gcc/libstdc++-v3/include/std/limits
Paolo Carlini 5fb0445da6 PR c++/33979 (partial)
2008-05-20  Paolo Carlini  <paolo.carlini@oracle.com>

	PR c++/33979 (partial)
	* include/tr1_impl/functional_hash.h (hash<char16_t>,
	hash<char32_t>): Add specializations.
	* include/tr1_impl/type_traits (is_integral<char16_t>,
	is_integral<char32_t>): Likewise.
	* include/std/limits (numeric_limits<char16_t>,
	numeric_limits<char32_t>): Likewise.
	* src/limits_c++0x.cc: Add.
	* src/Makefile.am: Update.
	* testsuite/20_util/hash/requirements/explicit_instantiation.cc:
	Update.
	* testsuite/20_util/is_integral/value.cc: New.
	* testsuite/20_util/is_integral/requirements/typedefs.cc: Likewise.
	* testsuite/20_util/is_integral/requirements/
	explicit_instantiation.cc: Likewise.
	* testsuite/18_support/numeric_limits/char16_32_t.cc: Likewise.	
	* config/abi/pre/gnu.ver: Export new numeric_limits symbols at
	GLIBCXX_3.4.11.
	* configure: Regenerate.
	* src/Makefile.in: Likewise.
	* config.h.in: Likewise.

From-SVN: r135668
2008-05-20 18:11:34 +00:00

1262 lines
45 KiB
C++

// The template and inlines for the numeric_limits classes. -*- C++ -*-
// Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
// Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this library; see the file COPYING. If not, write to
// the Free Software Foundation, 51 Franklin Street, Fifth Floor,
// Boston, MA 02110-1301, USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file limits
* This is a Standard C++ Library header.
*/
// Note: this is not a conforming implementation.
// Written by Gabriel Dos Reis <gdr@codesourcery.com>
//
// ISO 14882:1998
// 18.2.1
//
#ifndef _GLIBCXX_NUMERIC_LIMITS
#define _GLIBCXX_NUMERIC_LIMITS 1
#pragma GCC system_header
#include <bits/c++config.h>
//
// The numeric_limits<> traits document implementation-defined aspects
// of fundamental arithmetic data types (integers and floating points).
// From Standard C++ point of view, there are 13 such types:
// * integers
// bool (1)
// char, signed char, unsigned char (3)
// short, unsigned short (2)
// int, unsigned (2)
// long, unsigned long (2)
//
// * floating points
// float (1)
// double (1)
// long double (1)
//
// GNU C++ understands (where supported by the host C-library)
// * integer
// long long, unsigned long long (2)
//
// which brings us to 15 fundamental arithmetic data types in GNU C++.
//
//
// Since a numeric_limits<> is a bit tricky to get right, we rely on
// an interface composed of macros which should be defined in config/os
// or config/cpu when they differ from the generic (read arbitrary)
// definitions given here.
//
// These values can be overridden in the target configuration file.
// The default values are appropriate for many 32-bit targets.
// GCC only intrinsically supports modulo integral types. The only remaining
// integral exceptional values is division by zero. Only targets that do not
// signal division by zero in some "hard to ignore" way should use false.
#ifndef __glibcxx_integral_traps
# define __glibcxx_integral_traps true
#endif
// float
//
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_float_has_denorm_loss
# define __glibcxx_float_has_denorm_loss false
#endif
#ifndef __glibcxx_float_traps
# define __glibcxx_float_traps false
#endif
#ifndef __glibcxx_float_tinyness_before
# define __glibcxx_float_tinyness_before false
#endif
// double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_double_has_denorm_loss
# define __glibcxx_double_has_denorm_loss false
#endif
#ifndef __glibcxx_double_traps
# define __glibcxx_double_traps false
#endif
#ifndef __glibcxx_double_tinyness_before
# define __glibcxx_double_tinyness_before false
#endif
// long double
// Default values. Should be overridden in configuration files if necessary.
#ifndef __glibcxx_long_double_has_denorm_loss
# define __glibcxx_long_double_has_denorm_loss false
#endif
#ifndef __glibcxx_long_double_traps
# define __glibcxx_long_double_traps false
#endif
#ifndef __glibcxx_long_double_tinyness_before
# define __glibcxx_long_double_tinyness_before false
#endif
// You should not need to define any macros below this point.
#define __glibcxx_signed(T) ((T)(-1) < 0)
#define __glibcxx_min(T) \
(__glibcxx_signed (T) ? (T)1 << __glibcxx_digits (T) : (T)0)
#define __glibcxx_max(T) \
(__glibcxx_signed (T) ? \
(((((T)1 << (__glibcxx_digits (T) - 1)) - 1) << 1) + 1) : ~(T)0)
#define __glibcxx_digits(T) \
(sizeof(T) * __CHAR_BIT__ - __glibcxx_signed (T))
// The fraction 643/2136 approximates log10(2) to 7 significant digits.
#define __glibcxx_digits10(T) \
(__glibcxx_digits (T) * 643 / 2136)
_GLIBCXX_BEGIN_NAMESPACE(std)
/**
* @brief Describes the rounding style for floating-point types.
*
* This is used in the std::numeric_limits class.
*/
enum float_round_style
{
round_indeterminate = -1, ///< Self-explanatory.
round_toward_zero = 0, ///< Self-explanatory.
round_to_nearest = 1, ///< To the nearest representable value.
round_toward_infinity = 2, ///< Self-explanatory.
round_toward_neg_infinity = 3 ///< Self-explanatory.
};
/**
* @brief Describes the denormalization for floating-point types.
*
* These values represent the presence or absence of a variable number
* of exponent bits. This type is used in the std::numeric_limits class.
*/
enum float_denorm_style
{
/// Indeterminate at compile time whether denormalized values are allowed.
denorm_indeterminate = -1,
/// The type does not allow denormalized values.
denorm_absent = 0,
/// The type allows denormalized values.
denorm_present = 1
};
/**
* @brief Part of std::numeric_limits.
*
* The @c static @c const members are usable as integral constant
* expressions.
*
* @note This is a separate class for purposes of efficiency; you
* should only access these members as part of an instantiation
* of the std::numeric_limits class.
*/
struct __numeric_limits_base
{
/** This will be true for all fundamental types (which have
specializations), and false for everything else. */
static const bool is_specialized = false;
/** The number of @c radix digits that be represented without change: for
integer types, the number of non-sign bits in the mantissa; for
floating types, the number of @c radix digits in the mantissa. */
static const int digits = 0;
/** The number of base 10 digits that can be represented without change. */
static const int digits10 = 0;
/** True if the type is signed. */
static const bool is_signed = false;
/** True if the type is integer.
* Is this supposed to be "if the type is integral"?
*/
static const bool is_integer = false;
/** True if the type uses an exact representation. "All integer types are
exact, but not all exact types are integer. For example, rational and
fixed-exponent representations are exact but not integer."
[18.2.1.2]/15 */
static const bool is_exact = false;
/** For integer types, specifies the base of the representation. For
floating types, specifies the base of the exponent representation. */
static const int radix = 0;
/** The minimum negative integer such that @c radix raised to the power of
(one less than that integer) is a normalized floating point number. */
static const int min_exponent = 0;
/** The minimum negative integer such that 10 raised to that power is in
the range of normalized floating point numbers. */
static const int min_exponent10 = 0;
/** The maximum positive integer such that @c radix raised to the power of
(one less than that integer) is a representable finite floating point
number. */
static const int max_exponent = 0;
/** The maximum positive integer such that 10 raised to that power is in
the range of representable finite floating point numbers. */
static const int max_exponent10 = 0;
/** True if the type has a representation for positive infinity. */
static const bool has_infinity = false;
/** True if the type has a representation for a quiet (non-signaling)
"Not a Number." */
static const bool has_quiet_NaN = false;
/** True if the type has a representation for a signaling
"Not a Number." */
static const bool has_signaling_NaN = false;
/** See std::float_denorm_style for more information. */
static const float_denorm_style has_denorm = denorm_absent;
/** "True if loss of accuracy is detected as a denormalization loss,
rather than as an inexact result." [18.2.1.2]/42 */
static const bool has_denorm_loss = false;
/** True if-and-only-if the type adheres to the IEC 559 standard, also
known as IEEE 754. (Only makes sense for floating point types.) */
static const bool is_iec559 = false;
/** "True if the set of values representable by the type is finite. All
built-in types are bounded, this member would be false for arbitrary
precision types." [18.2.1.2]/54 */
static const bool is_bounded = false;
/** True if the type is @e modulo, that is, if it is possible to add two
positive numbers and have a result that wraps around to a third number
that is less. Typically false for floating types, true for unsigned
integers, and true for signed integers. */
static const bool is_modulo = false;
/** True if trapping is implemented for this type. */
static const bool traps = false;
/** True if tininess is detected before rounding. (see IEC 559) */
static const bool tinyness_before = false;
/** See std::float_round_style for more information. This is only
meaningful for floating types; integer types will all be
round_toward_zero. */
static const float_round_style round_style = round_toward_zero;
};
/**
* @brief Properties of fundamental types.
*
* This class allows a program to obtain information about the
* representation of a fundamental type on a given platform. For
* non-fundamental types, the functions will return 0 and the data
* members will all be @c false.
*
* _GLIBCXX_RESOLVE_LIB_DEFECTS: DRs 201 and 184 (hi Gaby!) are
* noted, but not incorporated in this documented (yet).
*/
template<typename _Tp>
struct numeric_limits : public __numeric_limits_base
{
/** The minimum finite value, or for floating types with
denormalization, the minimum positive normalized value. */
static _Tp min() throw() { return static_cast<_Tp>(0); }
/** The maximum finite value. */
static _Tp max() throw() { return static_cast<_Tp>(0); }
/** The @e machine @e epsilon: the difference between 1 and the least
value greater than 1 that is representable. */
static _Tp epsilon() throw() { return static_cast<_Tp>(0); }
/** The maximum rounding error measurement (see LIA-1). */
static _Tp round_error() throw() { return static_cast<_Tp>(0); }
/** The representation of positive infinity, if @c has_infinity. */
static _Tp infinity() throw() { return static_cast<_Tp>(0); }
/** The representation of a quiet "Not a Number," if @c has_quiet_NaN. */
static _Tp quiet_NaN() throw() { return static_cast<_Tp>(0); }
/** The representation of a signaling "Not a Number," if
@c has_signaling_NaN. */
static _Tp signaling_NaN() throw() { return static_cast<_Tp>(0); }
/** The minimum positive denormalized value. For types where
@c has_denorm is false, this is the minimum positive normalized
value. */
static _Tp denorm_min() throw() { return static_cast<_Tp>(0); }
};
// Now there follow 15 explicit specializations. Yes, 15. Make sure
// you get the count right.
/// numeric_limits<bool> specialization.
template<>
struct numeric_limits<bool>
{
static const bool is_specialized = true;
static bool min() throw()
{ return false; }
static bool max() throw()
{ return true; }
static const int digits = 1;
static const int digits10 = 0;
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static bool epsilon() throw()
{ return false; }
static bool round_error() throw()
{ return false; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static bool infinity() throw()
{ return false; }
static bool quiet_NaN() throw()
{ return false; }
static bool signaling_NaN() throw()
{ return false; }
static bool denorm_min() throw()
{ return false; }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = false;
// It is not clear what it means for a boolean type to trap.
// This is a DR on the LWG issue list. Here, I use integer
// promotion semantics.
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<char> specialization.
template<>
struct numeric_limits<char>
{
static const bool is_specialized = true;
static char min() throw()
{ return __glibcxx_min(char); }
static char max() throw()
{ return __glibcxx_max(char); }
static const int digits = __glibcxx_digits (char);
static const int digits10 = __glibcxx_digits10 (char);
static const bool is_signed = __glibcxx_signed (char);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static char epsilon() throw()
{ return 0; }
static char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static char infinity() throw()
{ return char(); }
static char quiet_NaN() throw()
{ return char(); }
static char signaling_NaN() throw()
{ return char(); }
static char denorm_min() throw()
{ return static_cast<char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<signed char> specialization.
template<>
struct numeric_limits<signed char>
{
static const bool is_specialized = true;
static signed char min() throw()
{ return -__SCHAR_MAX__ - 1; }
static signed char max() throw()
{ return __SCHAR_MAX__; }
static const int digits = __glibcxx_digits (signed char);
static const int digits10 = __glibcxx_digits10 (signed char);
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static signed char epsilon() throw()
{ return 0; }
static signed char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static signed char infinity() throw()
{ return static_cast<signed char>(0); }
static signed char quiet_NaN() throw()
{ return static_cast<signed char>(0); }
static signed char signaling_NaN() throw()
{ return static_cast<signed char>(0); }
static signed char denorm_min() throw()
{ return static_cast<signed char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<unsigned char> specialization.
template<>
struct numeric_limits<unsigned char>
{
static const bool is_specialized = true;
static unsigned char min() throw()
{ return 0; }
static unsigned char max() throw()
{ return __SCHAR_MAX__ * 2U + 1; }
static const int digits = __glibcxx_digits (unsigned char);
static const int digits10 = __glibcxx_digits10 (unsigned char);
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned char epsilon() throw()
{ return 0; }
static unsigned char round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned char infinity() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char quiet_NaN() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char signaling_NaN() throw()
{ return static_cast<unsigned char>(0); }
static unsigned char denorm_min() throw()
{ return static_cast<unsigned char>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<wchar_t> specialization.
template<>
struct numeric_limits<wchar_t>
{
static const bool is_specialized = true;
static wchar_t min() throw()
{ return __glibcxx_min (wchar_t); }
static wchar_t max() throw()
{ return __glibcxx_max (wchar_t); }
static const int digits = __glibcxx_digits (wchar_t);
static const int digits10 = __glibcxx_digits10 (wchar_t);
static const bool is_signed = __glibcxx_signed (wchar_t);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static wchar_t epsilon() throw()
{ return 0; }
static wchar_t round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static wchar_t infinity() throw()
{ return wchar_t(); }
static wchar_t quiet_NaN() throw()
{ return wchar_t(); }
static wchar_t signaling_NaN() throw()
{ return wchar_t(); }
static wchar_t denorm_min() throw()
{ return wchar_t(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
#ifdef __GXX_EXPERIMENTAL_CXX0X__
/// numeric_limits<char16_t> specialization.
template<>
struct numeric_limits<char16_t>
{
static const bool is_specialized = true;
static char16_t min() throw()
{ return __glibcxx_min (char16_t); }
static char16_t max() throw()
{ return __glibcxx_max (char16_t); }
static const int digits = __glibcxx_digits (char16_t);
static const int digits10 = __glibcxx_digits10 (char16_t);
static const bool is_signed = __glibcxx_signed (char16_t);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static char16_t epsilon() throw()
{ return 0; }
static char16_t round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static char16_t infinity() throw()
{ return char16_t(); }
static char16_t quiet_NaN() throw()
{ return char16_t(); }
static char16_t signaling_NaN() throw()
{ return char16_t(); }
static char16_t denorm_min() throw()
{ return char16_t(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<char32_t> specialization.
template<>
struct numeric_limits<char32_t>
{
static const bool is_specialized = true;
static char32_t min() throw()
{ return __glibcxx_min (char32_t); }
static char32_t max() throw()
{ return __glibcxx_max (char32_t); }
static const int digits = __glibcxx_digits (char32_t);
static const int digits10 = __glibcxx_digits10 (char32_t);
static const bool is_signed = __glibcxx_signed (char32_t);
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static char32_t epsilon() throw()
{ return 0; }
static char32_t round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static char32_t infinity() throw()
{ return char32_t(); }
static char32_t quiet_NaN() throw()
{ return char32_t(); }
static char32_t signaling_NaN() throw()
{ return char32_t(); }
static char32_t denorm_min() throw()
{ return char32_t(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
#endif
/// numeric_limits<short> specialization.
template<>
struct numeric_limits<short>
{
static const bool is_specialized = true;
static short min() throw()
{ return -__SHRT_MAX__ - 1; }
static short max() throw()
{ return __SHRT_MAX__; }
static const int digits = __glibcxx_digits (short);
static const int digits10 = __glibcxx_digits10 (short);
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static short epsilon() throw()
{ return 0; }
static short round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static short infinity() throw()
{ return short(); }
static short quiet_NaN() throw()
{ return short(); }
static short signaling_NaN() throw()
{ return short(); }
static short denorm_min() throw()
{ return short(); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<unsigned short> specialization.
template<>
struct numeric_limits<unsigned short>
{
static const bool is_specialized = true;
static unsigned short min() throw()
{ return 0; }
static unsigned short max() throw()
{ return __SHRT_MAX__ * 2U + 1; }
static const int digits = __glibcxx_digits (unsigned short);
static const int digits10 = __glibcxx_digits10 (unsigned short);
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned short epsilon() throw()
{ return 0; }
static unsigned short round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned short infinity() throw()
{ return static_cast<unsigned short>(0); }
static unsigned short quiet_NaN() throw()
{ return static_cast<unsigned short>(0); }
static unsigned short signaling_NaN() throw()
{ return static_cast<unsigned short>(0); }
static unsigned short denorm_min() throw()
{ return static_cast<unsigned short>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<int> specialization.
template<>
struct numeric_limits<int>
{
static const bool is_specialized = true;
static int min() throw()
{ return -__INT_MAX__ - 1; }
static int max() throw()
{ return __INT_MAX__; }
static const int digits = __glibcxx_digits (int);
static const int digits10 = __glibcxx_digits10 (int);
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static int epsilon() throw()
{ return 0; }
static int round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static int infinity() throw()
{ return static_cast<int>(0); }
static int quiet_NaN() throw()
{ return static_cast<int>(0); }
static int signaling_NaN() throw()
{ return static_cast<int>(0); }
static int denorm_min() throw()
{ return static_cast<int>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<unsigned int> specialization.
template<>
struct numeric_limits<unsigned int>
{
static const bool is_specialized = true;
static unsigned int min() throw()
{ return 0; }
static unsigned int max() throw()
{ return __INT_MAX__ * 2U + 1; }
static const int digits = __glibcxx_digits (unsigned int);
static const int digits10 = __glibcxx_digits10 (unsigned int);
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned int epsilon() throw()
{ return 0; }
static unsigned int round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned int infinity() throw()
{ return static_cast<unsigned int>(0); }
static unsigned int quiet_NaN() throw()
{ return static_cast<unsigned int>(0); }
static unsigned int signaling_NaN() throw()
{ return static_cast<unsigned int>(0); }
static unsigned int denorm_min() throw()
{ return static_cast<unsigned int>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<long> specialization.
template<>
struct numeric_limits<long>
{
static const bool is_specialized = true;
static long min() throw()
{ return -__LONG_MAX__ - 1; }
static long max() throw()
{ return __LONG_MAX__; }
static const int digits = __glibcxx_digits (long);
static const int digits10 = __glibcxx_digits10 (long);
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static long epsilon() throw()
{ return 0; }
static long round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static long infinity() throw()
{ return static_cast<long>(0); }
static long quiet_NaN() throw()
{ return static_cast<long>(0); }
static long signaling_NaN() throw()
{ return static_cast<long>(0); }
static long denorm_min() throw()
{ return static_cast<long>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<unsigned long> specialization.
template<>
struct numeric_limits<unsigned long>
{
static const bool is_specialized = true;
static unsigned long min() throw()
{ return 0; }
static unsigned long max() throw()
{ return __LONG_MAX__ * 2UL + 1; }
static const int digits = __glibcxx_digits (unsigned long);
static const int digits10 = __glibcxx_digits10 (unsigned long);
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned long epsilon() throw()
{ return 0; }
static unsigned long round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned long infinity() throw()
{ return static_cast<unsigned long>(0); }
static unsigned long quiet_NaN() throw()
{ return static_cast<unsigned long>(0); }
static unsigned long signaling_NaN() throw()
{ return static_cast<unsigned long>(0); }
static unsigned long denorm_min() throw()
{ return static_cast<unsigned long>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<long long> specialization.
template<>
struct numeric_limits<long long>
{
static const bool is_specialized = true;
static long long min() throw()
{ return -__LONG_LONG_MAX__ - 1; }
static long long max() throw()
{ return __LONG_LONG_MAX__; }
static const int digits = __glibcxx_digits (long long);
static const int digits10 = __glibcxx_digits10 (long long);
static const bool is_signed = true;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static long long epsilon() throw()
{ return 0; }
static long long round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static long long infinity() throw()
{ return static_cast<long long>(0); }
static long long quiet_NaN() throw()
{ return static_cast<long long>(0); }
static long long signaling_NaN() throw()
{ return static_cast<long long>(0); }
static long long denorm_min() throw()
{ return static_cast<long long>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<unsigned long long> specialization.
template<>
struct numeric_limits<unsigned long long>
{
static const bool is_specialized = true;
static unsigned long long min() throw()
{ return 0; }
static unsigned long long max() throw()
{ return __LONG_LONG_MAX__ * 2ULL + 1; }
static const int digits = __glibcxx_digits (unsigned long long);
static const int digits10 = __glibcxx_digits10 (unsigned long long);
static const bool is_signed = false;
static const bool is_integer = true;
static const bool is_exact = true;
static const int radix = 2;
static unsigned long long epsilon() throw()
{ return 0; }
static unsigned long long round_error() throw()
{ return 0; }
static const int min_exponent = 0;
static const int min_exponent10 = 0;
static const int max_exponent = 0;
static const int max_exponent10 = 0;
static const bool has_infinity = false;
static const bool has_quiet_NaN = false;
static const bool has_signaling_NaN = false;
static const float_denorm_style has_denorm = denorm_absent;
static const bool has_denorm_loss = false;
static unsigned long long infinity() throw()
{ return static_cast<unsigned long long>(0); }
static unsigned long long quiet_NaN() throw()
{ return static_cast<unsigned long long>(0); }
static unsigned long long signaling_NaN() throw()
{ return static_cast<unsigned long long>(0); }
static unsigned long long denorm_min() throw()
{ return static_cast<unsigned long long>(0); }
static const bool is_iec559 = false;
static const bool is_bounded = true;
static const bool is_modulo = true;
static const bool traps = __glibcxx_integral_traps;
static const bool tinyness_before = false;
static const float_round_style round_style = round_toward_zero;
};
/// numeric_limits<float> specialization.
template<>
struct numeric_limits<float>
{
static const bool is_specialized = true;
static float min() throw()
{ return __FLT_MIN__; }
static float max() throw()
{ return __FLT_MAX__; }
static const int digits = __FLT_MANT_DIG__;
static const int digits10 = __FLT_DIG__;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = __FLT_RADIX__;
static float epsilon() throw()
{ return __FLT_EPSILON__; }
static float round_error() throw()
{ return 0.5F; }
static const int min_exponent = __FLT_MIN_EXP__;
static const int min_exponent10 = __FLT_MIN_10_EXP__;
static const int max_exponent = __FLT_MAX_EXP__;
static const int max_exponent10 = __FLT_MAX_10_EXP__;
static const bool has_infinity = __FLT_HAS_INFINITY__;
static const bool has_quiet_NaN = __FLT_HAS_QUIET_NAN__;
static const bool has_signaling_NaN = has_quiet_NaN;
static const float_denorm_style has_denorm
= bool(__FLT_HAS_DENORM__) ? denorm_present : denorm_absent;
static const bool has_denorm_loss = __glibcxx_float_has_denorm_loss;
static float infinity() throw()
{ return __builtin_huge_valf (); }
static float quiet_NaN() throw()
{ return __builtin_nanf (""); }
static float signaling_NaN() throw()
{ return __builtin_nansf (""); }
static float denorm_min() throw()
{ return __FLT_DENORM_MIN__; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_float_traps;
static const bool tinyness_before = __glibcxx_float_tinyness_before;
static const float_round_style round_style = round_to_nearest;
};
#undef __glibcxx_float_has_denorm_loss
#undef __glibcxx_float_traps
#undef __glibcxx_float_tinyness_before
/// numeric_limits<double> specialization.
template<>
struct numeric_limits<double>
{
static const bool is_specialized = true;
static double min() throw()
{ return __DBL_MIN__; }
static double max() throw()
{ return __DBL_MAX__; }
static const int digits = __DBL_MANT_DIG__;
static const int digits10 = __DBL_DIG__;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = __FLT_RADIX__;
static double epsilon() throw()
{ return __DBL_EPSILON__; }
static double round_error() throw()
{ return 0.5; }
static const int min_exponent = __DBL_MIN_EXP__;
static const int min_exponent10 = __DBL_MIN_10_EXP__;
static const int max_exponent = __DBL_MAX_EXP__;
static const int max_exponent10 = __DBL_MAX_10_EXP__;
static const bool has_infinity = __DBL_HAS_INFINITY__;
static const bool has_quiet_NaN = __DBL_HAS_QUIET_NAN__;
static const bool has_signaling_NaN = has_quiet_NaN;
static const float_denorm_style has_denorm
= bool(__DBL_HAS_DENORM__) ? denorm_present : denorm_absent;
static const bool has_denorm_loss = __glibcxx_double_has_denorm_loss;
static double infinity() throw()
{ return __builtin_huge_val(); }
static double quiet_NaN() throw()
{ return __builtin_nan (""); }
static double signaling_NaN() throw()
{ return __builtin_nans (""); }
static double denorm_min() throw()
{ return __DBL_DENORM_MIN__; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_double_traps;
static const bool tinyness_before = __glibcxx_double_tinyness_before;
static const float_round_style round_style = round_to_nearest;
};
#undef __glibcxx_double_has_denorm_loss
#undef __glibcxx_double_traps
#undef __glibcxx_double_tinyness_before
/// numeric_limits<long double> specialization.
template<>
struct numeric_limits<long double>
{
static const bool is_specialized = true;
static long double min() throw()
{ return __LDBL_MIN__; }
static long double max() throw()
{ return __LDBL_MAX__; }
static const int digits = __LDBL_MANT_DIG__;
static const int digits10 = __LDBL_DIG__;
static const bool is_signed = true;
static const bool is_integer = false;
static const bool is_exact = false;
static const int radix = __FLT_RADIX__;
static long double epsilon() throw()
{ return __LDBL_EPSILON__; }
static long double round_error() throw()
{ return 0.5L; }
static const int min_exponent = __LDBL_MIN_EXP__;
static const int min_exponent10 = __LDBL_MIN_10_EXP__;
static const int max_exponent = __LDBL_MAX_EXP__;
static const int max_exponent10 = __LDBL_MAX_10_EXP__;
static const bool has_infinity = __LDBL_HAS_INFINITY__;
static const bool has_quiet_NaN = __LDBL_HAS_QUIET_NAN__;
static const bool has_signaling_NaN = has_quiet_NaN;
static const float_denorm_style has_denorm
= bool(__LDBL_HAS_DENORM__) ? denorm_present : denorm_absent;
static const bool has_denorm_loss
= __glibcxx_long_double_has_denorm_loss;
static long double infinity() throw()
{ return __builtin_huge_vall (); }
static long double quiet_NaN() throw()
{ return __builtin_nanl (""); }
static long double signaling_NaN() throw()
{ return __builtin_nansl (""); }
static long double denorm_min() throw()
{ return __LDBL_DENORM_MIN__; }
static const bool is_iec559
= has_infinity && has_quiet_NaN && has_denorm == denorm_present;
static const bool is_bounded = true;
static const bool is_modulo = false;
static const bool traps = __glibcxx_long_double_traps;
static const bool tinyness_before = __glibcxx_long_double_tinyness_before;
static const float_round_style round_style = round_to_nearest;
};
#undef __glibcxx_long_double_has_denorm_loss
#undef __glibcxx_long_double_traps
#undef __glibcxx_long_double_tinyness_before
_GLIBCXX_END_NAMESPACE
#undef __glibcxx_signed
#undef __glibcxx_min
#undef __glibcxx_max
#undef __glibcxx_digits
#undef __glibcxx_digits10
#endif // _GLIBCXX_NUMERIC_LIMITS