gcc/libgfortran/generated/matmul_r10.c
2009-04-09 17:00:19 +02:00

380 lines
11 KiB
C

/* Implementation of the MATMUL intrinsic
Copyright 2002, 2005, 2006, 2007, 2009 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran 95 runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#if defined (HAVE_GFC_REAL_10)
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
passed to us by the front-end, in which case we'll call it for large
matrices. */
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
const int *, const GFC_REAL_10 *, const GFC_REAL_10 *,
const int *, const GFC_REAL_10 *, const int *,
const GFC_REAL_10 *, GFC_REAL_10 *, const int *,
int, int);
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
looking at their strides.
The equivalent Fortran pseudo-code is:
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
IF (.NOT.IS_TRANSPOSED(A)) THEN
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
ELSE
DO J=1,N
DO I=1,M
S = 0
DO K=1,COUNT
S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
/* If try_blas is set to a nonzero value, then the matmul function will
see if there is a way to perform the matrix multiplication by a call
to the BLAS gemm function. */
extern void matmul_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
int blas_limit, blas_call gemm);
export_proto(matmul_r10);
void
matmul_r10 (gfc_array_r10 * const restrict retarray,
gfc_array_r10 * const restrict a, gfc_array_r10 * const restrict b, int try_blas,
int blas_limit, blas_call gemm)
{
const GFC_REAL_10 * restrict abase;
const GFC_REAL_10 * restrict bbase;
GFC_REAL_10 * restrict dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->data == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[0].stride = 1;
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
}
else
{
retarray->dim[0].lbound = 0;
retarray->dim[0].ubound = a->dim[0].ubound - a->dim[0].lbound;
retarray->dim[0].stride = 1;
retarray->dim[1].lbound = 0;
retarray->dim[1].ubound = b->dim[1].ubound - b->dim[1].lbound;
retarray->dim[1].stride = retarray->dim[0].ubound+1;
}
retarray->data
= internal_malloc_size (sizeof (GFC_REAL_10) * size0 ((array_t *) retarray));
retarray->offset = 0;
}
else if (unlikely (compile_options.bounds_check))
{
index_type ret_extent, arg_extent;
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else
{
arg_extent = a->dim[0].ubound + 1 - a->dim[0].lbound;
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 1:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
arg_extent = b->dim[1].ubound + 1 - b->dim[1].lbound;
ret_extent = retarray->dim[1].ubound + 1 - retarray->dim[1].lbound;
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 2:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
}
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = retarray->dim[0].stride;
}
else
{
rxstride = retarray->dim[0].stride;
rystride = retarray->dim[1].stride;
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = a->dim[0].stride;
aystride = 1;
xcount = 1;
count = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
else
{
axstride = a->dim[0].stride;
aystride = a->dim[1].stride;
count = a->dim[1].ubound + 1 - a->dim[1].lbound;
xcount = a->dim[0].ubound + 1 - a->dim[0].lbound;
}
if (count != b->dim[0].ubound + 1 - b->dim[0].lbound)
{
if (count > 0 || b->dim[0].ubound + 1 - b->dim[0].lbound > 0)
runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = b->dim[0].stride;
/* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
bxstride = b->dim[0].stride;
bystride = b->dim[1].stride;
ycount = b->dim[1].ubound + 1 - b->dim[1].lbound;
}
abase = a->data;
bbase = b->data;
dest = retarray->data;
/* Now that everything is set up, we're performing the multiplication
itself. */
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
&& (bxstride == 1 || bystride == 1)
&& (((float) xcount) * ((float) ycount) * ((float) count)
> POW3(blas_limit)))
{
const int m = xcount, n = ycount, k = count, ldc = rystride;
const GFC_REAL_10 one = 1, zero = 0;
const int lda = (axstride == 1) ? aystride : axstride,
ldb = (bxstride == 1) ? bystride : bxstride;
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
{
assert (gemm != NULL);
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
return;
}
}
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_REAL_10 * restrict bbase_y;
GFC_REAL_10 * restrict dest_y;
const GFC_REAL_10 * restrict abase_n;
GFC_REAL_10 bbase_yn;
if (rystride == xcount)
memset (dest, 0, (sizeof (GFC_REAL_10) * xcount * ycount));
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x + y*rystride] = (GFC_REAL_10)0;
}
for (y = 0; y < ycount; y++)
{
bbase_y = bbase + y*bystride;
dest_y = dest + y*rystride;
for (n = 0; n < count; n++)
{
abase_n = abase + n*aystride;
bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
{
dest_y[x] += abase_n[x] * bbase_yn;
}
}
}
}
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
{
if (GFC_DESCRIPTOR_RANK (a) != 1)
{
const GFC_REAL_10 *restrict abase_x;
const GFC_REAL_10 *restrict bbase_y;
GFC_REAL_10 *restrict dest_y;
GFC_REAL_10 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = (GFC_REAL_10) 0;
for (n = 0; n < count; n++)
s += abase_x[n] * bbase_y[n];
dest_y[x] = s;
}
}
}
else
{
const GFC_REAL_10 *restrict bbase_y;
GFC_REAL_10 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = (GFC_REAL_10) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n];
dest[y*rystride] = s;
}
}
}
else if (axstride < aystride)
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_REAL_10)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
else if (GFC_DESCRIPTOR_RANK (a) == 1)
{
const GFC_REAL_10 *restrict bbase_y;
GFC_REAL_10 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = (GFC_REAL_10) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n*bxstride];
dest[y*rxstride] = s;
}
}
else
{
const GFC_REAL_10 *restrict abase_x;
const GFC_REAL_10 *restrict bbase_y;
GFC_REAL_10 *restrict dest_y;
GFC_REAL_10 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = (GFC_REAL_10) 0;
for (n = 0; n < count; n++)
s += abase_x[n*aystride] * bbase_y[n*bxstride];
dest_y[x*rxstride] = s;
}
}
}
}
#endif