be47d6ecef
From-SVN: r200974
1504 lines
34 KiB
Go
1504 lines
34 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package big implements multi-precision arithmetic (big numbers).
|
|
// The following numeric types are supported:
|
|
//
|
|
// - Int signed integers
|
|
// - Rat rational numbers
|
|
//
|
|
// Methods are typically of the form:
|
|
//
|
|
// func (z *Int) Op(x, y *Int) *Int (similar for *Rat)
|
|
//
|
|
// and implement operations z = x Op y with the result as receiver; if it
|
|
// is one of the operands it may be overwritten (and its memory reused).
|
|
// To enable chaining of operations, the result is also returned. Methods
|
|
// returning a result other than *Int or *Rat take one of the operands as
|
|
// the receiver.
|
|
//
|
|
package big
|
|
|
|
// This file contains operations on unsigned multi-precision integers.
|
|
// These are the building blocks for the operations on signed integers
|
|
// and rationals.
|
|
|
|
import (
|
|
"errors"
|
|
"io"
|
|
"math"
|
|
"math/rand"
|
|
"sync"
|
|
)
|
|
|
|
// An unsigned integer x of the form
|
|
//
|
|
// x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
|
|
//
|
|
// with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
|
|
// with the digits x[i] as the slice elements.
|
|
//
|
|
// A number is normalized if the slice contains no leading 0 digits.
|
|
// During arithmetic operations, denormalized values may occur but are
|
|
// always normalized before returning the final result. The normalized
|
|
// representation of 0 is the empty or nil slice (length = 0).
|
|
//
|
|
type nat []Word
|
|
|
|
var (
|
|
natOne = nat{1}
|
|
natTwo = nat{2}
|
|
natTen = nat{10}
|
|
)
|
|
|
|
func (z nat) clear() {
|
|
for i := range z {
|
|
z[i] = 0
|
|
}
|
|
}
|
|
|
|
func (z nat) norm() nat {
|
|
i := len(z)
|
|
for i > 0 && z[i-1] == 0 {
|
|
i--
|
|
}
|
|
return z[0:i]
|
|
}
|
|
|
|
func (z nat) make(n int) nat {
|
|
if n <= cap(z) {
|
|
return z[0:n] // reuse z
|
|
}
|
|
// Choosing a good value for e has significant performance impact
|
|
// because it increases the chance that a value can be reused.
|
|
const e = 4 // extra capacity
|
|
return make(nat, n, n+e)
|
|
}
|
|
|
|
func (z nat) setWord(x Word) nat {
|
|
if x == 0 {
|
|
return z.make(0)
|
|
}
|
|
z = z.make(1)
|
|
z[0] = x
|
|
return z
|
|
}
|
|
|
|
func (z nat) setUint64(x uint64) nat {
|
|
// single-digit values
|
|
if w := Word(x); uint64(w) == x {
|
|
return z.setWord(w)
|
|
}
|
|
|
|
// compute number of words n required to represent x
|
|
n := 0
|
|
for t := x; t > 0; t >>= _W {
|
|
n++
|
|
}
|
|
|
|
// split x into n words
|
|
z = z.make(n)
|
|
for i := range z {
|
|
z[i] = Word(x & _M)
|
|
x >>= _W
|
|
}
|
|
|
|
return z
|
|
}
|
|
|
|
func (z nat) set(x nat) nat {
|
|
z = z.make(len(x))
|
|
copy(z, x)
|
|
return z
|
|
}
|
|
|
|
func (z nat) add(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
|
|
switch {
|
|
case m < n:
|
|
return z.add(y, x)
|
|
case m == 0:
|
|
// n == 0 because m >= n; result is 0
|
|
return z.make(0)
|
|
case n == 0:
|
|
// result is x
|
|
return z.set(x)
|
|
}
|
|
// m > 0
|
|
|
|
z = z.make(m + 1)
|
|
c := addVV(z[0:n], x, y)
|
|
if m > n {
|
|
c = addVW(z[n:m], x[n:], c)
|
|
}
|
|
z[m] = c
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (z nat) sub(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
|
|
switch {
|
|
case m < n:
|
|
panic("underflow")
|
|
case m == 0:
|
|
// n == 0 because m >= n; result is 0
|
|
return z.make(0)
|
|
case n == 0:
|
|
// result is x
|
|
return z.set(x)
|
|
}
|
|
// m > 0
|
|
|
|
z = z.make(m)
|
|
c := subVV(z[0:n], x, y)
|
|
if m > n {
|
|
c = subVW(z[n:], x[n:], c)
|
|
}
|
|
if c != 0 {
|
|
panic("underflow")
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (x nat) cmp(y nat) (r int) {
|
|
m := len(x)
|
|
n := len(y)
|
|
if m != n || m == 0 {
|
|
switch {
|
|
case m < n:
|
|
r = -1
|
|
case m > n:
|
|
r = 1
|
|
}
|
|
return
|
|
}
|
|
|
|
i := m - 1
|
|
for i > 0 && x[i] == y[i] {
|
|
i--
|
|
}
|
|
|
|
switch {
|
|
case x[i] < y[i]:
|
|
r = -1
|
|
case x[i] > y[i]:
|
|
r = 1
|
|
}
|
|
return
|
|
}
|
|
|
|
func (z nat) mulAddWW(x nat, y, r Word) nat {
|
|
m := len(x)
|
|
if m == 0 || y == 0 {
|
|
return z.setWord(r) // result is r
|
|
}
|
|
// m > 0
|
|
|
|
z = z.make(m + 1)
|
|
z[m] = mulAddVWW(z[0:m], x, y, r)
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// basicMul multiplies x and y and leaves the result in z.
|
|
// The (non-normalized) result is placed in z[0 : len(x) + len(y)].
|
|
func basicMul(z, x, y nat) {
|
|
z[0 : len(x)+len(y)].clear() // initialize z
|
|
for i, d := range y {
|
|
if d != 0 {
|
|
z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
|
|
// Factored out for readability - do not use outside karatsuba.
|
|
func karatsubaAdd(z, x nat, n int) {
|
|
if c := addVV(z[0:n], z, x); c != 0 {
|
|
addVW(z[n:n+n>>1], z[n:], c)
|
|
}
|
|
}
|
|
|
|
// Like karatsubaAdd, but does subtract.
|
|
func karatsubaSub(z, x nat, n int) {
|
|
if c := subVV(z[0:n], z, x); c != 0 {
|
|
subVW(z[n:n+n>>1], z[n:], c)
|
|
}
|
|
}
|
|
|
|
// Operands that are shorter than karatsubaThreshold are multiplied using
|
|
// "grade school" multiplication; for longer operands the Karatsuba algorithm
|
|
// is used.
|
|
var karatsubaThreshold int = 40 // computed by calibrate.go
|
|
|
|
// karatsuba multiplies x and y and leaves the result in z.
|
|
// Both x and y must have the same length n and n must be a
|
|
// power of 2. The result vector z must have len(z) >= 6*n.
|
|
// The (non-normalized) result is placed in z[0 : 2*n].
|
|
func karatsuba(z, x, y nat) {
|
|
n := len(y)
|
|
|
|
// Switch to basic multiplication if numbers are odd or small.
|
|
// (n is always even if karatsubaThreshold is even, but be
|
|
// conservative)
|
|
if n&1 != 0 || n < karatsubaThreshold || n < 2 {
|
|
basicMul(z, x, y)
|
|
return
|
|
}
|
|
// n&1 == 0 && n >= karatsubaThreshold && n >= 2
|
|
|
|
// Karatsuba multiplication is based on the observation that
|
|
// for two numbers x and y with:
|
|
//
|
|
// x = x1*b + x0
|
|
// y = y1*b + y0
|
|
//
|
|
// the product x*y can be obtained with 3 products z2, z1, z0
|
|
// instead of 4:
|
|
//
|
|
// x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
|
|
// = z2*b*b + z1*b + z0
|
|
//
|
|
// with:
|
|
//
|
|
// xd = x1 - x0
|
|
// yd = y0 - y1
|
|
//
|
|
// z1 = xd*yd + z2 + z0
|
|
// = (x1-x0)*(y0 - y1) + z2 + z0
|
|
// = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
|
|
// = x1*y0 - z2 - z0 + x0*y1 + z2 + z0
|
|
// = x1*y0 + x0*y1
|
|
|
|
// split x, y into "digits"
|
|
n2 := n >> 1 // n2 >= 1
|
|
x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
|
|
y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
|
|
|
|
// z is used for the result and temporary storage:
|
|
//
|
|
// 6*n 5*n 4*n 3*n 2*n 1*n 0*n
|
|
// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
|
|
//
|
|
// For each recursive call of karatsuba, an unused slice of
|
|
// z is passed in that has (at least) half the length of the
|
|
// caller's z.
|
|
|
|
// compute z0 and z2 with the result "in place" in z
|
|
karatsuba(z, x0, y0) // z0 = x0*y0
|
|
karatsuba(z[n:], x1, y1) // z2 = x1*y1
|
|
|
|
// compute xd (or the negative value if underflow occurs)
|
|
s := 1 // sign of product xd*yd
|
|
xd := z[2*n : 2*n+n2]
|
|
if subVV(xd, x1, x0) != 0 { // x1-x0
|
|
s = -s
|
|
subVV(xd, x0, x1) // x0-x1
|
|
}
|
|
|
|
// compute yd (or the negative value if underflow occurs)
|
|
yd := z[2*n+n2 : 3*n]
|
|
if subVV(yd, y0, y1) != 0 { // y0-y1
|
|
s = -s
|
|
subVV(yd, y1, y0) // y1-y0
|
|
}
|
|
|
|
// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
|
|
// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
|
|
p := z[n*3:]
|
|
karatsuba(p, xd, yd)
|
|
|
|
// save original z2:z0
|
|
// (ok to use upper half of z since we're done recursing)
|
|
r := z[n*4:]
|
|
copy(r, z[:n*2])
|
|
|
|
// add up all partial products
|
|
//
|
|
// 2*n n 0
|
|
// z = [ z2 | z0 ]
|
|
// + [ z0 ]
|
|
// + [ z2 ]
|
|
// + [ p ]
|
|
//
|
|
karatsubaAdd(z[n2:], r, n)
|
|
karatsubaAdd(z[n2:], r[n:], n)
|
|
if s > 0 {
|
|
karatsubaAdd(z[n2:], p, n)
|
|
} else {
|
|
karatsubaSub(z[n2:], p, n)
|
|
}
|
|
}
|
|
|
|
// alias returns true if x and y share the same base array.
|
|
func alias(x, y nat) bool {
|
|
return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
|
|
}
|
|
|
|
// addAt implements z += x<<(_W*i); z must be long enough.
|
|
// (we don't use nat.add because we need z to stay the same
|
|
// slice, and we don't need to normalize z after each addition)
|
|
func addAt(z, x nat, i int) {
|
|
if n := len(x); n > 0 {
|
|
if c := addVV(z[i:i+n], z[i:], x); c != 0 {
|
|
j := i + n
|
|
if j < len(z) {
|
|
addVW(z[j:], z[j:], c)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func max(x, y int) int {
|
|
if x > y {
|
|
return x
|
|
}
|
|
return y
|
|
}
|
|
|
|
// karatsubaLen computes an approximation to the maximum k <= n such that
|
|
// k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
|
|
// result is the largest number that can be divided repeatedly by 2 before
|
|
// becoming about the value of karatsubaThreshold.
|
|
func karatsubaLen(n int) int {
|
|
i := uint(0)
|
|
for n > karatsubaThreshold {
|
|
n >>= 1
|
|
i++
|
|
}
|
|
return n << i
|
|
}
|
|
|
|
func (z nat) mul(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
|
|
switch {
|
|
case m < n:
|
|
return z.mul(y, x)
|
|
case m == 0 || n == 0:
|
|
return z.make(0)
|
|
case n == 1:
|
|
return z.mulAddWW(x, y[0], 0)
|
|
}
|
|
// m >= n > 1
|
|
|
|
// determine if z can be reused
|
|
if alias(z, x) || alias(z, y) {
|
|
z = nil // z is an alias for x or y - cannot reuse
|
|
}
|
|
|
|
// use basic multiplication if the numbers are small
|
|
if n < karatsubaThreshold {
|
|
z = z.make(m + n)
|
|
basicMul(z, x, y)
|
|
return z.norm()
|
|
}
|
|
// m >= n && n >= karatsubaThreshold && n >= 2
|
|
|
|
// determine Karatsuba length k such that
|
|
//
|
|
// x = xh*b + x0 (0 <= x0 < b)
|
|
// y = yh*b + y0 (0 <= y0 < b)
|
|
// b = 1<<(_W*k) ("base" of digits xi, yi)
|
|
//
|
|
k := karatsubaLen(n)
|
|
// k <= n
|
|
|
|
// multiply x0 and y0 via Karatsuba
|
|
x0 := x[0:k] // x0 is not normalized
|
|
y0 := y[0:k] // y0 is not normalized
|
|
z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
|
|
karatsuba(z, x0, y0)
|
|
z = z[0 : m+n] // z has final length but may be incomplete
|
|
z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
|
|
|
|
// If xh != 0 or yh != 0, add the missing terms to z. For
|
|
//
|
|
// xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
|
|
// yh = y1*b (0 <= y1 < b)
|
|
//
|
|
// the missing terms are
|
|
//
|
|
// x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
|
|
//
|
|
// since all the yi for i > 1 are 0 by choice of k: If any of them
|
|
// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
|
|
// be a larger valid threshold contradicting the assumption about k.
|
|
//
|
|
if k < n || m != n {
|
|
var t nat
|
|
|
|
// add x0*y1*b
|
|
x0 := x0.norm()
|
|
y1 := y[k:] // y1 is normalized because y is
|
|
t = t.mul(x0, y1) // update t so we don't lose t's underlying array
|
|
addAt(z, t, k)
|
|
|
|
// add xi*y0<<i, xi*y1*b<<(i+k)
|
|
y0 := y0.norm()
|
|
for i := k; i < len(x); i += k {
|
|
xi := x[i:]
|
|
if len(xi) > k {
|
|
xi = xi[:k]
|
|
}
|
|
xi = xi.norm()
|
|
t = t.mul(xi, y0)
|
|
addAt(z, t, i)
|
|
t = t.mul(xi, y1)
|
|
addAt(z, t, i+k)
|
|
}
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// mulRange computes the product of all the unsigned integers in the
|
|
// range [a, b] inclusively. If a > b (empty range), the result is 1.
|
|
func (z nat) mulRange(a, b uint64) nat {
|
|
switch {
|
|
case a == 0:
|
|
// cut long ranges short (optimization)
|
|
return z.setUint64(0)
|
|
case a > b:
|
|
return z.setUint64(1)
|
|
case a == b:
|
|
return z.setUint64(a)
|
|
case a+1 == b:
|
|
return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
|
|
}
|
|
m := (a + b) / 2
|
|
return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
|
|
}
|
|
|
|
// q = (x-r)/y, with 0 <= r < y
|
|
func (z nat) divW(x nat, y Word) (q nat, r Word) {
|
|
m := len(x)
|
|
switch {
|
|
case y == 0:
|
|
panic("division by zero")
|
|
case y == 1:
|
|
q = z.set(x) // result is x
|
|
return
|
|
case m == 0:
|
|
q = z.make(0) // result is 0
|
|
return
|
|
}
|
|
// m > 0
|
|
z = z.make(m)
|
|
r = divWVW(z, 0, x, y)
|
|
q = z.norm()
|
|
return
|
|
}
|
|
|
|
func (z nat) div(z2, u, v nat) (q, r nat) {
|
|
if len(v) == 0 {
|
|
panic("division by zero")
|
|
}
|
|
|
|
if u.cmp(v) < 0 {
|
|
q = z.make(0)
|
|
r = z2.set(u)
|
|
return
|
|
}
|
|
|
|
if len(v) == 1 {
|
|
var r2 Word
|
|
q, r2 = z.divW(u, v[0])
|
|
r = z2.setWord(r2)
|
|
return
|
|
}
|
|
|
|
q, r = z.divLarge(z2, u, v)
|
|
return
|
|
}
|
|
|
|
// q = (uIn-r)/v, with 0 <= r < y
|
|
// Uses z as storage for q, and u as storage for r if possible.
|
|
// See Knuth, Volume 2, section 4.3.1, Algorithm D.
|
|
// Preconditions:
|
|
// len(v) >= 2
|
|
// len(uIn) >= len(v)
|
|
func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
|
|
n := len(v)
|
|
m := len(uIn) - n
|
|
|
|
// determine if z can be reused
|
|
// TODO(gri) should find a better solution - this if statement
|
|
// is very costly (see e.g. time pidigits -s -n 10000)
|
|
if alias(z, uIn) || alias(z, v) {
|
|
z = nil // z is an alias for uIn or v - cannot reuse
|
|
}
|
|
q = z.make(m + 1)
|
|
|
|
qhatv := make(nat, n+1)
|
|
if alias(u, uIn) || alias(u, v) {
|
|
u = nil // u is an alias for uIn or v - cannot reuse
|
|
}
|
|
u = u.make(len(uIn) + 1)
|
|
u.clear()
|
|
|
|
// D1.
|
|
shift := leadingZeros(v[n-1])
|
|
if shift > 0 {
|
|
// do not modify v, it may be used by another goroutine simultaneously
|
|
v1 := make(nat, n)
|
|
shlVU(v1, v, shift)
|
|
v = v1
|
|
}
|
|
u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
|
|
|
|
// D2.
|
|
for j := m; j >= 0; j-- {
|
|
// D3.
|
|
qhat := Word(_M)
|
|
if u[j+n] != v[n-1] {
|
|
var rhat Word
|
|
qhat, rhat = divWW(u[j+n], u[j+n-1], v[n-1])
|
|
|
|
// x1 | x2 = q̂v_{n-2}
|
|
x1, x2 := mulWW(qhat, v[n-2])
|
|
// test if q̂v_{n-2} > br̂ + u_{j+n-2}
|
|
for greaterThan(x1, x2, rhat, u[j+n-2]) {
|
|
qhat--
|
|
prevRhat := rhat
|
|
rhat += v[n-1]
|
|
// v[n-1] >= 0, so this tests for overflow.
|
|
if rhat < prevRhat {
|
|
break
|
|
}
|
|
x1, x2 = mulWW(qhat, v[n-2])
|
|
}
|
|
}
|
|
|
|
// D4.
|
|
qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
|
|
|
|
c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
|
|
if c != 0 {
|
|
c := addVV(u[j:j+n], u[j:], v)
|
|
u[j+n] += c
|
|
qhat--
|
|
}
|
|
|
|
q[j] = qhat
|
|
}
|
|
|
|
q = q.norm()
|
|
shrVU(u, u, shift)
|
|
r = u.norm()
|
|
|
|
return q, r
|
|
}
|
|
|
|
// Length of x in bits. x must be normalized.
|
|
func (x nat) bitLen() int {
|
|
if i := len(x) - 1; i >= 0 {
|
|
return i*_W + bitLen(x[i])
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// MaxBase is the largest number base accepted for string conversions.
|
|
const MaxBase = 'z' - 'a' + 10 + 1 // = hexValue('z') + 1
|
|
|
|
func hexValue(ch rune) Word {
|
|
d := int(MaxBase + 1) // illegal base
|
|
switch {
|
|
case '0' <= ch && ch <= '9':
|
|
d = int(ch - '0')
|
|
case 'a' <= ch && ch <= 'z':
|
|
d = int(ch - 'a' + 10)
|
|
case 'A' <= ch && ch <= 'Z':
|
|
d = int(ch - 'A' + 10)
|
|
}
|
|
return Word(d)
|
|
}
|
|
|
|
// scan sets z to the natural number corresponding to the longest possible prefix
|
|
// read from r representing an unsigned integer in a given conversion base.
|
|
// It returns z, the actual conversion base used, and an error, if any. In the
|
|
// error case, the value of z is undefined. The syntax follows the syntax of
|
|
// unsigned integer literals in Go.
|
|
//
|
|
// The base argument must be 0 or a value from 2 through MaxBase. If the base
|
|
// is 0, the string prefix determines the actual conversion base. A prefix of
|
|
// ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a
|
|
// ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10.
|
|
//
|
|
func (z nat) scan(r io.RuneScanner, base int) (nat, int, error) {
|
|
// reject illegal bases
|
|
if base < 0 || base == 1 || MaxBase < base {
|
|
return z, 0, errors.New("illegal number base")
|
|
}
|
|
|
|
// one char look-ahead
|
|
ch, _, err := r.ReadRune()
|
|
if err != nil {
|
|
return z, 0, err
|
|
}
|
|
|
|
// determine base if necessary
|
|
b := Word(base)
|
|
if base == 0 {
|
|
b = 10
|
|
if ch == '0' {
|
|
switch ch, _, err = r.ReadRune(); err {
|
|
case nil:
|
|
b = 8
|
|
switch ch {
|
|
case 'x', 'X':
|
|
b = 16
|
|
case 'b', 'B':
|
|
b = 2
|
|
}
|
|
if b == 2 || b == 16 {
|
|
if ch, _, err = r.ReadRune(); err != nil {
|
|
return z, 0, err
|
|
}
|
|
}
|
|
case io.EOF:
|
|
return z.make(0), 10, nil
|
|
default:
|
|
return z, 10, err
|
|
}
|
|
}
|
|
}
|
|
|
|
// convert string
|
|
// - group as many digits d as possible together into a "super-digit" dd with "super-base" bb
|
|
// - only when bb does not fit into a word anymore, do a full number mulAddWW using bb and dd
|
|
z = z.make(0)
|
|
bb := Word(1)
|
|
dd := Word(0)
|
|
for max := _M / b; ; {
|
|
d := hexValue(ch)
|
|
if d >= b {
|
|
r.UnreadRune() // ch does not belong to number anymore
|
|
break
|
|
}
|
|
|
|
if bb <= max {
|
|
bb *= b
|
|
dd = dd*b + d
|
|
} else {
|
|
// bb * b would overflow
|
|
z = z.mulAddWW(z, bb, dd)
|
|
bb = b
|
|
dd = d
|
|
}
|
|
|
|
if ch, _, err = r.ReadRune(); err != nil {
|
|
if err != io.EOF {
|
|
return z, int(b), err
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
switch {
|
|
case bb > 1:
|
|
// there was at least one mantissa digit
|
|
z = z.mulAddWW(z, bb, dd)
|
|
case base == 0 && b == 8:
|
|
// there was only the octal prefix 0 (possibly followed by digits > 7);
|
|
// return base 10, not 8
|
|
return z, 10, nil
|
|
case base != 0 || b != 8:
|
|
// there was neither a mantissa digit nor the octal prefix 0
|
|
return z, int(b), errors.New("syntax error scanning number")
|
|
}
|
|
|
|
return z.norm(), int(b), nil
|
|
}
|
|
|
|
// Character sets for string conversion.
|
|
const (
|
|
lowercaseDigits = "0123456789abcdefghijklmnopqrstuvwxyz"
|
|
uppercaseDigits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
|
|
)
|
|
|
|
// decimalString returns a decimal representation of x.
|
|
// It calls x.string with the charset "0123456789".
|
|
func (x nat) decimalString() string {
|
|
return x.string(lowercaseDigits[0:10])
|
|
}
|
|
|
|
// string converts x to a string using digits from a charset; a digit with
|
|
// value d is represented by charset[d]. The conversion base is determined
|
|
// by len(charset), which must be >= 2 and <= 256.
|
|
func (x nat) string(charset string) string {
|
|
b := Word(len(charset))
|
|
|
|
// special cases
|
|
switch {
|
|
case b < 2 || MaxBase > 256:
|
|
panic("illegal base")
|
|
case len(x) == 0:
|
|
return string(charset[0])
|
|
}
|
|
|
|
// allocate buffer for conversion
|
|
i := int(float64(x.bitLen())/math.Log2(float64(b))) + 1 // off by one at most
|
|
s := make([]byte, i)
|
|
|
|
// convert power of two and non power of two bases separately
|
|
if b == b&-b {
|
|
// shift is base-b digit size in bits
|
|
shift := trailingZeroBits(b) // shift > 0 because b >= 2
|
|
mask := Word(1)<<shift - 1
|
|
w := x[0]
|
|
nbits := uint(_W) // number of unprocessed bits in w
|
|
|
|
// convert less-significant words
|
|
for k := 1; k < len(x); k++ {
|
|
// convert full digits
|
|
for nbits >= shift {
|
|
i--
|
|
s[i] = charset[w&mask]
|
|
w >>= shift
|
|
nbits -= shift
|
|
}
|
|
|
|
// convert any partial leading digit and advance to next word
|
|
if nbits == 0 {
|
|
// no partial digit remaining, just advance
|
|
w = x[k]
|
|
nbits = _W
|
|
} else {
|
|
// partial digit in current (k-1) and next (k) word
|
|
w |= x[k] << nbits
|
|
i--
|
|
s[i] = charset[w&mask]
|
|
|
|
// advance
|
|
w = x[k] >> (shift - nbits)
|
|
nbits = _W - (shift - nbits)
|
|
}
|
|
}
|
|
|
|
// convert digits of most-significant word (omit leading zeros)
|
|
for nbits >= 0 && w != 0 {
|
|
i--
|
|
s[i] = charset[w&mask]
|
|
w >>= shift
|
|
nbits -= shift
|
|
}
|
|
|
|
} else {
|
|
// determine "big base"; i.e., the largest possible value bb
|
|
// that is a power of base b and still fits into a Word
|
|
// (as in 10^19 for 19 decimal digits in a 64bit Word)
|
|
bb := b // big base is b**ndigits
|
|
ndigits := 1 // number of base b digits
|
|
for max := Word(_M / b); bb <= max; bb *= b {
|
|
ndigits++ // maximize ndigits where bb = b**ndigits, bb <= _M
|
|
}
|
|
|
|
// construct table of successive squares of bb*leafSize to use in subdivisions
|
|
// result (table != nil) <=> (len(x) > leafSize > 0)
|
|
table := divisors(len(x), b, ndigits, bb)
|
|
|
|
// preserve x, create local copy for use by convertWords
|
|
q := nat(nil).set(x)
|
|
|
|
// convert q to string s in base b
|
|
q.convertWords(s, charset, b, ndigits, bb, table)
|
|
|
|
// strip leading zeros
|
|
// (x != 0; thus s must contain at least one non-zero digit
|
|
// and the loop will terminate)
|
|
i = 0
|
|
for zero := charset[0]; s[i] == zero; {
|
|
i++
|
|
}
|
|
}
|
|
|
|
return string(s[i:])
|
|
}
|
|
|
|
// Convert words of q to base b digits in s. If q is large, it is recursively "split in half"
|
|
// by nat/nat division using tabulated divisors. Otherwise, it is converted iteratively using
|
|
// repeated nat/Word division.
|
|
//
|
|
// The iterative method processes n Words by n divW() calls, each of which visits every Word in the
|
|
// incrementally shortened q for a total of n + (n-1) + (n-2) ... + 2 + 1, or n(n+1)/2 divW()'s.
|
|
// Recursive conversion divides q by its approximate square root, yielding two parts, each half
|
|
// the size of q. Using the iterative method on both halves means 2 * (n/2)(n/2 + 1)/2 divW()'s
|
|
// plus the expensive long div(). Asymptotically, the ratio is favorable at 1/2 the divW()'s, and
|
|
// is made better by splitting the subblocks recursively. Best is to split blocks until one more
|
|
// split would take longer (because of the nat/nat div()) than the twice as many divW()'s of the
|
|
// iterative approach. This threshold is represented by leafSize. Benchmarking of leafSize in the
|
|
// range 2..64 shows that values of 8 and 16 work well, with a 4x speedup at medium lengths and
|
|
// ~30x for 20000 digits. Use nat_test.go's BenchmarkLeafSize tests to optimize leafSize for
|
|
// specific hardware.
|
|
//
|
|
func (q nat) convertWords(s []byte, charset string, b Word, ndigits int, bb Word, table []divisor) {
|
|
// split larger blocks recursively
|
|
if table != nil {
|
|
// len(q) > leafSize > 0
|
|
var r nat
|
|
index := len(table) - 1
|
|
for len(q) > leafSize {
|
|
// find divisor close to sqrt(q) if possible, but in any case < q
|
|
maxLength := q.bitLen() // ~= log2 q, or at of least largest possible q of this bit length
|
|
minLength := maxLength >> 1 // ~= log2 sqrt(q)
|
|
for index > 0 && table[index-1].nbits > minLength {
|
|
index-- // desired
|
|
}
|
|
if table[index].nbits >= maxLength && table[index].bbb.cmp(q) >= 0 {
|
|
index--
|
|
if index < 0 {
|
|
panic("internal inconsistency")
|
|
}
|
|
}
|
|
|
|
// split q into the two digit number (q'*bbb + r) to form independent subblocks
|
|
q, r = q.div(r, q, table[index].bbb)
|
|
|
|
// convert subblocks and collect results in s[:h] and s[h:]
|
|
h := len(s) - table[index].ndigits
|
|
r.convertWords(s[h:], charset, b, ndigits, bb, table[0:index])
|
|
s = s[:h] // == q.convertWords(s, charset, b, ndigits, bb, table[0:index+1])
|
|
}
|
|
}
|
|
|
|
// having split any large blocks now process the remaining (small) block iteratively
|
|
i := len(s)
|
|
var r Word
|
|
if b == 10 {
|
|
// hard-coding for 10 here speeds this up by 1.25x (allows for / and % by constants)
|
|
for len(q) > 0 {
|
|
// extract least significant, base bb "digit"
|
|
q, r = q.divW(q, bb)
|
|
for j := 0; j < ndigits && i > 0; j++ {
|
|
i--
|
|
// avoid % computation since r%10 == r - int(r/10)*10;
|
|
// this appears to be faster for BenchmarkString10000Base10
|
|
// and smaller strings (but a bit slower for larger ones)
|
|
t := r / 10
|
|
s[i] = charset[r-t<<3-t-t] // TODO(gri) replace w/ t*10 once compiler produces better code
|
|
r = t
|
|
}
|
|
}
|
|
} else {
|
|
for len(q) > 0 {
|
|
// extract least significant, base bb "digit"
|
|
q, r = q.divW(q, bb)
|
|
for j := 0; j < ndigits && i > 0; j++ {
|
|
i--
|
|
s[i] = charset[r%b]
|
|
r /= b
|
|
}
|
|
}
|
|
}
|
|
|
|
// prepend high-order zeroes
|
|
zero := charset[0]
|
|
for i > 0 { // while need more leading zeroes
|
|
i--
|
|
s[i] = zero
|
|
}
|
|
}
|
|
|
|
// Split blocks greater than leafSize Words (or set to 0 to disable recursive conversion)
|
|
// Benchmark and configure leafSize using: go test -bench="Leaf"
|
|
// 8 and 16 effective on 3.0 GHz Xeon "Clovertown" CPU (128 byte cache lines)
|
|
// 8 and 16 effective on 2.66 GHz Core 2 Duo "Penryn" CPU
|
|
var leafSize int = 8 // number of Word-size binary values treat as a monolithic block
|
|
|
|
type divisor struct {
|
|
bbb nat // divisor
|
|
nbits int // bit length of divisor (discounting leading zeroes) ~= log2(bbb)
|
|
ndigits int // digit length of divisor in terms of output base digits
|
|
}
|
|
|
|
var cacheBase10 struct {
|
|
sync.Mutex
|
|
table [64]divisor // cached divisors for base 10
|
|
}
|
|
|
|
// expWW computes x**y
|
|
func (z nat) expWW(x, y Word) nat {
|
|
return z.expNN(nat(nil).setWord(x), nat(nil).setWord(y), nil)
|
|
}
|
|
|
|
// construct table of powers of bb*leafSize to use in subdivisions
|
|
func divisors(m int, b Word, ndigits int, bb Word) []divisor {
|
|
// only compute table when recursive conversion is enabled and x is large
|
|
if leafSize == 0 || m <= leafSize {
|
|
return nil
|
|
}
|
|
|
|
// determine k where (bb**leafSize)**(2**k) >= sqrt(x)
|
|
k := 1
|
|
for words := leafSize; words < m>>1 && k < len(cacheBase10.table); words <<= 1 {
|
|
k++
|
|
}
|
|
|
|
// reuse and extend existing table of divisors or create new table as appropriate
|
|
var table []divisor // for b == 10, table overlaps with cacheBase10.table
|
|
if b == 10 {
|
|
cacheBase10.Lock()
|
|
table = cacheBase10.table[0:k] // reuse old table for this conversion
|
|
} else {
|
|
table = make([]divisor, k) // create new table for this conversion
|
|
}
|
|
|
|
// extend table
|
|
if table[k-1].ndigits == 0 {
|
|
// add new entries as needed
|
|
var larger nat
|
|
for i := 0; i < k; i++ {
|
|
if table[i].ndigits == 0 {
|
|
if i == 0 {
|
|
table[0].bbb = nat(nil).expWW(bb, Word(leafSize))
|
|
table[0].ndigits = ndigits * leafSize
|
|
} else {
|
|
table[i].bbb = nat(nil).mul(table[i-1].bbb, table[i-1].bbb)
|
|
table[i].ndigits = 2 * table[i-1].ndigits
|
|
}
|
|
|
|
// optimization: exploit aggregated extra bits in macro blocks
|
|
larger = nat(nil).set(table[i].bbb)
|
|
for mulAddVWW(larger, larger, b, 0) == 0 {
|
|
table[i].bbb = table[i].bbb.set(larger)
|
|
table[i].ndigits++
|
|
}
|
|
|
|
table[i].nbits = table[i].bbb.bitLen()
|
|
}
|
|
}
|
|
}
|
|
|
|
if b == 10 {
|
|
cacheBase10.Unlock()
|
|
}
|
|
|
|
return table
|
|
}
|
|
|
|
const deBruijn32 = 0x077CB531
|
|
|
|
var deBruijn32Lookup = []byte{
|
|
0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
|
|
31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9,
|
|
}
|
|
|
|
const deBruijn64 = 0x03f79d71b4ca8b09
|
|
|
|
var deBruijn64Lookup = []byte{
|
|
0, 1, 56, 2, 57, 49, 28, 3, 61, 58, 42, 50, 38, 29, 17, 4,
|
|
62, 47, 59, 36, 45, 43, 51, 22, 53, 39, 33, 30, 24, 18, 12, 5,
|
|
63, 55, 48, 27, 60, 41, 37, 16, 46, 35, 44, 21, 52, 32, 23, 11,
|
|
54, 26, 40, 15, 34, 20, 31, 10, 25, 14, 19, 9, 13, 8, 7, 6,
|
|
}
|
|
|
|
// trailingZeroBits returns the number of consecutive least significant zero
|
|
// bits of x.
|
|
func trailingZeroBits(x Word) uint {
|
|
// x & -x leaves only the right-most bit set in the word. Let k be the
|
|
// index of that bit. Since only a single bit is set, the value is two
|
|
// to the power of k. Multiplying by a power of two is equivalent to
|
|
// left shifting, in this case by k bits. The de Bruijn constant is
|
|
// such that all six bit, consecutive substrings are distinct.
|
|
// Therefore, if we have a left shifted version of this constant we can
|
|
// find by how many bits it was shifted by looking at which six bit
|
|
// substring ended up at the top of the word.
|
|
// (Knuth, volume 4, section 7.3.1)
|
|
switch _W {
|
|
case 32:
|
|
return uint(deBruijn32Lookup[((x&-x)*deBruijn32)>>27])
|
|
case 64:
|
|
return uint(deBruijn64Lookup[((x&-x)*(deBruijn64&_M))>>58])
|
|
default:
|
|
panic("unknown word size")
|
|
}
|
|
}
|
|
|
|
// trailingZeroBits returns the number of consecutive least significant zero
|
|
// bits of x.
|
|
func (x nat) trailingZeroBits() uint {
|
|
if len(x) == 0 {
|
|
return 0
|
|
}
|
|
var i uint
|
|
for x[i] == 0 {
|
|
i++
|
|
}
|
|
// x[i] != 0
|
|
return i*_W + trailingZeroBits(x[i])
|
|
}
|
|
|
|
// z = x << s
|
|
func (z nat) shl(x nat, s uint) nat {
|
|
m := len(x)
|
|
if m == 0 {
|
|
return z.make(0)
|
|
}
|
|
// m > 0
|
|
|
|
n := m + int(s/_W)
|
|
z = z.make(n + 1)
|
|
z[n] = shlVU(z[n-m:n], x, s%_W)
|
|
z[0 : n-m].clear()
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// z = x >> s
|
|
func (z nat) shr(x nat, s uint) nat {
|
|
m := len(x)
|
|
n := m - int(s/_W)
|
|
if n <= 0 {
|
|
return z.make(0)
|
|
}
|
|
// n > 0
|
|
|
|
z = z.make(n)
|
|
shrVU(z, x[m-n:], s%_W)
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (z nat) setBit(x nat, i uint, b uint) nat {
|
|
j := int(i / _W)
|
|
m := Word(1) << (i % _W)
|
|
n := len(x)
|
|
switch b {
|
|
case 0:
|
|
z = z.make(n)
|
|
copy(z, x)
|
|
if j >= n {
|
|
// no need to grow
|
|
return z
|
|
}
|
|
z[j] &^= m
|
|
return z.norm()
|
|
case 1:
|
|
if j >= n {
|
|
z = z.make(j + 1)
|
|
z[n:].clear()
|
|
} else {
|
|
z = z.make(n)
|
|
}
|
|
copy(z, x)
|
|
z[j] |= m
|
|
// no need to normalize
|
|
return z
|
|
}
|
|
panic("set bit is not 0 or 1")
|
|
}
|
|
|
|
func (z nat) bit(i uint) uint {
|
|
j := int(i / _W)
|
|
if j >= len(z) {
|
|
return 0
|
|
}
|
|
return uint(z[j] >> (i % _W) & 1)
|
|
}
|
|
|
|
func (z nat) and(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
if m > n {
|
|
m = n
|
|
}
|
|
// m <= n
|
|
|
|
z = z.make(m)
|
|
for i := 0; i < m; i++ {
|
|
z[i] = x[i] & y[i]
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (z nat) andNot(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
if n > m {
|
|
n = m
|
|
}
|
|
// m >= n
|
|
|
|
z = z.make(m)
|
|
for i := 0; i < n; i++ {
|
|
z[i] = x[i] &^ y[i]
|
|
}
|
|
copy(z[n:m], x[n:m])
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (z nat) or(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
s := x
|
|
if m < n {
|
|
n, m = m, n
|
|
s = y
|
|
}
|
|
// m >= n
|
|
|
|
z = z.make(m)
|
|
for i := 0; i < n; i++ {
|
|
z[i] = x[i] | y[i]
|
|
}
|
|
copy(z[n:m], s[n:m])
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
func (z nat) xor(x, y nat) nat {
|
|
m := len(x)
|
|
n := len(y)
|
|
s := x
|
|
if m < n {
|
|
n, m = m, n
|
|
s = y
|
|
}
|
|
// m >= n
|
|
|
|
z = z.make(m)
|
|
for i := 0; i < n; i++ {
|
|
z[i] = x[i] ^ y[i]
|
|
}
|
|
copy(z[n:m], s[n:m])
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// greaterThan returns true iff (x1<<_W + x2) > (y1<<_W + y2)
|
|
func greaterThan(x1, x2, y1, y2 Word) bool {
|
|
return x1 > y1 || x1 == y1 && x2 > y2
|
|
}
|
|
|
|
// modW returns x % d.
|
|
func (x nat) modW(d Word) (r Word) {
|
|
// TODO(agl): we don't actually need to store the q value.
|
|
var q nat
|
|
q = q.make(len(x))
|
|
return divWVW(q, 0, x, d)
|
|
}
|
|
|
|
// random creates a random integer in [0..limit), using the space in z if
|
|
// possible. n is the bit length of limit.
|
|
func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
|
|
if alias(z, limit) {
|
|
z = nil // z is an alias for limit - cannot reuse
|
|
}
|
|
z = z.make(len(limit))
|
|
|
|
bitLengthOfMSW := uint(n % _W)
|
|
if bitLengthOfMSW == 0 {
|
|
bitLengthOfMSW = _W
|
|
}
|
|
mask := Word((1 << bitLengthOfMSW) - 1)
|
|
|
|
for {
|
|
switch _W {
|
|
case 32:
|
|
for i := range z {
|
|
z[i] = Word(rand.Uint32())
|
|
}
|
|
case 64:
|
|
for i := range z {
|
|
z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
|
|
}
|
|
default:
|
|
panic("unknown word size")
|
|
}
|
|
z[len(limit)-1] &= mask
|
|
if z.cmp(limit) < 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
|
|
// otherwise it sets z to x**y. The result is the value of z.
|
|
func (z nat) expNN(x, y, m nat) nat {
|
|
if alias(z, x) || alias(z, y) {
|
|
// We cannot allow in-place modification of x or y.
|
|
z = nil
|
|
}
|
|
|
|
if len(y) == 0 {
|
|
z = z.make(1)
|
|
z[0] = 1
|
|
return z
|
|
}
|
|
// y > 0
|
|
|
|
if len(m) != 0 {
|
|
// We likely end up being as long as the modulus.
|
|
z = z.make(len(m))
|
|
}
|
|
z = z.set(x)
|
|
|
|
// If the base is non-trivial and the exponent is large, we use
|
|
// 4-bit, windowed exponentiation. This involves precomputing 14 values
|
|
// (x^2...x^15) but then reduces the number of multiply-reduces by a
|
|
// third. Even for a 32-bit exponent, this reduces the number of
|
|
// operations.
|
|
if len(x) > 1 && len(y) > 1 && len(m) > 0 {
|
|
return z.expNNWindowed(x, y, m)
|
|
}
|
|
|
|
v := y[len(y)-1] // v > 0 because y is normalized and y > 0
|
|
shift := leadingZeros(v) + 1
|
|
v <<= shift
|
|
var q nat
|
|
|
|
const mask = 1 << (_W - 1)
|
|
|
|
// We walk through the bits of the exponent one by one. Each time we
|
|
// see a bit, we square, thus doubling the power. If the bit is a one,
|
|
// we also multiply by x, thus adding one to the power.
|
|
|
|
w := _W - int(shift)
|
|
// zz and r are used to avoid allocating in mul and div as
|
|
// otherwise the arguments would alias.
|
|
var zz, r nat
|
|
for j := 0; j < w; j++ {
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
|
|
if v&mask != 0 {
|
|
zz = zz.mul(z, x)
|
|
zz, z = z, zz
|
|
}
|
|
|
|
if len(m) != 0 {
|
|
zz, r = zz.div(r, z, m)
|
|
zz, r, q, z = q, z, zz, r
|
|
}
|
|
|
|
v <<= 1
|
|
}
|
|
|
|
for i := len(y) - 2; i >= 0; i-- {
|
|
v = y[i]
|
|
|
|
for j := 0; j < _W; j++ {
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
|
|
if v&mask != 0 {
|
|
zz = zz.mul(z, x)
|
|
zz, z = z, zz
|
|
}
|
|
|
|
if len(m) != 0 {
|
|
zz, r = zz.div(r, z, m)
|
|
zz, r, q, z = q, z, zz, r
|
|
}
|
|
|
|
v <<= 1
|
|
}
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
|
|
func (z nat) expNNWindowed(x, y, m nat) nat {
|
|
// zz and r are used to avoid allocating in mul and div as otherwise
|
|
// the arguments would alias.
|
|
var zz, r nat
|
|
|
|
const n = 4
|
|
// powers[i] contains x^i.
|
|
var powers [1 << n]nat
|
|
powers[0] = natOne
|
|
powers[1] = x
|
|
for i := 2; i < 1<<n; i += 2 {
|
|
p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
|
|
*p = p.mul(*p2, *p2)
|
|
zz, r = zz.div(r, *p, m)
|
|
*p, r = r, *p
|
|
*p1 = p1.mul(*p, x)
|
|
zz, r = zz.div(r, *p1, m)
|
|
*p1, r = r, *p1
|
|
}
|
|
|
|
z = z.setWord(1)
|
|
|
|
for i := len(y) - 1; i >= 0; i-- {
|
|
yi := y[i]
|
|
for j := 0; j < _W; j += n {
|
|
if i != len(y)-1 || j != 0 {
|
|
// Unrolled loop for significant performance
|
|
// gain. Use go test -bench=".*" in crypto/rsa
|
|
// to check performance before making changes.
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
zz, r = zz.div(r, z, m)
|
|
z, r = r, z
|
|
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
zz, r = zz.div(r, z, m)
|
|
z, r = r, z
|
|
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
zz, r = zz.div(r, z, m)
|
|
z, r = r, z
|
|
|
|
zz = zz.mul(z, z)
|
|
zz, z = z, zz
|
|
zz, r = zz.div(r, z, m)
|
|
z, r = r, z
|
|
}
|
|
|
|
zz = zz.mul(z, powers[yi>>(_W-n)])
|
|
zz, z = z, zz
|
|
zz, r = zz.div(r, z, m)
|
|
z, r = r, z
|
|
|
|
yi <<= n
|
|
}
|
|
}
|
|
|
|
return z.norm()
|
|
}
|
|
|
|
// probablyPrime performs reps Miller-Rabin tests to check whether n is prime.
|
|
// If it returns true, n is prime with probability 1 - 1/4^reps.
|
|
// If it returns false, n is not prime.
|
|
func (n nat) probablyPrime(reps int) bool {
|
|
if len(n) == 0 {
|
|
return false
|
|
}
|
|
|
|
if len(n) == 1 {
|
|
if n[0] < 2 {
|
|
return false
|
|
}
|
|
|
|
if n[0]%2 == 0 {
|
|
return n[0] == 2
|
|
}
|
|
|
|
// We have to exclude these cases because we reject all
|
|
// multiples of these numbers below.
|
|
switch n[0] {
|
|
case 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53:
|
|
return true
|
|
}
|
|
}
|
|
|
|
const primesProduct32 = 0xC0CFD797 // Π {p ∈ primes, 2 < p <= 29}
|
|
const primesProduct64 = 0xE221F97C30E94E1D // Π {p ∈ primes, 2 < p <= 53}
|
|
|
|
var r Word
|
|
switch _W {
|
|
case 32:
|
|
r = n.modW(primesProduct32)
|
|
case 64:
|
|
r = n.modW(primesProduct64 & _M)
|
|
default:
|
|
panic("Unknown word size")
|
|
}
|
|
|
|
if r%3 == 0 || r%5 == 0 || r%7 == 0 || r%11 == 0 ||
|
|
r%13 == 0 || r%17 == 0 || r%19 == 0 || r%23 == 0 || r%29 == 0 {
|
|
return false
|
|
}
|
|
|
|
if _W == 64 && (r%31 == 0 || r%37 == 0 || r%41 == 0 ||
|
|
r%43 == 0 || r%47 == 0 || r%53 == 0) {
|
|
return false
|
|
}
|
|
|
|
nm1 := nat(nil).sub(n, natOne)
|
|
// determine q, k such that nm1 = q << k
|
|
k := nm1.trailingZeroBits()
|
|
q := nat(nil).shr(nm1, k)
|
|
|
|
nm3 := nat(nil).sub(nm1, natTwo)
|
|
rand := rand.New(rand.NewSource(int64(n[0])))
|
|
|
|
var x, y, quotient nat
|
|
nm3Len := nm3.bitLen()
|
|
|
|
NextRandom:
|
|
for i := 0; i < reps; i++ {
|
|
x = x.random(rand, nm3, nm3Len)
|
|
x = x.add(x, natTwo)
|
|
y = y.expNN(x, q, n)
|
|
if y.cmp(natOne) == 0 || y.cmp(nm1) == 0 {
|
|
continue
|
|
}
|
|
for j := uint(1); j < k; j++ {
|
|
y = y.mul(y, y)
|
|
quotient, y = quotient.div(y, y, n)
|
|
if y.cmp(nm1) == 0 {
|
|
continue NextRandom
|
|
}
|
|
if y.cmp(natOne) == 0 {
|
|
return false
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// bytes writes the value of z into buf using big-endian encoding.
|
|
// len(buf) must be >= len(z)*_S. The value of z is encoded in the
|
|
// slice buf[i:]. The number i of unused bytes at the beginning of
|
|
// buf is returned as result.
|
|
func (z nat) bytes(buf []byte) (i int) {
|
|
i = len(buf)
|
|
for _, d := range z {
|
|
for j := 0; j < _S; j++ {
|
|
i--
|
|
buf[i] = byte(d)
|
|
d >>= 8
|
|
}
|
|
}
|
|
|
|
for i < len(buf) && buf[i] == 0 {
|
|
i++
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// setBytes interprets buf as the bytes of a big-endian unsigned
|
|
// integer, sets z to that value, and returns z.
|
|
func (z nat) setBytes(buf []byte) nat {
|
|
z = z.make((len(buf) + _S - 1) / _S)
|
|
|
|
k := 0
|
|
s := uint(0)
|
|
var d Word
|
|
for i := len(buf); i > 0; i-- {
|
|
d |= Word(buf[i-1]) << s
|
|
if s += 8; s == _S*8 {
|
|
z[k] = d
|
|
k++
|
|
s = 0
|
|
d = 0
|
|
}
|
|
}
|
|
if k < len(z) {
|
|
z[k] = d
|
|
}
|
|
|
|
return z.norm()
|
|
}
|