dd931d9b48
Reviewed-on: https://go-review.googlesource.com/136435 gotools/: * Makefile.am (mostlyclean-local): Run chmod on check-go-dir to make sure it is writable. (check-go-tools): Likewise. (check-vet): Copy internal/objabi to check-vet-dir. * Makefile.in: Rebuild. From-SVN: r264546
1041 lines
25 KiB
Go
1041 lines
25 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package strings implements simple functions to manipulate UTF-8 encoded strings.
|
|
//
|
|
// For information about UTF-8 strings in Go, see https://blog.golang.org/strings.
|
|
package strings
|
|
|
|
import (
|
|
"internal/bytealg"
|
|
"unicode"
|
|
"unicode/utf8"
|
|
)
|
|
|
|
// explode splits s into a slice of UTF-8 strings,
|
|
// one string per Unicode character up to a maximum of n (n < 0 means no limit).
|
|
// Invalid UTF-8 sequences become correct encodings of U+FFFD.
|
|
func explode(s string, n int) []string {
|
|
l := utf8.RuneCountInString(s)
|
|
if n < 0 || n > l {
|
|
n = l
|
|
}
|
|
a := make([]string, n)
|
|
for i := 0; i < n-1; i++ {
|
|
ch, size := utf8.DecodeRuneInString(s)
|
|
a[i] = s[:size]
|
|
s = s[size:]
|
|
if ch == utf8.RuneError {
|
|
a[i] = string(utf8.RuneError)
|
|
}
|
|
}
|
|
if n > 0 {
|
|
a[n-1] = s
|
|
}
|
|
return a
|
|
}
|
|
|
|
// primeRK is the prime base used in Rabin-Karp algorithm.
|
|
const primeRK = 16777619
|
|
|
|
// hashStr returns the hash and the appropriate multiplicative
|
|
// factor for use in Rabin-Karp algorithm.
|
|
func hashStr(sep string) (uint32, uint32) {
|
|
hash := uint32(0)
|
|
for i := 0; i < len(sep); i++ {
|
|
hash = hash*primeRK + uint32(sep[i])
|
|
}
|
|
var pow, sq uint32 = 1, primeRK
|
|
for i := len(sep); i > 0; i >>= 1 {
|
|
if i&1 != 0 {
|
|
pow *= sq
|
|
}
|
|
sq *= sq
|
|
}
|
|
return hash, pow
|
|
}
|
|
|
|
// hashStrRev returns the hash of the reverse of sep and the
|
|
// appropriate multiplicative factor for use in Rabin-Karp algorithm.
|
|
func hashStrRev(sep string) (uint32, uint32) {
|
|
hash := uint32(0)
|
|
for i := len(sep) - 1; i >= 0; i-- {
|
|
hash = hash*primeRK + uint32(sep[i])
|
|
}
|
|
var pow, sq uint32 = 1, primeRK
|
|
for i := len(sep); i > 0; i >>= 1 {
|
|
if i&1 != 0 {
|
|
pow *= sq
|
|
}
|
|
sq *= sq
|
|
}
|
|
return hash, pow
|
|
}
|
|
|
|
// Count counts the number of non-overlapping instances of substr in s.
|
|
// If substr is an empty string, Count returns 1 + the number of Unicode code points in s.
|
|
func Count(s, substr string) int {
|
|
// special case
|
|
if len(substr) == 0 {
|
|
return utf8.RuneCountInString(s) + 1
|
|
}
|
|
if len(substr) == 1 {
|
|
return bytealg.CountString(s, substr[0])
|
|
}
|
|
n := 0
|
|
for {
|
|
i := Index(s, substr)
|
|
if i == -1 {
|
|
return n
|
|
}
|
|
n++
|
|
s = s[i+len(substr):]
|
|
}
|
|
}
|
|
|
|
// Contains reports whether substr is within s.
|
|
func Contains(s, substr string) bool {
|
|
return Index(s, substr) >= 0
|
|
}
|
|
|
|
// ContainsAny reports whether any Unicode code points in chars are within s.
|
|
func ContainsAny(s, chars string) bool {
|
|
return IndexAny(s, chars) >= 0
|
|
}
|
|
|
|
// ContainsRune reports whether the Unicode code point r is within s.
|
|
func ContainsRune(s string, r rune) bool {
|
|
return IndexRune(s, r) >= 0
|
|
}
|
|
|
|
// LastIndex returns the index of the last instance of substr in s, or -1 if substr is not present in s.
|
|
func LastIndex(s, substr string) int {
|
|
n := len(substr)
|
|
switch {
|
|
case n == 0:
|
|
return len(s)
|
|
case n == 1:
|
|
return LastIndexByte(s, substr[0])
|
|
case n == len(s):
|
|
if substr == s {
|
|
return 0
|
|
}
|
|
return -1
|
|
case n > len(s):
|
|
return -1
|
|
}
|
|
// Rabin-Karp search from the end of the string
|
|
hashss, pow := hashStrRev(substr)
|
|
last := len(s) - n
|
|
var h uint32
|
|
for i := len(s) - 1; i >= last; i-- {
|
|
h = h*primeRK + uint32(s[i])
|
|
}
|
|
if h == hashss && s[last:] == substr {
|
|
return last
|
|
}
|
|
for i := last - 1; i >= 0; i-- {
|
|
h *= primeRK
|
|
h += uint32(s[i])
|
|
h -= pow * uint32(s[i+n])
|
|
if h == hashss && s[i:i+n] == substr {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// IndexRune returns the index of the first instance of the Unicode code point
|
|
// r, or -1 if rune is not present in s.
|
|
// If r is utf8.RuneError, it returns the first instance of any
|
|
// invalid UTF-8 byte sequence.
|
|
func IndexRune(s string, r rune) int {
|
|
switch {
|
|
case 0 <= r && r < utf8.RuneSelf:
|
|
return IndexByte(s, byte(r))
|
|
case r == utf8.RuneError:
|
|
for i, r := range s {
|
|
if r == utf8.RuneError {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
case !utf8.ValidRune(r):
|
|
return -1
|
|
default:
|
|
return Index(s, string(r))
|
|
}
|
|
}
|
|
|
|
// IndexAny returns the index of the first instance of any Unicode code point
|
|
// from chars in s, or -1 if no Unicode code point from chars is present in s.
|
|
func IndexAny(s, chars string) int {
|
|
if chars == "" {
|
|
// Avoid scanning all of s.
|
|
return -1
|
|
}
|
|
if len(s) > 8 {
|
|
if as, isASCII := makeASCIISet(chars); isASCII {
|
|
for i := 0; i < len(s); i++ {
|
|
if as.contains(s[i]) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
for i, c := range s {
|
|
for _, m := range chars {
|
|
if c == m {
|
|
return i
|
|
}
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// LastIndexAny returns the index of the last instance of any Unicode code
|
|
// point from chars in s, or -1 if no Unicode code point from chars is
|
|
// present in s.
|
|
func LastIndexAny(s, chars string) int {
|
|
if chars == "" {
|
|
// Avoid scanning all of s.
|
|
return -1
|
|
}
|
|
if len(s) > 8 {
|
|
if as, isASCII := makeASCIISet(chars); isASCII {
|
|
for i := len(s) - 1; i >= 0; i-- {
|
|
if as.contains(s[i]) {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.DecodeLastRuneInString(s[:i])
|
|
i -= size
|
|
for _, c := range chars {
|
|
if r == c {
|
|
return i
|
|
}
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// LastIndexByte returns the index of the last instance of c in s, or -1 if c is not present in s.
|
|
func LastIndexByte(s string, c byte) int {
|
|
for i := len(s) - 1; i >= 0; i-- {
|
|
if s[i] == c {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// Generic split: splits after each instance of sep,
|
|
// including sepSave bytes of sep in the subarrays.
|
|
func genSplit(s, sep string, sepSave, n int) []string {
|
|
if n == 0 {
|
|
return nil
|
|
}
|
|
if sep == "" {
|
|
return explode(s, n)
|
|
}
|
|
if n < 0 {
|
|
n = Count(s, sep) + 1
|
|
}
|
|
|
|
a := make([]string, n)
|
|
n--
|
|
i := 0
|
|
for i < n {
|
|
m := Index(s, sep)
|
|
if m < 0 {
|
|
break
|
|
}
|
|
a[i] = s[:m+sepSave]
|
|
s = s[m+len(sep):]
|
|
i++
|
|
}
|
|
a[i] = s
|
|
return a[:i+1]
|
|
}
|
|
|
|
// SplitN slices s into substrings separated by sep and returns a slice of
|
|
// the substrings between those separators.
|
|
//
|
|
// The count determines the number of substrings to return:
|
|
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
|
|
// n == 0: the result is nil (zero substrings)
|
|
// n < 0: all substrings
|
|
//
|
|
// Edge cases for s and sep (for example, empty strings) are handled
|
|
// as described in the documentation for Split.
|
|
func SplitN(s, sep string, n int) []string { return genSplit(s, sep, 0, n) }
|
|
|
|
// SplitAfterN slices s into substrings after each instance of sep and
|
|
// returns a slice of those substrings.
|
|
//
|
|
// The count determines the number of substrings to return:
|
|
// n > 0: at most n substrings; the last substring will be the unsplit remainder.
|
|
// n == 0: the result is nil (zero substrings)
|
|
// n < 0: all substrings
|
|
//
|
|
// Edge cases for s and sep (for example, empty strings) are handled
|
|
// as described in the documentation for SplitAfter.
|
|
func SplitAfterN(s, sep string, n int) []string {
|
|
return genSplit(s, sep, len(sep), n)
|
|
}
|
|
|
|
// Split slices s into all substrings separated by sep and returns a slice of
|
|
// the substrings between those separators.
|
|
//
|
|
// If s does not contain sep and sep is not empty, Split returns a
|
|
// slice of length 1 whose only element is s.
|
|
//
|
|
// If sep is empty, Split splits after each UTF-8 sequence. If both s
|
|
// and sep are empty, Split returns an empty slice.
|
|
//
|
|
// It is equivalent to SplitN with a count of -1.
|
|
func Split(s, sep string) []string { return genSplit(s, sep, 0, -1) }
|
|
|
|
// SplitAfter slices s into all substrings after each instance of sep and
|
|
// returns a slice of those substrings.
|
|
//
|
|
// If s does not contain sep and sep is not empty, SplitAfter returns
|
|
// a slice of length 1 whose only element is s.
|
|
//
|
|
// If sep is empty, SplitAfter splits after each UTF-8 sequence. If
|
|
// both s and sep are empty, SplitAfter returns an empty slice.
|
|
//
|
|
// It is equivalent to SplitAfterN with a count of -1.
|
|
func SplitAfter(s, sep string) []string {
|
|
return genSplit(s, sep, len(sep), -1)
|
|
}
|
|
|
|
var asciiSpace = [256]uint8{'\t': 1, '\n': 1, '\v': 1, '\f': 1, '\r': 1, ' ': 1}
|
|
|
|
// Fields splits the string s around each instance of one or more consecutive white space
|
|
// characters, as defined by unicode.IsSpace, returning a slice of substrings of s or an
|
|
// empty slice if s contains only white space.
|
|
func Fields(s string) []string {
|
|
// First count the fields.
|
|
// This is an exact count if s is ASCII, otherwise it is an approximation.
|
|
n := 0
|
|
wasSpace := 1
|
|
// setBits is used to track which bits are set in the bytes of s.
|
|
setBits := uint8(0)
|
|
for i := 0; i < len(s); i++ {
|
|
r := s[i]
|
|
setBits |= r
|
|
isSpace := int(asciiSpace[r])
|
|
n += wasSpace & ^isSpace
|
|
wasSpace = isSpace
|
|
}
|
|
|
|
if setBits < utf8.RuneSelf { // ASCII fast path
|
|
a := make([]string, n)
|
|
na := 0
|
|
fieldStart := 0
|
|
i := 0
|
|
// Skip spaces in the front of the input.
|
|
for i < len(s) && asciiSpace[s[i]] != 0 {
|
|
i++
|
|
}
|
|
fieldStart = i
|
|
for i < len(s) {
|
|
if asciiSpace[s[i]] == 0 {
|
|
i++
|
|
continue
|
|
}
|
|
a[na] = s[fieldStart:i]
|
|
na++
|
|
i++
|
|
// Skip spaces in between fields.
|
|
for i < len(s) && asciiSpace[s[i]] != 0 {
|
|
i++
|
|
}
|
|
fieldStart = i
|
|
}
|
|
if fieldStart < len(s) { // Last field might end at EOF.
|
|
a[na] = s[fieldStart:]
|
|
}
|
|
return a
|
|
}
|
|
|
|
// Some runes in the input string are not ASCII.
|
|
return FieldsFunc(s, unicode.IsSpace)
|
|
}
|
|
|
|
// FieldsFunc splits the string s at each run of Unicode code points c satisfying f(c)
|
|
// and returns an array of slices of s. If all code points in s satisfy f(c) or the
|
|
// string is empty, an empty slice is returned.
|
|
// FieldsFunc makes no guarantees about the order in which it calls f(c).
|
|
// If f does not return consistent results for a given c, FieldsFunc may crash.
|
|
func FieldsFunc(s string, f func(rune) bool) []string {
|
|
// A span is used to record a slice of s of the form s[start:end].
|
|
// The start index is inclusive and the end index is exclusive.
|
|
type span struct {
|
|
start int
|
|
end int
|
|
}
|
|
spans := make([]span, 0, 32)
|
|
|
|
// Find the field start and end indices.
|
|
wasField := false
|
|
fromIndex := 0
|
|
for i, rune := range s {
|
|
if f(rune) {
|
|
if wasField {
|
|
spans = append(spans, span{start: fromIndex, end: i})
|
|
wasField = false
|
|
}
|
|
} else {
|
|
if !wasField {
|
|
fromIndex = i
|
|
wasField = true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Last field might end at EOF.
|
|
if wasField {
|
|
spans = append(spans, span{fromIndex, len(s)})
|
|
}
|
|
|
|
// Create strings from recorded field indices.
|
|
a := make([]string, len(spans))
|
|
for i, span := range spans {
|
|
a[i] = s[span.start:span.end]
|
|
}
|
|
|
|
return a
|
|
}
|
|
|
|
// Join concatenates the elements of a to create a single string. The separator string
|
|
// sep is placed between elements in the resulting string.
|
|
func Join(a []string, sep string) string {
|
|
switch len(a) {
|
|
case 0:
|
|
return ""
|
|
case 1:
|
|
return a[0]
|
|
case 2:
|
|
// Special case for common small values.
|
|
// Remove if golang.org/issue/6714 is fixed
|
|
return a[0] + sep + a[1]
|
|
case 3:
|
|
// Special case for common small values.
|
|
// Remove if golang.org/issue/6714 is fixed
|
|
return a[0] + sep + a[1] + sep + a[2]
|
|
}
|
|
n := len(sep) * (len(a) - 1)
|
|
for i := 0; i < len(a); i++ {
|
|
n += len(a[i])
|
|
}
|
|
|
|
b := make([]byte, n)
|
|
bp := copy(b, a[0])
|
|
for _, s := range a[1:] {
|
|
bp += copy(b[bp:], sep)
|
|
bp += copy(b[bp:], s)
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
// HasPrefix tests whether the string s begins with prefix.
|
|
func HasPrefix(s, prefix string) bool {
|
|
return len(s) >= len(prefix) && s[0:len(prefix)] == prefix
|
|
}
|
|
|
|
// HasSuffix tests whether the string s ends with suffix.
|
|
func HasSuffix(s, suffix string) bool {
|
|
return len(s) >= len(suffix) && s[len(s)-len(suffix):] == suffix
|
|
}
|
|
|
|
// Map returns a copy of the string s with all its characters modified
|
|
// according to the mapping function. If mapping returns a negative value, the character is
|
|
// dropped from the string with no replacement.
|
|
func Map(mapping func(rune) rune, s string) string {
|
|
// In the worst case, the string can grow when mapped, making
|
|
// things unpleasant. But it's so rare we barge in assuming it's
|
|
// fine. It could also shrink but that falls out naturally.
|
|
|
|
// The output buffer b is initialized on demand, the first
|
|
// time a character differs.
|
|
var b []byte
|
|
// nbytes is the number of bytes encoded in b.
|
|
var nbytes int
|
|
|
|
for i, c := range s {
|
|
r := mapping(c)
|
|
if r == c {
|
|
continue
|
|
}
|
|
|
|
b = make([]byte, len(s)+utf8.UTFMax)
|
|
nbytes = copy(b, s[:i])
|
|
if r >= 0 {
|
|
if r < utf8.RuneSelf {
|
|
b[nbytes] = byte(r)
|
|
nbytes++
|
|
} else {
|
|
nbytes += utf8.EncodeRune(b[nbytes:], r)
|
|
}
|
|
}
|
|
|
|
if c == utf8.RuneError {
|
|
// RuneError is the result of either decoding
|
|
// an invalid sequence or '\uFFFD'. Determine
|
|
// the correct number of bytes we need to advance.
|
|
_, w := utf8.DecodeRuneInString(s[i:])
|
|
i += w
|
|
} else {
|
|
i += utf8.RuneLen(c)
|
|
}
|
|
|
|
s = s[i:]
|
|
break
|
|
}
|
|
|
|
if b == nil {
|
|
return s
|
|
}
|
|
|
|
for _, c := range s {
|
|
r := mapping(c)
|
|
|
|
// common case
|
|
if (0 <= r && r < utf8.RuneSelf) && nbytes < len(b) {
|
|
b[nbytes] = byte(r)
|
|
nbytes++
|
|
continue
|
|
}
|
|
|
|
// b is not big enough or r is not a ASCII rune.
|
|
if r >= 0 {
|
|
if nbytes+utf8.UTFMax >= len(b) {
|
|
// Grow the buffer.
|
|
nb := make([]byte, 2*len(b))
|
|
copy(nb, b[:nbytes])
|
|
b = nb
|
|
}
|
|
nbytes += utf8.EncodeRune(b[nbytes:], r)
|
|
}
|
|
}
|
|
|
|
return string(b[:nbytes])
|
|
}
|
|
|
|
// Repeat returns a new string consisting of count copies of the string s.
|
|
//
|
|
// It panics if count is negative or if
|
|
// the result of (len(s) * count) overflows.
|
|
func Repeat(s string, count int) string {
|
|
// Since we cannot return an error on overflow,
|
|
// we should panic if the repeat will generate
|
|
// an overflow.
|
|
// See Issue golang.org/issue/16237
|
|
if count < 0 {
|
|
panic("strings: negative Repeat count")
|
|
} else if count > 0 && len(s)*count/count != len(s) {
|
|
panic("strings: Repeat count causes overflow")
|
|
}
|
|
|
|
b := make([]byte, len(s)*count)
|
|
bp := copy(b, s)
|
|
for bp < len(b) {
|
|
copy(b[bp:], b[:bp])
|
|
bp *= 2
|
|
}
|
|
return string(b)
|
|
}
|
|
|
|
// ToUpper returns a copy of the string s with all Unicode letters mapped to their upper case.
|
|
func ToUpper(s string) string {
|
|
isASCII, hasLower := true, false
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c >= utf8.RuneSelf {
|
|
isASCII = false
|
|
break
|
|
}
|
|
hasLower = hasLower || (c >= 'a' && c <= 'z')
|
|
}
|
|
|
|
if isASCII { // optimize for ASCII-only strings.
|
|
if !hasLower {
|
|
return s
|
|
}
|
|
b := make([]byte, len(s))
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c >= 'a' && c <= 'z' {
|
|
c -= 'a' - 'A'
|
|
}
|
|
b[i] = c
|
|
}
|
|
return string(b)
|
|
}
|
|
return Map(unicode.ToUpper, s)
|
|
}
|
|
|
|
// ToLower returns a copy of the string s with all Unicode letters mapped to their lower case.
|
|
func ToLower(s string) string {
|
|
isASCII, hasUpper := true, false
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c >= utf8.RuneSelf {
|
|
isASCII = false
|
|
break
|
|
}
|
|
hasUpper = hasUpper || (c >= 'A' && c <= 'Z')
|
|
}
|
|
|
|
if isASCII { // optimize for ASCII-only strings.
|
|
if !hasUpper {
|
|
return s
|
|
}
|
|
b := make([]byte, len(s))
|
|
for i := 0; i < len(s); i++ {
|
|
c := s[i]
|
|
if c >= 'A' && c <= 'Z' {
|
|
c += 'a' - 'A'
|
|
}
|
|
b[i] = c
|
|
}
|
|
return string(b)
|
|
}
|
|
return Map(unicode.ToLower, s)
|
|
}
|
|
|
|
// ToTitle returns a copy of the string s with all Unicode letters mapped to their title case.
|
|
func ToTitle(s string) string { return Map(unicode.ToTitle, s) }
|
|
|
|
// ToUpperSpecial returns a copy of the string s with all Unicode letters mapped to their
|
|
// upper case, giving priority to the special casing rules.
|
|
func ToUpperSpecial(c unicode.SpecialCase, s string) string {
|
|
return Map(func(r rune) rune { return c.ToUpper(r) }, s)
|
|
}
|
|
|
|
// ToLowerSpecial returns a copy of the string s with all Unicode letters mapped to their
|
|
// lower case, giving priority to the special casing rules.
|
|
func ToLowerSpecial(c unicode.SpecialCase, s string) string {
|
|
return Map(func(r rune) rune { return c.ToLower(r) }, s)
|
|
}
|
|
|
|
// ToTitleSpecial returns a copy of the string s with all Unicode letters mapped to their
|
|
// title case, giving priority to the special casing rules.
|
|
func ToTitleSpecial(c unicode.SpecialCase, s string) string {
|
|
return Map(func(r rune) rune { return c.ToTitle(r) }, s)
|
|
}
|
|
|
|
// isSeparator reports whether the rune could mark a word boundary.
|
|
// TODO: update when package unicode captures more of the properties.
|
|
func isSeparator(r rune) bool {
|
|
// ASCII alphanumerics and underscore are not separators
|
|
if r <= 0x7F {
|
|
switch {
|
|
case '0' <= r && r <= '9':
|
|
return false
|
|
case 'a' <= r && r <= 'z':
|
|
return false
|
|
case 'A' <= r && r <= 'Z':
|
|
return false
|
|
case r == '_':
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
// Letters and digits are not separators
|
|
if unicode.IsLetter(r) || unicode.IsDigit(r) {
|
|
return false
|
|
}
|
|
// Otherwise, all we can do for now is treat spaces as separators.
|
|
return unicode.IsSpace(r)
|
|
}
|
|
|
|
// Title returns a copy of the string s with all Unicode letters that begin words
|
|
// mapped to their title case.
|
|
//
|
|
// BUG(rsc): The rule Title uses for word boundaries does not handle Unicode punctuation properly.
|
|
func Title(s string) string {
|
|
// Use a closure here to remember state.
|
|
// Hackish but effective. Depends on Map scanning in order and calling
|
|
// the closure once per rune.
|
|
prev := ' '
|
|
return Map(
|
|
func(r rune) rune {
|
|
if isSeparator(prev) {
|
|
prev = r
|
|
return unicode.ToTitle(r)
|
|
}
|
|
prev = r
|
|
return r
|
|
},
|
|
s)
|
|
}
|
|
|
|
// TrimLeftFunc returns a slice of the string s with all leading
|
|
// Unicode code points c satisfying f(c) removed.
|
|
func TrimLeftFunc(s string, f func(rune) bool) string {
|
|
i := indexFunc(s, f, false)
|
|
if i == -1 {
|
|
return ""
|
|
}
|
|
return s[i:]
|
|
}
|
|
|
|
// TrimRightFunc returns a slice of the string s with all trailing
|
|
// Unicode code points c satisfying f(c) removed.
|
|
func TrimRightFunc(s string, f func(rune) bool) string {
|
|
i := lastIndexFunc(s, f, false)
|
|
if i >= 0 && s[i] >= utf8.RuneSelf {
|
|
_, wid := utf8.DecodeRuneInString(s[i:])
|
|
i += wid
|
|
} else {
|
|
i++
|
|
}
|
|
return s[0:i]
|
|
}
|
|
|
|
// TrimFunc returns a slice of the string s with all leading
|
|
// and trailing Unicode code points c satisfying f(c) removed.
|
|
func TrimFunc(s string, f func(rune) bool) string {
|
|
return TrimRightFunc(TrimLeftFunc(s, f), f)
|
|
}
|
|
|
|
// IndexFunc returns the index into s of the first Unicode
|
|
// code point satisfying f(c), or -1 if none do.
|
|
func IndexFunc(s string, f func(rune) bool) int {
|
|
return indexFunc(s, f, true)
|
|
}
|
|
|
|
// LastIndexFunc returns the index into s of the last
|
|
// Unicode code point satisfying f(c), or -1 if none do.
|
|
func LastIndexFunc(s string, f func(rune) bool) int {
|
|
return lastIndexFunc(s, f, true)
|
|
}
|
|
|
|
// indexFunc is the same as IndexFunc except that if
|
|
// truth==false, the sense of the predicate function is
|
|
// inverted.
|
|
func indexFunc(s string, f func(rune) bool, truth bool) int {
|
|
for i, r := range s {
|
|
if f(r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// lastIndexFunc is the same as LastIndexFunc except that if
|
|
// truth==false, the sense of the predicate function is
|
|
// inverted.
|
|
func lastIndexFunc(s string, f func(rune) bool, truth bool) int {
|
|
for i := len(s); i > 0; {
|
|
r, size := utf8.DecodeLastRuneInString(s[0:i])
|
|
i -= size
|
|
if f(r) == truth {
|
|
return i
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
// asciiSet is a 32-byte value, where each bit represents the presence of a
|
|
// given ASCII character in the set. The 128-bits of the lower 16 bytes,
|
|
// starting with the least-significant bit of the lowest word to the
|
|
// most-significant bit of the highest word, map to the full range of all
|
|
// 128 ASCII characters. The 128-bits of the upper 16 bytes will be zeroed,
|
|
// ensuring that any non-ASCII character will be reported as not in the set.
|
|
type asciiSet [8]uint32
|
|
|
|
// makeASCIISet creates a set of ASCII characters and reports whether all
|
|
// characters in chars are ASCII.
|
|
func makeASCIISet(chars string) (as asciiSet, ok bool) {
|
|
for i := 0; i < len(chars); i++ {
|
|
c := chars[i]
|
|
if c >= utf8.RuneSelf {
|
|
return as, false
|
|
}
|
|
as[c>>5] |= 1 << uint(c&31)
|
|
}
|
|
return as, true
|
|
}
|
|
|
|
// contains reports whether c is inside the set.
|
|
func (as *asciiSet) contains(c byte) bool {
|
|
return (as[c>>5] & (1 << uint(c&31))) != 0
|
|
}
|
|
|
|
func makeCutsetFunc(cutset string) func(rune) bool {
|
|
if len(cutset) == 1 && cutset[0] < utf8.RuneSelf {
|
|
return func(r rune) bool {
|
|
return r == rune(cutset[0])
|
|
}
|
|
}
|
|
if as, isASCII := makeASCIISet(cutset); isASCII {
|
|
return func(r rune) bool {
|
|
return r < utf8.RuneSelf && as.contains(byte(r))
|
|
}
|
|
}
|
|
return func(r rune) bool { return IndexRune(cutset, r) >= 0 }
|
|
}
|
|
|
|
// Trim returns a slice of the string s with all leading and
|
|
// trailing Unicode code points contained in cutset removed.
|
|
func Trim(s string, cutset string) string {
|
|
if s == "" || cutset == "" {
|
|
return s
|
|
}
|
|
return TrimFunc(s, makeCutsetFunc(cutset))
|
|
}
|
|
|
|
// TrimLeft returns a slice of the string s with all leading
|
|
// Unicode code points contained in cutset removed.
|
|
//
|
|
// To remove a prefix, use TrimPrefix instead.
|
|
func TrimLeft(s string, cutset string) string {
|
|
if s == "" || cutset == "" {
|
|
return s
|
|
}
|
|
return TrimLeftFunc(s, makeCutsetFunc(cutset))
|
|
}
|
|
|
|
// TrimRight returns a slice of the string s, with all trailing
|
|
// Unicode code points contained in cutset removed.
|
|
//
|
|
// To remove a suffix, use TrimSuffix instead.
|
|
func TrimRight(s string, cutset string) string {
|
|
if s == "" || cutset == "" {
|
|
return s
|
|
}
|
|
return TrimRightFunc(s, makeCutsetFunc(cutset))
|
|
}
|
|
|
|
// TrimSpace returns a slice of the string s, with all leading
|
|
// and trailing white space removed, as defined by Unicode.
|
|
func TrimSpace(s string) string {
|
|
return TrimFunc(s, unicode.IsSpace)
|
|
}
|
|
|
|
// TrimPrefix returns s without the provided leading prefix string.
|
|
// If s doesn't start with prefix, s is returned unchanged.
|
|
func TrimPrefix(s, prefix string) string {
|
|
if HasPrefix(s, prefix) {
|
|
return s[len(prefix):]
|
|
}
|
|
return s
|
|
}
|
|
|
|
// TrimSuffix returns s without the provided trailing suffix string.
|
|
// If s doesn't end with suffix, s is returned unchanged.
|
|
func TrimSuffix(s, suffix string) string {
|
|
if HasSuffix(s, suffix) {
|
|
return s[:len(s)-len(suffix)]
|
|
}
|
|
return s
|
|
}
|
|
|
|
// Replace returns a copy of the string s with the first n
|
|
// non-overlapping instances of old replaced by new.
|
|
// If old is empty, it matches at the beginning of the string
|
|
// and after each UTF-8 sequence, yielding up to k+1 replacements
|
|
// for a k-rune string.
|
|
// If n < 0, there is no limit on the number of replacements.
|
|
func Replace(s, old, new string, n int) string {
|
|
if old == new || n == 0 {
|
|
return s // avoid allocation
|
|
}
|
|
|
|
// Compute number of replacements.
|
|
if m := Count(s, old); m == 0 {
|
|
return s // avoid allocation
|
|
} else if n < 0 || m < n {
|
|
n = m
|
|
}
|
|
|
|
// Apply replacements to buffer.
|
|
t := make([]byte, len(s)+n*(len(new)-len(old)))
|
|
w := 0
|
|
start := 0
|
|
for i := 0; i < n; i++ {
|
|
j := start
|
|
if len(old) == 0 {
|
|
if i > 0 {
|
|
_, wid := utf8.DecodeRuneInString(s[start:])
|
|
j += wid
|
|
}
|
|
} else {
|
|
j += Index(s[start:], old)
|
|
}
|
|
w += copy(t[w:], s[start:j])
|
|
w += copy(t[w:], new)
|
|
start = j + len(old)
|
|
}
|
|
w += copy(t[w:], s[start:])
|
|
return string(t[0:w])
|
|
}
|
|
|
|
// EqualFold reports whether s and t, interpreted as UTF-8 strings,
|
|
// are equal under Unicode case-folding.
|
|
func EqualFold(s, t string) bool {
|
|
for s != "" && t != "" {
|
|
// Extract first rune from each string.
|
|
var sr, tr rune
|
|
if s[0] < utf8.RuneSelf {
|
|
sr, s = rune(s[0]), s[1:]
|
|
} else {
|
|
r, size := utf8.DecodeRuneInString(s)
|
|
sr, s = r, s[size:]
|
|
}
|
|
if t[0] < utf8.RuneSelf {
|
|
tr, t = rune(t[0]), t[1:]
|
|
} else {
|
|
r, size := utf8.DecodeRuneInString(t)
|
|
tr, t = r, t[size:]
|
|
}
|
|
|
|
// If they match, keep going; if not, return false.
|
|
|
|
// Easy case.
|
|
if tr == sr {
|
|
continue
|
|
}
|
|
|
|
// Make sr < tr to simplify what follows.
|
|
if tr < sr {
|
|
tr, sr = sr, tr
|
|
}
|
|
// Fast check for ASCII.
|
|
if tr < utf8.RuneSelf {
|
|
// ASCII only, sr/tr must be upper/lower case
|
|
if 'A' <= sr && sr <= 'Z' && tr == sr+'a'-'A' {
|
|
continue
|
|
}
|
|
return false
|
|
}
|
|
|
|
// General case. SimpleFold(x) returns the next equivalent rune > x
|
|
// or wraps around to smaller values.
|
|
r := unicode.SimpleFold(sr)
|
|
for r != sr && r < tr {
|
|
r = unicode.SimpleFold(r)
|
|
}
|
|
if r == tr {
|
|
continue
|
|
}
|
|
return false
|
|
}
|
|
|
|
// One string is empty. Are both?
|
|
return s == t
|
|
}
|
|
|
|
// Index returns the index of the first instance of substr in s, or -1 if substr is not present in s.
|
|
func Index(s, substr string) int {
|
|
n := len(substr)
|
|
switch {
|
|
case n == 0:
|
|
return 0
|
|
case n == 1:
|
|
return IndexByte(s, substr[0])
|
|
case n == len(s):
|
|
if substr == s {
|
|
return 0
|
|
}
|
|
return -1
|
|
case n > len(s):
|
|
return -1
|
|
case n <= bytealg.MaxLen:
|
|
// Use brute force when s and substr both are small
|
|
if len(s) <= bytealg.MaxBruteForce {
|
|
return bytealg.IndexString(s, substr)
|
|
}
|
|
c := substr[0]
|
|
i := 0
|
|
t := s[:len(s)-n+1]
|
|
fails := 0
|
|
for i < len(t) {
|
|
if t[i] != c {
|
|
// IndexByte is faster than bytealg.IndexString, so use it as long as
|
|
// we're not getting lots of false positives.
|
|
o := IndexByte(t[i:], c)
|
|
if o < 0 {
|
|
return -1
|
|
}
|
|
i += o
|
|
}
|
|
if s[i:i+n] == substr {
|
|
return i
|
|
}
|
|
fails++
|
|
i++
|
|
// Switch to bytealg.IndexString when IndexByte produces too many false positives.
|
|
if fails > bytealg.Cutover(i) {
|
|
r := bytealg.IndexString(s[i:], substr)
|
|
if r >= 0 {
|
|
return r + i
|
|
}
|
|
return -1
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
c := substr[0]
|
|
i := 0
|
|
t := s[:len(s)-n+1]
|
|
fails := 0
|
|
for i < len(t) {
|
|
if t[i] != c {
|
|
o := IndexByte(t[i:], c)
|
|
if o < 0 {
|
|
return -1
|
|
}
|
|
i += o
|
|
}
|
|
if s[i:i+n] == substr {
|
|
return i
|
|
}
|
|
i++
|
|
fails++
|
|
if fails >= 4+i>>4 && i < len(t) {
|
|
// See comment in ../bytes/bytes_generic.go.
|
|
j := indexRabinKarp(s[i:], substr)
|
|
if j < 0 {
|
|
return -1
|
|
}
|
|
return i + j
|
|
}
|
|
}
|
|
return -1
|
|
}
|
|
|
|
func indexRabinKarp(s, substr string) int {
|
|
// Rabin-Karp search
|
|
hashss, pow := hashStr(substr)
|
|
n := len(substr)
|
|
var h uint32
|
|
for i := 0; i < n; i++ {
|
|
h = h*primeRK + uint32(s[i])
|
|
}
|
|
if h == hashss && s[:n] == substr {
|
|
return 0
|
|
}
|
|
for i := n; i < len(s); {
|
|
h *= primeRK
|
|
h += uint32(s[i])
|
|
h -= pow * uint32(s[i-n])
|
|
i++
|
|
if h == hashss && s[i-n:i] == substr {
|
|
return i - n
|
|
}
|
|
}
|
|
return -1
|
|
|
|
}
|