (cshift1): Likewise. * m4/eoshift1.m4 (eoshift1): Likewise. * m4/eoshift3.m4 (eoshift3): Likewise. * m4/iforeach-s.m4: Likewise. * m4/iforeach.m4: Likewise. * m4/ifunction-s.m4: Likewise. * m4/ifunction-s2.m4: Likewise. * m4/ifunction.m4: Likewise. * m4/ifunction_logical.m4: Likewise. * m4/reshape.m4: Likewise. * m4/spread.m4: Likewise. * generated/all_l1.c : Regenerated. * generated/all_l16.c : Regenerated. * generated/all_l2.c : Regenerated. * generated/all_l4.c : Regenerated. * generated/all_l8.c : Regenerated. * generated/any_l1.c : Regenerated. * generated/any_l16.c : Regenerated. * generated/any_l2.c : Regenerated. * generated/any_l4.c : Regenerated. * generated/any_l8.c : Regenerated. * generated/count_16_l.c : Regenerated. * generated/count_1_l.c : Regenerated. * generated/count_2_l.c : Regenerated. * generated/count_4_l.c : Regenerated. * generated/count_8_l.c : Regenerated. * generated/cshift1_16.c : Regenerated. * generated/cshift1_4.c : Regenerated. * generated/cshift1_8.c : Regenerated. * generated/eoshift1_16.c : Regenerated. * generated/eoshift1_4.c : Regenerated. * generated/eoshift1_8.c : Regenerated. * generated/eoshift3_16.c : Regenerated. * generated/eoshift3_4.c : Regenerated. * generated/eoshift3_8.c : Regenerated. * generated/iall_i1.c : Regenerated. * generated/iall_i16.c : Regenerated. * generated/iall_i2.c : Regenerated. * generated/iall_i4.c : Regenerated. * generated/iall_i8.c : Regenerated. * generated/iany_i1.c : Regenerated. * generated/iany_i16.c : Regenerated. * generated/iany_i2.c : Regenerated. * generated/iany_i4.c : Regenerated. * generated/iany_i8.c : Regenerated. * generated/iparity_i1.c : Regenerated. * generated/iparity_i16.c : Regenerated. * generated/iparity_i2.c : Regenerated. * generated/iparity_i4.c : Regenerated. * generated/iparity_i8.c : Regenerated. * generated/maxloc0_16_i1.c : Regenerated. * generated/maxloc0_16_i16.c : Regenerated. * generated/maxloc0_16_i2.c : Regenerated. * generated/maxloc0_16_i4.c : Regenerated. * generated/maxloc0_16_i8.c : Regenerated. * generated/maxloc0_16_r10.c : Regenerated. * generated/maxloc0_16_r16.c : Regenerated. * generated/maxloc0_16_r4.c : Regenerated. * generated/maxloc0_16_r8.c : Regenerated. * generated/maxloc0_16_s1.c : Regenerated. * generated/maxloc0_16_s4.c : Regenerated. * generated/maxloc0_4_i1.c : Regenerated. * generated/maxloc0_4_i16.c : Regenerated. * generated/maxloc0_4_i2.c : Regenerated. * generated/maxloc0_4_i4.c : Regenerated. * generated/maxloc0_4_i8.c : Regenerated. * generated/maxloc0_4_r10.c : Regenerated. * generated/maxloc0_4_r16.c : Regenerated. * generated/maxloc0_4_r4.c : Regenerated. * generated/maxloc0_4_r8.c : Regenerated. * generated/maxloc0_4_s1.c : Regenerated. * generated/maxloc0_4_s4.c : Regenerated. * generated/maxloc0_8_i1.c : Regenerated. * generated/maxloc0_8_i16.c : Regenerated. * generated/maxloc0_8_i2.c : Regenerated. * generated/maxloc0_8_i4.c : Regenerated. * generated/maxloc0_8_i8.c : Regenerated. * generated/maxloc0_8_r10.c : Regenerated. * generated/maxloc0_8_r16.c : Regenerated. * generated/maxloc0_8_r4.c : Regenerated. * generated/maxloc0_8_r8.c : Regenerated. * generated/maxloc0_8_s1.c : Regenerated. * generated/maxloc0_8_s4.c : Regenerated. * generated/maxloc1_16_i1.c : Regenerated. * generated/maxloc1_16_i16.c : Regenerated. * generated/maxloc1_16_i2.c : Regenerated. * generated/maxloc1_16_i4.c : Regenerated. * generated/maxloc1_16_i8.c : Regenerated. * generated/maxloc1_16_r10.c : Regenerated. * generated/maxloc1_16_r16.c : Regenerated. * generated/maxloc1_16_r4.c : Regenerated. * generated/maxloc1_16_r8.c : Regenerated. * generated/maxloc1_16_s1.c : Regenerated. * generated/maxloc1_16_s4.c : Regenerated. * generated/maxloc1_4_i1.c : Regenerated. * generated/maxloc1_4_i16.c : Regenerated. * generated/maxloc1_4_i2.c : Regenerated. * generated/maxloc1_4_i4.c : Regenerated. * generated/maxloc1_4_i8.c : Regenerated. * generated/maxloc1_4_r10.c : Regenerated. * generated/maxloc1_4_r16.c : Regenerated. * generated/maxloc1_4_r4.c : Regenerated. * generated/maxloc1_4_r8.c : Regenerated. * generated/maxloc1_4_s1.c : Regenerated. * generated/maxloc1_4_s4.c : Regenerated. * generated/maxloc1_8_i1.c : Regenerated. * generated/maxloc1_8_i16.c : Regenerated. * generated/maxloc1_8_i2.c : Regenerated. * generated/maxloc1_8_i4.c : Regenerated. * generated/maxloc1_8_i8.c : Regenerated. * generated/maxloc1_8_r10.c : Regenerated. * generated/maxloc1_8_r16.c : Regenerated. * generated/maxloc1_8_r4.c : Regenerated. * generated/maxloc1_8_r8.c : Regenerated. * generated/maxloc1_8_s1.c : Regenerated. * generated/maxloc1_8_s4.c : Regenerated. * generated/maxval1_s1.c : Regenerated. * generated/maxval1_s4.c : Regenerated. * generated/maxval_i1.c : Regenerated. * generated/maxval_i16.c : Regenerated. * generated/maxval_i2.c : Regenerated. * generated/maxval_i4.c : Regenerated. * generated/maxval_i8.c : Regenerated. * generated/maxval_r10.c : Regenerated. * generated/maxval_r16.c : Regenerated. * generated/maxval_r4.c : Regenerated. * generated/maxval_r8.c : Regenerated. * generated/minloc0_16_i1.c : Regenerated. * generated/minloc0_16_i16.c : Regenerated. * generated/minloc0_16_i2.c : Regenerated. * generated/minloc0_16_i4.c : Regenerated. * generated/minloc0_16_i8.c : Regenerated. * generated/minloc0_16_r10.c : Regenerated. * generated/minloc0_16_r16.c : Regenerated. * generated/minloc0_16_r4.c : Regenerated. * generated/minloc0_16_r8.c : Regenerated. * generated/minloc0_16_s1.c : Regenerated. * generated/minloc0_16_s4.c : Regenerated. * generated/minloc0_4_i1.c : Regenerated. * generated/minloc0_4_i16.c : Regenerated. * generated/minloc0_4_i2.c : Regenerated. * generated/minloc0_4_i4.c : Regenerated. * generated/minloc0_4_i8.c : Regenerated. * generated/minloc0_4_r10.c : Regenerated. * generated/minloc0_4_r16.c : Regenerated. * generated/minloc0_4_r4.c : Regenerated. * generated/minloc0_4_r8.c : Regenerated. * generated/minloc0_4_s1.c : Regenerated. * generated/minloc0_4_s4.c : Regenerated. * generated/minloc0_8_i1.c : Regenerated. * generated/minloc0_8_i16.c : Regenerated. * generated/minloc0_8_i2.c : Regenerated. * generated/minloc0_8_i4.c : Regenerated. * generated/minloc0_8_i8.c : Regenerated. * generated/minloc0_8_r10.c : Regenerated. * generated/minloc0_8_r16.c : Regenerated. * generated/minloc0_8_r4.c : Regenerated. * generated/minloc0_8_r8.c : Regenerated. * generated/minloc0_8_s1.c : Regenerated. * generated/minloc0_8_s4.c : Regenerated. * generated/minloc1_16_i1.c : Regenerated. * generated/minloc1_16_i16.c : Regenerated. * generated/minloc1_16_i2.c : Regenerated. * generated/minloc1_16_i4.c : Regenerated. * generated/minloc1_16_i8.c : Regenerated. * generated/minloc1_16_r10.c : Regenerated. * generated/minloc1_16_r16.c : Regenerated. * generated/minloc1_16_r4.c : Regenerated. * generated/minloc1_16_r8.c : Regenerated. * generated/minloc1_16_s1.c : Regenerated. * generated/minloc1_16_s4.c : Regenerated. * generated/minloc1_4_i1.c : Regenerated. * generated/minloc1_4_i16.c : Regenerated. * generated/minloc1_4_i2.c : Regenerated. * generated/minloc1_4_i4.c : Regenerated. * generated/minloc1_4_i8.c : Regenerated. * generated/minloc1_4_r10.c : Regenerated. * generated/minloc1_4_r16.c : Regenerated. * generated/minloc1_4_r4.c : Regenerated. * generated/minloc1_4_r8.c : Regenerated. * generated/minloc1_4_s1.c : Regenerated. * generated/minloc1_4_s4.c : Regenerated. * generated/minloc1_8_i1.c : Regenerated. * generated/minloc1_8_i16.c : Regenerated. * generated/minloc1_8_i2.c : Regenerated. * generated/minloc1_8_i4.c : Regenerated. * generated/minloc1_8_i8.c : Regenerated. * generated/minloc1_8_r10.c : Regenerated. * generated/minloc1_8_r16.c : Regenerated. * generated/minloc1_8_r4.c : Regenerated. * generated/minloc1_8_r8.c : Regenerated. * generated/minloc1_8_s1.c : Regenerated. * generated/minloc1_8_s4.c : Regenerated. * generated/minval1_s1.c : Regenerated. * generated/minval1_s4.c : Regenerated. * generated/minval_i1.c : Regenerated. * generated/minval_i16.c : Regenerated. * generated/minval_i2.c : Regenerated. * generated/minval_i4.c : Regenerated. * generated/minval_i8.c : Regenerated. * generated/minval_r10.c : Regenerated. * generated/minval_r16.c : Regenerated. * generated/minval_r4.c : Regenerated. * generated/minval_r8.c : Regenerated. * generated/norm2_r10.c : Regenerated. * generated/norm2_r16.c : Regenerated. * generated/norm2_r4.c : Regenerated. * generated/norm2_r8.c : Regenerated. * generated/parity_l1.c : Regenerated. * generated/parity_l16.c : Regenerated. * generated/parity_l2.c : Regenerated. * generated/parity_l4.c : Regenerated. * generated/parity_l8.c : Regenerated. * generated/product_c10.c : Regenerated. * generated/product_c16.c : Regenerated. * generated/product_c4.c : Regenerated. * generated/product_c8.c : Regenerated. * generated/product_i1.c : Regenerated. * generated/product_i16.c : Regenerated. * generated/product_i2.c : Regenerated. * generated/product_i4.c : Regenerated. * generated/product_i8.c : Regenerated. * generated/product_r10.c : Regenerated. * generated/product_r16.c : Regenerated. * generated/product_r4.c : Regenerated. * generated/product_r8.c : Regenerated. * generated/reshape_c10.c : Regenerated. * generated/reshape_c16.c : Regenerated. * generated/reshape_c4.c : Regenerated. * generated/reshape_c8.c : Regenerated. * generated/reshape_i16.c : Regenerated. * generated/reshape_i4.c : Regenerated. * generated/reshape_i8.c : Regenerated. * generated/reshape_r10.c : Regenerated. * generated/reshape_r16.c : Regenerated. * generated/reshape_r4.c : Regenerated. * generated/reshape_r8.c : Regenerated. * generated/spread_c10.c : Regenerated. * generated/spread_c16.c : Regenerated. * generated/spread_c4.c : Regenerated. * generated/spread_c8.c : Regenerated. * generated/spread_i1.c : Regenerated. * generated/spread_i16.c : Regenerated. * generated/spread_i2.c : Regenerated. * generated/spread_i4.c : Regenerated. * generated/spread_i8.c : Regenerated. * generated/spread_r10.c : Regenerated. * generated/spread_r16.c : Regenerated. * generated/spread_r4.c : Regenerated. * generated/spread_r8.c : Regenerated. * generated/sum_c10.c : Regenerated. * generated/sum_c16.c : Regenerated. * generated/sum_c4.c : Regenerated. * generated/sum_c8.c : Regenerated. * generated/sum_i1.c : Regenerated. * generated/sum_i16.c : Regenerated. * generated/sum_i2.c : Regenerated. * generated/sum_i4.c : Regenerated. * generated/sum_i8.c : Regenerated. * generated/sum_r10.c : Regenerated. * generated/sum_r16.c : Regenerated. * generated/sum_r4.c : Regenerated. * generated/sum_r8.c : Regenerated. From-SVN: r256323
531 lines
13 KiB
Plaintext
531 lines
13 KiB
Plaintext
dnl Support macro file for intrinsic functions.
|
|
dnl Contains the generic sections of the array functions.
|
|
dnl This file is part of the GNU Fortran Runtime Library (libgfortran)
|
|
dnl Distributed under the GNU GPL with exception. See COPYING for details.
|
|
dnl
|
|
dnl Pass the implementation for a single section as the parameter to
|
|
dnl {MASK_}ARRAY_FUNCTION.
|
|
dnl The variables base, delta, and len describe the input section.
|
|
dnl For masked section the mask is described by mbase and mdelta.
|
|
dnl These should not be modified. The result should be stored in *dest.
|
|
dnl The names count, extent, sstride, dstride, base, dest, rank, dim
|
|
dnl retarray, array, pdim and mstride should not be used.
|
|
dnl The variable n is declared as index_type and may be used.
|
|
dnl Other variable declarations may be placed at the start of the code,
|
|
dnl The types of the array parameter and the return value are
|
|
dnl atype_name and rtype_name respectively.
|
|
dnl Execution should be allowed to continue to the end of the block.
|
|
dnl You should not return or break from the inner loop of the implementation.
|
|
dnl Care should also be taken to avoid using the names defined in iparm.m4
|
|
define(START_ARRAY_FUNCTION,
|
|
`#include <string.h>
|
|
|
|
static inline int
|
|
compare_fcn (const atype_name *a, const atype_name *b, gfc_charlen_type n)
|
|
{
|
|
if (sizeof ('atype_name`) == 1)
|
|
return memcmp (a, b, n);
|
|
else
|
|
return memcmp_char4 (a, b, n);
|
|
}
|
|
|
|
extern void name`'rtype_qual`_'atype_code (rtype * const restrict,
|
|
atype * const restrict, const index_type * const restrict,
|
|
gfc_charlen_type);
|
|
export_proto(name`'rtype_qual`_'atype_code);
|
|
|
|
void
|
|
name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
|
|
atype * const restrict array,
|
|
const index_type * const restrict pdim, gfc_charlen_type string_len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
const atype_name * restrict base;
|
|
rtype_name * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type dim;
|
|
int continue_loop;
|
|
|
|
/* Make dim zero based to avoid confusion. */
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
dim = (*pdim) - 1;
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len < 0)
|
|
len = 0;
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array, n + 1) * string_len;
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" u_name intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "u_name");
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
base = array->base_addr;
|
|
dest = retarray->base_addr;
|
|
|
|
continue_loop = 1;
|
|
while (continue_loop)
|
|
{
|
|
const atype_name * restrict src;
|
|
rtype_name result;
|
|
src = base;
|
|
{
|
|
')dnl
|
|
define(START_ARRAY_BLOCK,
|
|
` if (len <= 0)
|
|
*dest = '$1`;
|
|
else
|
|
{
|
|
for (n = 0; n < len; n++, src += delta)
|
|
{
|
|
')dnl
|
|
define(FINISH_ARRAY_FUNCTION,
|
|
` }
|
|
'$1`
|
|
*dest = result;
|
|
}
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
continue_loop = 0;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}')dnl
|
|
define(START_MASKED_ARRAY_FUNCTION,
|
|
`
|
|
extern void `m'name`'rtype_qual`_'atype_code (rtype * const restrict,
|
|
atype * const restrict, const index_type * const restrict,
|
|
gfc_array_l1 * const restrict, gfc_charlen_type);
|
|
export_proto(`m'name`'rtype_qual`_'atype_code);
|
|
|
|
void
|
|
`m'name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
|
|
atype * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
gfc_array_l1 * const restrict mask, gfc_charlen_type string_len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type sstride[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
index_type mstride[GFC_MAX_DIMENSIONS];
|
|
rtype_name * restrict dest;
|
|
const atype_name * restrict base;
|
|
const GFC_LOGICAL_1 * restrict mbase;
|
|
index_type rank;
|
|
index_type dim;
|
|
index_type n;
|
|
index_type len;
|
|
index_type delta;
|
|
index_type mdelta;
|
|
int mask_kind;
|
|
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
len = GFC_DESCRIPTOR_EXTENT(array,dim);
|
|
if (len <= 0)
|
|
return;
|
|
|
|
mbase = mask->base_addr;
|
|
|
|
mask_kind = GFC_DESCRIPTOR_SIZE (mask);
|
|
|
|
if (mask_kind == 1 || mask_kind == 2 || mask_kind == 4 || mask_kind == 8
|
|
#ifdef HAVE_GFC_LOGICAL_16
|
|
|| mask_kind == 16
|
|
#endif
|
|
)
|
|
mbase = GFOR_POINTER_TO_L1 (mbase, mask_kind);
|
|
else
|
|
runtime_error ("Funny sized logical array");
|
|
|
|
delta = GFC_DESCRIPTOR_STRIDE(array,dim) * string_len;
|
|
mdelta = GFC_DESCRIPTOR_STRIDE_BYTES(mask,dim);
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n) * string_len;
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask,n);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
|
|
}
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
sstride[n] = GFC_DESCRIPTOR_STRIDE(array,n + 1) * string_len;
|
|
mstride[n] = GFC_DESCRIPTOR_STRIDE_BYTES(mask, n + 1);
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array, n + 1);
|
|
|
|
if (extent[n] < 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str= GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
retarray->offset = 0;
|
|
GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
}
|
|
else
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
|
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in u_name intrinsic");
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
bounds_ifunction_return ((array_t *) retarray, extent,
|
|
"return value", "u_name");
|
|
bounds_equal_extents ((array_t *) mask, (array_t *) array,
|
|
"MASK argument", "u_name");
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
if (extent[n] <= 0)
|
|
return;
|
|
}
|
|
|
|
dest = retarray->base_addr;
|
|
base = array->base_addr;
|
|
|
|
while (base)
|
|
{
|
|
const atype_name * restrict src;
|
|
const GFC_LOGICAL_1 * restrict msrc;
|
|
rtype_name result;
|
|
src = base;
|
|
msrc = mbase;
|
|
{
|
|
')dnl
|
|
define(START_MASKED_ARRAY_BLOCK,
|
|
` for (n = 0; n < len; n++, src += delta, msrc += mdelta)
|
|
{
|
|
')dnl
|
|
define(FINISH_MASKED_ARRAY_FUNCTION,
|
|
` }
|
|
*dest = result;
|
|
}
|
|
/* Advance to the next element. */
|
|
count[0]++;
|
|
base += sstride[0];
|
|
mbase += mstride[0];
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
base -= sstride[n] * extent[n];
|
|
mbase -= mstride[n] * extent[n];
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
{
|
|
/* Break out of the loop. */
|
|
base = NULL;
|
|
break;
|
|
}
|
|
else
|
|
{
|
|
count[n]++;
|
|
base += sstride[n];
|
|
mbase += mstride[n];
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}')dnl
|
|
define(SCALAR_ARRAY_FUNCTION,
|
|
`
|
|
extern void `s'name`'rtype_qual`_'atype_code (rtype * const restrict,
|
|
atype * const restrict, const index_type * const restrict,
|
|
GFC_LOGICAL_4 *, gfc_charlen_type);
|
|
export_proto(`s'name`'rtype_qual`_'atype_code);
|
|
|
|
void
|
|
`s'name`'rtype_qual`_'atype_code (rtype * const restrict retarray,
|
|
atype * const restrict array,
|
|
const index_type * const restrict pdim,
|
|
GFC_LOGICAL_4 * mask, gfc_charlen_type string_len)
|
|
{
|
|
index_type count[GFC_MAX_DIMENSIONS];
|
|
index_type extent[GFC_MAX_DIMENSIONS];
|
|
index_type dstride[GFC_MAX_DIMENSIONS];
|
|
rtype_name * restrict dest;
|
|
index_type rank;
|
|
index_type n;
|
|
index_type dim;
|
|
|
|
|
|
if (*mask)
|
|
{
|
|
name`'rtype_qual`_'atype_code (retarray, array, pdim, string_len);
|
|
return;
|
|
}
|
|
/* Make dim zero based to avoid confusion. */
|
|
dim = (*pdim) - 1;
|
|
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
|
|
|
if (unlikely (dim < 0 || dim > rank))
|
|
{
|
|
runtime_error ("Dim argument incorrect in u_name intrinsic: "
|
|
"is %ld, should be between 1 and %ld",
|
|
(long int) dim + 1, (long int) rank + 1);
|
|
}
|
|
|
|
for (n = 0; n < dim; n++)
|
|
{
|
|
extent[n] = GFC_DESCRIPTOR_EXTENT(array,n) * string_len;
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
for (n = dim; n < rank; n++)
|
|
{
|
|
extent[n] =
|
|
GFC_DESCRIPTOR_EXTENT(array,n + 1) * string_len;
|
|
|
|
if (extent[n] <= 0)
|
|
extent[n] = 0;
|
|
}
|
|
|
|
if (retarray->base_addr == NULL)
|
|
{
|
|
size_t alloc_size, str;
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
if (n == 0)
|
|
str = 1;
|
|
else
|
|
str = GFC_DESCRIPTOR_STRIDE(retarray,n-1) * extent[n-1];
|
|
|
|
GFC_DIMENSION_SET(retarray->dim[n], 0, extent[n] - 1, str);
|
|
|
|
}
|
|
|
|
retarray->offset = 0;
|
|
GFC_DTYPE_COPY_SETRANK(retarray,array,rank);
|
|
|
|
alloc_size = GFC_DESCRIPTOR_STRIDE(retarray,rank-1) * extent[rank-1];
|
|
|
|
if (alloc_size == 0)
|
|
{
|
|
/* Make sure we have a zero-sized array. */
|
|
GFC_DIMENSION_SET(retarray->dim[0], 0, -1, 1);
|
|
return;
|
|
}
|
|
else
|
|
retarray->base_addr = xmallocarray (alloc_size, sizeof (rtype_name));
|
|
}
|
|
else
|
|
{
|
|
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
|
runtime_error ("rank of return array incorrect in"
|
|
" u_name intrinsic: is %ld, should be %ld",
|
|
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
|
(long int) rank);
|
|
|
|
if (unlikely (compile_options.bounds_check))
|
|
{
|
|
for (n=0; n < rank; n++)
|
|
{
|
|
index_type ret_extent;
|
|
|
|
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,n);
|
|
if (extent[n] != ret_extent)
|
|
runtime_error ("Incorrect extent in return value of"
|
|
" u_name intrinsic in dimension %ld:"
|
|
" is %ld, should be %ld", (long int) n + 1,
|
|
(long int) ret_extent, (long int) extent[n]);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < rank; n++)
|
|
{
|
|
count[n] = 0;
|
|
dstride[n] = GFC_DESCRIPTOR_STRIDE(retarray,n);
|
|
}
|
|
|
|
dest = retarray->base_addr;
|
|
|
|
while(1)
|
|
{
|
|
*dest = '$1`;
|
|
count[0]++;
|
|
dest += dstride[0];
|
|
n = 0;
|
|
while (count[n] == extent[n])
|
|
{
|
|
/* When we get to the end of a dimension, reset it and increment
|
|
the next dimension. */
|
|
count[n] = 0;
|
|
/* We could precalculate these products, but this is a less
|
|
frequently used path so probably not worth it. */
|
|
dest -= dstride[n] * extent[n];
|
|
n++;
|
|
if (n >= rank)
|
|
return;
|
|
else
|
|
{
|
|
count[n]++;
|
|
dest += dstride[n];
|
|
}
|
|
}
|
|
}
|
|
}')dnl
|
|
define(ARRAY_FUNCTION,
|
|
`START_ARRAY_FUNCTION
|
|
$2
|
|
START_ARRAY_BLOCK($1)
|
|
$3
|
|
FINISH_ARRAY_FUNCTION($4)')dnl
|
|
define(MASKED_ARRAY_FUNCTION,
|
|
`START_MASKED_ARRAY_FUNCTION
|
|
$2
|
|
START_MASKED_ARRAY_BLOCK
|
|
$3
|
|
FINISH_MASKED_ARRAY_FUNCTION')dnl
|