8f5929e11f
* dse.c (struct group_info): Reorder fields for 64-bit hosts. * matrix-reorg.c (struct matrix_info): Likewise. * tree-ssa-loop-ivopts.c (struct ivopts_data): Likewise. * rtl.h (struct mem_attrs): Likewise. * df.h (struct df): Likewise. * tree-data-ref.h (struct data_dependence_relation): Likewise. * ira-int.h (struct ira_allocno): Likewise. * df-scan.c (struct df_collection_rec): Likewise. * ira.c (struct equivalence): Likewise. * function.c (struct temp_slot): Likewise. * cfgloop.h (struct loop): Likewise. * parser.c (struct cp_token): Reorder fields for 64-bit hosts. (eof_token): Adjust. * include/cpplib.h (struct cpp_dir): Reorder fields for 64-bit hosts. From-SVN: r144938
611 lines
20 KiB
C
611 lines
20 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
|
||
Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <pop@cri.ensmp.fr>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#ifndef GCC_TREE_DATA_REF_H
|
||
#define GCC_TREE_DATA_REF_H
|
||
|
||
#include "graphds.h"
|
||
#include "lambda.h"
|
||
#include "omega.h"
|
||
#include "tree-chrec.h"
|
||
|
||
/*
|
||
innermost_loop_behavior describes the evolution of the address of the memory
|
||
reference in the innermost enclosing loop. The address is expressed as
|
||
BASE + STEP * # of iteration, and base is further decomposed as the base
|
||
pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
|
||
constant offset (INIT). Examples, in loop nest
|
||
|
||
for (i = 0; i < 100; i++)
|
||
for (j = 3; j < 100; j++)
|
||
|
||
Example 1 Example 2
|
||
data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
|
||
|
||
|
||
innermost_loop_behavior
|
||
base_address &a p
|
||
offset i * D_i x
|
||
init 3 * D_j + offsetof (b) 28
|
||
step D_j 4
|
||
|
||
*/
|
||
struct innermost_loop_behavior
|
||
{
|
||
tree base_address;
|
||
tree offset;
|
||
tree init;
|
||
tree step;
|
||
|
||
/* Alignment information. ALIGNED_TO is set to the largest power of two
|
||
that divides OFFSET. */
|
||
tree aligned_to;
|
||
};
|
||
|
||
/* Describes the evolutions of indices of the memory reference. The indices
|
||
are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
|
||
For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
|
||
(note that this reference does not have to be valid, if zero does not
|
||
belong to the range of the array; hence it is not recommended to use
|
||
BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
|
||
set to the loop-invariant part of the address of the object, except for
|
||
the constant offset. For the examples above,
|
||
|
||
base_object: a[0].b[0][0] *(p + x + 4B * j_0)
|
||
indices: {j_0, +, 1}_2 {16, +, 4}_2
|
||
{i_0, +, 1}_1
|
||
{j_0, +, 1}_2
|
||
*/
|
||
|
||
struct indices
|
||
{
|
||
/* The object. */
|
||
tree base_object;
|
||
|
||
/* A list of chrecs. Access functions of the indices. */
|
||
VEC(tree,heap) *access_fns;
|
||
};
|
||
|
||
struct dr_alias
|
||
{
|
||
/* The alias information that should be used for new pointers to this
|
||
location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
|
||
tree symbol_tag;
|
||
struct ptr_info_def *ptr_info;
|
||
|
||
/* The set of virtual operands corresponding to this memory reference,
|
||
serving as a description of the alias information for the memory
|
||
reference. This could be eliminated if we had alias oracle. */
|
||
bitmap vops;
|
||
};
|
||
|
||
typedef struct scop *scop_p;
|
||
|
||
/* Each vector of the access matrix represents a linear access
|
||
function for a subscript. First elements correspond to the
|
||
leftmost indices, ie. for a[i][j] the first vector corresponds to
|
||
the subscript in "i". The elements of a vector are relative to
|
||
the loop nests in which the data reference is considered,
|
||
i.e. the vector is relative to the SCoP that provides the context
|
||
in which this data reference occurs.
|
||
|
||
For example, in
|
||
|
||
| loop_1
|
||
| loop_2
|
||
| a[i+3][2*j+n-1]
|
||
|
||
if "i" varies in loop_1 and "j" varies in loop_2, the access
|
||
matrix with respect to the loop nest {loop_1, loop_2} is:
|
||
|
||
| loop_1 loop_2 param_n cst
|
||
| 1 0 0 3
|
||
| 0 2 1 -1
|
||
|
||
whereas the access matrix with respect to loop_2 considers "i" as
|
||
a parameter:
|
||
|
||
| loop_2 param_i param_n cst
|
||
| 0 1 0 3
|
||
| 2 0 1 -1
|
||
*/
|
||
struct access_matrix
|
||
{
|
||
VEC (loop_p, heap) *loop_nest;
|
||
int nb_induction_vars;
|
||
VEC (tree, heap) *parameters;
|
||
VEC (lambda_vector, gc) *matrix;
|
||
};
|
||
|
||
#define AM_LOOP_NEST(M) (M)->loop_nest
|
||
#define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
|
||
#define AM_PARAMETERS(M) (M)->parameters
|
||
#define AM_MATRIX(M) (M)->matrix
|
||
#define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
|
||
#define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
|
||
#define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
|
||
#define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
|
||
#define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
|
||
|
||
/* Return the column in the access matrix of LOOP_NUM. */
|
||
|
||
static inline int
|
||
am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
|
||
{
|
||
int i;
|
||
loop_p l;
|
||
|
||
for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
|
||
if (l->num == loop_num)
|
||
return i;
|
||
|
||
gcc_unreachable();
|
||
}
|
||
|
||
int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
|
||
|
||
struct data_reference
|
||
{
|
||
/* A pointer to the statement that contains this DR. */
|
||
gimple stmt;
|
||
|
||
/* A pointer to the memory reference. */
|
||
tree ref;
|
||
|
||
/* Auxiliary info specific to a pass. */
|
||
void *aux;
|
||
|
||
/* True when the data reference is in RHS of a stmt. */
|
||
bool is_read;
|
||
|
||
/* Behavior of the memory reference in the innermost loop. */
|
||
struct innermost_loop_behavior innermost;
|
||
|
||
/* Subscripts of this data reference. */
|
||
struct indices indices;
|
||
|
||
/* Alias information for the data reference. */
|
||
struct dr_alias alias;
|
||
|
||
/* The SCoP in which the data reference was analyzed. */
|
||
scop_p scop;
|
||
|
||
/* Matrix representation for the data access functions. */
|
||
struct access_matrix *access_matrix;
|
||
};
|
||
|
||
#define DR_SCOP(DR) (DR)->scop
|
||
#define DR_STMT(DR) (DR)->stmt
|
||
#define DR_REF(DR) (DR)->ref
|
||
#define DR_BASE_OBJECT(DR) (DR)->indices.base_object
|
||
#define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
|
||
#define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
|
||
#define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
|
||
#define DR_IS_READ(DR) (DR)->is_read
|
||
#define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
|
||
#define DR_OFFSET(DR) (DR)->innermost.offset
|
||
#define DR_INIT(DR) (DR)->innermost.init
|
||
#define DR_STEP(DR) (DR)->innermost.step
|
||
#define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag
|
||
#define DR_PTR_INFO(DR) (DR)->alias.ptr_info
|
||
#define DR_VOPS(DR) (DR)->alias.vops
|
||
#define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
|
||
#define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
|
||
|
||
typedef struct data_reference *data_reference_p;
|
||
DEF_VEC_P(data_reference_p);
|
||
DEF_VEC_ALLOC_P (data_reference_p, heap);
|
||
|
||
enum data_dependence_direction {
|
||
dir_positive,
|
||
dir_negative,
|
||
dir_equal,
|
||
dir_positive_or_negative,
|
||
dir_positive_or_equal,
|
||
dir_negative_or_equal,
|
||
dir_star,
|
||
dir_independent
|
||
};
|
||
|
||
/* The description of the grid of iterations that overlap. At most
|
||
two loops are considered at the same time just now, hence at most
|
||
two functions are needed. For each of the functions, we store
|
||
the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
|
||
where x, y, ... are variables. */
|
||
|
||
#define MAX_DIM 2
|
||
|
||
/* Special values of N. */
|
||
#define NO_DEPENDENCE 0
|
||
#define NOT_KNOWN (MAX_DIM + 1)
|
||
#define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
|
||
#define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
|
||
#define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
|
||
|
||
typedef VEC (tree, heap) *affine_fn;
|
||
|
||
typedef struct
|
||
{
|
||
unsigned n;
|
||
affine_fn fns[MAX_DIM];
|
||
} conflict_function;
|
||
|
||
/* What is a subscript? Given two array accesses a subscript is the
|
||
tuple composed of the access functions for a given dimension.
|
||
Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
|
||
subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
|
||
are stored in the data_dependence_relation structure under the form
|
||
of an array of subscripts. */
|
||
|
||
struct subscript
|
||
{
|
||
/* A description of the iterations for which the elements are
|
||
accessed twice. */
|
||
conflict_function *conflicting_iterations_in_a;
|
||
conflict_function *conflicting_iterations_in_b;
|
||
|
||
/* This field stores the information about the iteration domain
|
||
validity of the dependence relation. */
|
||
tree last_conflict;
|
||
|
||
/* Distance from the iteration that access a conflicting element in
|
||
A to the iteration that access this same conflicting element in
|
||
B. The distance is a tree scalar expression, i.e. a constant or a
|
||
symbolic expression, but certainly not a chrec function. */
|
||
tree distance;
|
||
};
|
||
|
||
typedef struct subscript *subscript_p;
|
||
DEF_VEC_P(subscript_p);
|
||
DEF_VEC_ALLOC_P (subscript_p, heap);
|
||
|
||
#define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
|
||
#define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
|
||
#define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
|
||
#define SUB_DISTANCE(SUB) SUB->distance
|
||
|
||
/* A data_dependence_relation represents a relation between two
|
||
data_references A and B. */
|
||
|
||
struct data_dependence_relation
|
||
{
|
||
|
||
struct data_reference *a;
|
||
struct data_reference *b;
|
||
|
||
/* A "yes/no/maybe" field for the dependence relation:
|
||
|
||
- when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
|
||
relation between A and B, and the description of this relation
|
||
is given in the SUBSCRIPTS array,
|
||
|
||
- when "ARE_DEPENDENT == chrec_known", there is no dependence and
|
||
SUBSCRIPTS is empty,
|
||
|
||
- when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
|
||
but the analyzer cannot be more specific. */
|
||
tree are_dependent;
|
||
|
||
/* For each subscript in the dependence test, there is an element in
|
||
this array. This is the attribute that labels the edge A->B of
|
||
the data_dependence_relation. */
|
||
VEC (subscript_p, heap) *subscripts;
|
||
|
||
/* The analyzed loop nest. */
|
||
VEC (loop_p, heap) *loop_nest;
|
||
|
||
/* The classic direction vector. */
|
||
VEC (lambda_vector, heap) *dir_vects;
|
||
|
||
/* The classic distance vector. */
|
||
VEC (lambda_vector, heap) *dist_vects;
|
||
|
||
/* An index in loop_nest for the innermost loop that varies for
|
||
this data dependence relation. */
|
||
unsigned inner_loop;
|
||
|
||
/* Is the dependence reversed with respect to the lexicographic order? */
|
||
bool reversed_p;
|
||
|
||
/* When the dependence relation is affine, it can be represented by
|
||
a distance vector. */
|
||
bool affine_p;
|
||
|
||
/* Set to true when the dependence relation is on the same data
|
||
access. */
|
||
bool self_reference_p;
|
||
};
|
||
|
||
typedef struct data_dependence_relation *ddr_p;
|
||
DEF_VEC_P(ddr_p);
|
||
DEF_VEC_ALLOC_P(ddr_p,heap);
|
||
|
||
#define DDR_A(DDR) DDR->a
|
||
#define DDR_B(DDR) DDR->b
|
||
#define DDR_AFFINE_P(DDR) DDR->affine_p
|
||
#define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
|
||
#define DDR_SUBSCRIPTS(DDR) DDR->subscripts
|
||
#define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
|
||
#define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
|
||
|
||
#define DDR_LOOP_NEST(DDR) DDR->loop_nest
|
||
/* The size of the direction/distance vectors: the number of loops in
|
||
the loop nest. */
|
||
#define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
|
||
#define DDR_INNER_LOOP(DDR) DDR->inner_loop
|
||
#define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
|
||
|
||
#define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
|
||
#define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
|
||
#define DDR_NUM_DIST_VECTS(DDR) \
|
||
(VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
|
||
#define DDR_NUM_DIR_VECTS(DDR) \
|
||
(VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
|
||
#define DDR_DIR_VECT(DDR, I) \
|
||
VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
|
||
#define DDR_DIST_VECT(DDR, I) \
|
||
VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
|
||
#define DDR_REVERSED_P(DDR) DDR->reversed_p
|
||
|
||
|
||
|
||
/* Describes a location of a memory reference. */
|
||
|
||
typedef struct data_ref_loc_d
|
||
{
|
||
/* Position of the memory reference. */
|
||
tree *pos;
|
||
|
||
/* True if the memory reference is read. */
|
||
bool is_read;
|
||
} data_ref_loc;
|
||
|
||
DEF_VEC_O (data_ref_loc);
|
||
DEF_VEC_ALLOC_O (data_ref_loc, heap);
|
||
|
||
bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
|
||
bool dr_analyze_innermost (struct data_reference *);
|
||
extern bool compute_data_dependences_for_loop (struct loop *, bool,
|
||
VEC (data_reference_p, heap) **,
|
||
VEC (ddr_p, heap) **);
|
||
extern tree find_data_references_in_loop (struct loop *,
|
||
VEC (data_reference_p, heap) **);
|
||
extern void print_direction_vector (FILE *, lambda_vector, int);
|
||
extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
||
extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
|
||
extern void dump_subscript (FILE *, struct subscript *);
|
||
extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
|
||
extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
|
||
extern void dump_data_reference (FILE *, struct data_reference *);
|
||
extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
|
||
extern void debug_data_dependence_relation (struct data_dependence_relation *);
|
||
extern void dump_data_dependence_relation (FILE *,
|
||
struct data_dependence_relation *);
|
||
extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
|
||
extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
|
||
extern void dump_data_dependence_direction (FILE *,
|
||
enum data_dependence_direction);
|
||
extern void free_dependence_relation (struct data_dependence_relation *);
|
||
extern void free_dependence_relations (VEC (ddr_p, heap) *);
|
||
extern void free_data_ref (data_reference_p);
|
||
extern void free_data_refs (VEC (data_reference_p, heap) *);
|
||
extern bool find_data_references_in_stmt (struct loop *, gimple,
|
||
VEC (data_reference_p, heap) **);
|
||
struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
|
||
extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
|
||
extern void compute_all_dependences (VEC (data_reference_p, heap) *,
|
||
VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
|
||
bool);
|
||
|
||
extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
|
||
extern bool dr_may_alias_p (const struct data_reference *,
|
||
const struct data_reference *);
|
||
extern bool stmt_simple_memref_p (struct loop *, gimple, tree);
|
||
|
||
/* Return true when the DDR contains two data references that have the
|
||
same access functions. */
|
||
|
||
static inline bool
|
||
same_access_functions (const struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
|
||
DR_ACCESS_FN (DDR_B (ddr), i)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return true when DDR is an anti-dependence relation. */
|
||
|
||
static inline bool
|
||
ddr_is_anti_dependent (ddr_p ddr)
|
||
{
|
||
return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
|
||
&& DR_IS_READ (DDR_A (ddr))
|
||
&& !DR_IS_READ (DDR_B (ddr))
|
||
&& !same_access_functions (ddr));
|
||
}
|
||
|
||
/* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
|
||
|
||
static inline bool
|
||
ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
|
||
{
|
||
unsigned i;
|
||
ddr_p ddr;
|
||
|
||
for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
|
||
if (ddr_is_anti_dependent (ddr))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return the dependence level for the DDR relation. */
|
||
|
||
static inline unsigned
|
||
ddr_dependence_level (ddr_p ddr)
|
||
{
|
||
unsigned vector;
|
||
unsigned level = 0;
|
||
|
||
if (DDR_DIST_VECTS (ddr))
|
||
level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
|
||
|
||
for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
|
||
level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
|
||
DDR_NB_LOOPS (ddr)));
|
||
return level;
|
||
}
|
||
|
||
|
||
|
||
/* A Reduced Dependence Graph (RDG) vertex representing a statement. */
|
||
typedef struct rdg_vertex
|
||
{
|
||
/* The statement represented by this vertex. */
|
||
gimple stmt;
|
||
|
||
/* True when the statement contains a write to memory. */
|
||
bool has_mem_write;
|
||
|
||
/* True when the statement contains a read from memory. */
|
||
bool has_mem_reads;
|
||
} *rdg_vertex_p;
|
||
|
||
#define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
|
||
#define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
|
||
#define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
|
||
#define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
|
||
#define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
|
||
#define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
|
||
|
||
void dump_rdg_vertex (FILE *, struct graph *, int);
|
||
void debug_rdg_vertex (struct graph *, int);
|
||
void dump_rdg_component (FILE *, struct graph *, int, bitmap);
|
||
void debug_rdg_component (struct graph *, int);
|
||
void dump_rdg (FILE *, struct graph *);
|
||
void debug_rdg (struct graph *);
|
||
void dot_rdg (struct graph *);
|
||
int rdg_vertex_for_stmt (struct graph *, gimple);
|
||
|
||
/* Data dependence type. */
|
||
|
||
enum rdg_dep_type
|
||
{
|
||
/* Read After Write (RAW). */
|
||
flow_dd = 'f',
|
||
|
||
/* Write After Read (WAR). */
|
||
anti_dd = 'a',
|
||
|
||
/* Write After Write (WAW). */
|
||
output_dd = 'o',
|
||
|
||
/* Read After Read (RAR). */
|
||
input_dd = 'i'
|
||
};
|
||
|
||
/* Dependence information attached to an edge of the RDG. */
|
||
|
||
typedef struct rdg_edge
|
||
{
|
||
/* Type of the dependence. */
|
||
enum rdg_dep_type type;
|
||
|
||
/* Levels of the dependence: the depth of the loops that carry the
|
||
dependence. */
|
||
unsigned level;
|
||
|
||
/* Dependence relation between data dependences, NULL when one of
|
||
the vertices is a scalar. */
|
||
ddr_p relation;
|
||
} *rdg_edge_p;
|
||
|
||
#define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
|
||
#define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
|
||
#define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
|
||
|
||
struct graph *build_rdg (struct loop *);
|
||
struct graph *build_empty_rdg (int);
|
||
void free_rdg (struct graph *);
|
||
|
||
/* Return the index of the variable VAR in the LOOP_NEST array. */
|
||
|
||
static inline int
|
||
index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
|
||
{
|
||
struct loop *loopi;
|
||
int var_index;
|
||
|
||
for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
|
||
var_index++)
|
||
if (loopi->num == var)
|
||
break;
|
||
|
||
return var_index;
|
||
}
|
||
|
||
void stores_from_loop (struct loop *, VEC (gimple, heap) **);
|
||
void remove_similar_memory_refs (VEC (gimple, heap) **);
|
||
bool rdg_defs_used_in_other_loops_p (struct graph *, int);
|
||
bool have_similar_memory_accesses (gimple, gimple);
|
||
|
||
/* Determines whether RDG vertices V1 and V2 access to similar memory
|
||
locations, in which case they have to be in the same partition. */
|
||
|
||
static inline bool
|
||
rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
|
||
{
|
||
return have_similar_memory_accesses (RDG_STMT (rdg, v1),
|
||
RDG_STMT (rdg, v2));
|
||
}
|
||
|
||
/* In lambda-code.c */
|
||
bool lambda_transform_legal_p (lambda_trans_matrix, int,
|
||
VEC (ddr_p, heap) *);
|
||
void lambda_collect_parameters (VEC (data_reference_p, heap) *,
|
||
VEC (tree, heap) **);
|
||
bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
|
||
VEC (tree, heap) *, VEC (loop_p, heap) *);
|
||
|
||
/* In tree-data-ref.c */
|
||
void split_constant_offset (tree , tree *, tree *);
|
||
|
||
/* Strongly connected components of the reduced data dependence graph. */
|
||
|
||
typedef struct rdg_component
|
||
{
|
||
int num;
|
||
VEC (int, heap) *vertices;
|
||
} *rdgc;
|
||
|
||
DEF_VEC_P (rdgc);
|
||
DEF_VEC_ALLOC_P (rdgc, heap);
|
||
|
||
DEF_VEC_P (bitmap);
|
||
DEF_VEC_ALLOC_P (bitmap, heap);
|
||
|
||
#endif /* GCC_TREE_DATA_REF_H */
|