238 lines
6.7 KiB
C
238 lines
6.7 KiB
C
/*
|
||
* ====================================================
|
||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
*
|
||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
* Permission to use, copy, modify, and distribute this
|
||
* software is freely granted, provided that this notice
|
||
* is preserved.
|
||
* ====================================================
|
||
*/
|
||
|
||
/*
|
||
Long double expansions are
|
||
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
|
||
and are incorporated herein by permission of the author. The author
|
||
reserves the right to distribute this material elsewhere under different
|
||
copying permissions. These modifications are distributed here under
|
||
the following terms:
|
||
|
||
This library is free software; you can redistribute it and/or
|
||
modify it under the terms of the GNU Lesser General Public
|
||
License as published by the Free Software Foundation; either
|
||
version 2.1 of the License, or (at your option) any later version.
|
||
|
||
This library is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
Lesser General Public License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with this library; if not, write to the Free Software
|
||
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
|
||
|
||
/* __quadmath_kernel_tanq( x, y, k )
|
||
* kernel tan function on [-pi/4, pi/4], pi/4 ~ 0.7854
|
||
* Input x is assumed to be bounded by ~pi/4 in magnitude.
|
||
* Input y is the tail of x.
|
||
* Input k indicates whether tan (if k=1) or
|
||
* -1/tan (if k= -1) is returned.
|
||
*
|
||
* Algorithm
|
||
* 1. Since tan(-x) = -tan(x), we need only to consider positive x.
|
||
* 2. if x < 2^-57, return x with inexact if x!=0.
|
||
* 3. tan(x) is approximated by a rational form x + x^3 / 3 + x^5 R(x^2)
|
||
* on [0,0.67433].
|
||
*
|
||
* Note: tan(x+y) = tan(x) + tan'(x)*y
|
||
* ~ tan(x) + (1+x*x)*y
|
||
* Therefore, for better accuracy in computing tan(x+y), let
|
||
* r = x^3 * R(x^2)
|
||
* then
|
||
* tan(x+y) = x + (x^3 / 3 + (x^2 *(r+y)+y))
|
||
*
|
||
* 4. For x in [0.67433,pi/4], let y = pi/4 - x, then
|
||
* tan(x) = tan(pi/4-y) = (1-tan(y))/(1+tan(y))
|
||
* = 1 - 2*(tan(y) - (tan(y)^2)/(1+tan(y)))
|
||
*/
|
||
|
||
#include "quadmath-imp.h"
|
||
|
||
|
||
|
||
static const __float128
|
||
one = 1.0Q,
|
||
pio4hi = 7.8539816339744830961566084581987569936977E-1Q,
|
||
pio4lo = 2.1679525325309452561992610065108379921906E-35Q,
|
||
|
||
/* tan x = x + x^3 / 3 + x^5 T(x^2)/U(x^2)
|
||
0 <= x <= 0.6743316650390625
|
||
Peak relative error 8.0e-36 */
|
||
TH = 3.333333333333333333333333333333333333333E-1Q,
|
||
T0 = -1.813014711743583437742363284336855889393E7Q,
|
||
T1 = 1.320767960008972224312740075083259247618E6Q,
|
||
T2 = -2.626775478255838182468651821863299023956E4Q,
|
||
T3 = 1.764573356488504935415411383687150199315E2Q,
|
||
T4 = -3.333267763822178690794678978979803526092E-1Q,
|
||
|
||
U0 = -1.359761033807687578306772463253710042010E8Q,
|
||
U1 = 6.494370630656893175666729313065113194784E7Q,
|
||
U2 = -4.180787672237927475505536849168729386782E6Q,
|
||
U3 = 8.031643765106170040139966622980914621521E4Q,
|
||
U4 = -5.323131271912475695157127875560667378597E2Q;
|
||
/* 1.000000000000000000000000000000000000000E0 */
|
||
|
||
|
||
static __float128
|
||
__quadmath_kernel_tanq (__float128 x, __float128 y, int iy)
|
||
{
|
||
__float128 z, r, v, w, s;
|
||
int32_t ix, sign = 1;
|
||
ieee854_float128 u, u1;
|
||
|
||
u.value = x;
|
||
ix = u.words32.w0 & 0x7fffffff;
|
||
if (ix < 0x3fc60000) /* x < 2**-57 */
|
||
{
|
||
if ((int) x == 0)
|
||
{ /* generate inexact */
|
||
if ((ix | u.words32.w1 | u.words32.w2 | u.words32.w3
|
||
| (iy + 1)) == 0)
|
||
return one / fabsq (x);
|
||
else
|
||
return (iy == 1) ? x : -one / x;
|
||
}
|
||
}
|
||
if (ix >= 0x3ffe5942) /* |x| >= 0.6743316650390625 */
|
||
{
|
||
if ((u.words32.w0 & 0x80000000) != 0)
|
||
{
|
||
x = -x;
|
||
y = -y;
|
||
sign = -1;
|
||
}
|
||
else
|
||
sign = 1;
|
||
z = pio4hi - x;
|
||
w = pio4lo - y;
|
||
x = z + w;
|
||
y = 0.0;
|
||
}
|
||
z = x * x;
|
||
r = T0 + z * (T1 + z * (T2 + z * (T3 + z * T4)));
|
||
v = U0 + z * (U1 + z * (U2 + z * (U3 + z * (U4 + z))));
|
||
r = r / v;
|
||
|
||
s = z * x;
|
||
r = y + z * (s * r + y);
|
||
r += TH * s;
|
||
w = x + r;
|
||
if (ix >= 0x3ffe5942)
|
||
{
|
||
v = (__float128) iy;
|
||
w = (v - 2.0Q * (x - (w * w / (w + v) - r)));
|
||
if (sign < 0)
|
||
w = -w;
|
||
return w;
|
||
}
|
||
if (iy == 1)
|
||
return w;
|
||
else
|
||
{ /* if allow error up to 2 ulp,
|
||
simply return -1.0/(x+r) here */
|
||
/* compute -1.0/(x+r) accurately */
|
||
u1.value = w;
|
||
u1.words32.w2 = 0;
|
||
u1.words32.w3 = 0;
|
||
v = r - (u1.value - x); /* u1+v = r+x */
|
||
z = -1.0 / w;
|
||
u.value = z;
|
||
u.words32.w2 = 0;
|
||
u.words32.w3 = 0;
|
||
s = 1.0 + u.value * u1.value;
|
||
return u.value + z * (s + u.value * v);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
/* s_tanl.c -- long double version of s_tan.c.
|
||
* Conversion to IEEE quad long double by Jakub Jelinek, jj@ultra.linux.cz.
|
||
*/
|
||
|
||
/* @(#)s_tan.c 5.1 93/09/24 */
|
||
/*
|
||
* ====================================================
|
||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
||
*
|
||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||
* Permission to use, copy, modify, and distribute this
|
||
* software is freely granted, provided that this notice
|
||
* is preserved.
|
||
* ====================================================
|
||
*/
|
||
|
||
/* tanl(x)
|
||
* Return tangent function of x.
|
||
*
|
||
* kernel function:
|
||
* __kernel_tanq ... tangent function on [-pi/4,pi/4]
|
||
* __ieee754_rem_pio2q ... argument reduction routine
|
||
*
|
||
* Method.
|
||
* Let S,C and T denote the sin, cos and tan respectively on
|
||
* [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
|
||
* in [-pi/4 , +pi/4], and let n = k mod 4.
|
||
* We have
|
||
*
|
||
* n sin(x) cos(x) tan(x)
|
||
* ----------------------------------------------------------
|
||
* 0 S C T
|
||
* 1 C -S -1/T
|
||
* 2 -S -C T
|
||
* 3 -C S -1/T
|
||
* ----------------------------------------------------------
|
||
*
|
||
* Special cases:
|
||
* Let trig be any of sin, cos, or tan.
|
||
* trig(+-INF) is NaN, with signals;
|
||
* trig(NaN) is that NaN;
|
||
*
|
||
* Accuracy:
|
||
* TRIG(x) returns trig(x) nearly rounded
|
||
*/
|
||
|
||
|
||
__float128
|
||
tanq (__float128 x)
|
||
{
|
||
__float128 y[2],z=0.0Q;
|
||
int64_t n, ix;
|
||
|
||
/* High word of x. */
|
||
GET_FLT128_MSW64(ix,x);
|
||
|
||
/* |x| ~< pi/4 */
|
||
ix &= 0x7fffffffffffffffLL;
|
||
if(ix <= 0x3ffe921fb54442d1LL) return __quadmath_kernel_tanq(x,z,1);
|
||
|
||
/* tanl(Inf or NaN) is NaN */
|
||
else if (ix>=0x7fff000000000000LL) {
|
||
if (ix == 0x7fff000000000000LL) {
|
||
GET_FLT128_LSW64(n,x);
|
||
}
|
||
return x-x; /* NaN */
|
||
}
|
||
|
||
/* argument reduction needed */
|
||
else {
|
||
n = __quadmath_rem_pio2q(x,y);
|
||
/* 1 -- n even, -1 -- n odd */
|
||
return __quadmath_kernel_tanq(y[0],y[1],1-((n&1)<<1));
|
||
}
|
||
}
|