gcc/libquadmath/math/fmaq.c
Jakub Jelinek e8d42d280e re PR fortran/46402 (libquadmath: Add fmalq)
PR fortran/46402
	* quadmath.map (QUADMATH_1.0): Add fmaq.
	* configure.ac: Check for fenv.h, feholdexcept, fesetround,
	feupdateenv, fesetenv and fetestexcept.
	* configure: Regenerated.
	* config.h.in: Regenerated.
	* quadmath.h (fmaq): New prototype.
	* quadmath_weak.h (fmaq): Add.
	* Makefile.am (libquadmath_la_SOURCES): Add math/fmaq.c.
	* Makefile.in: Regenerated.
	* quadmath-imp.h: Include config.h.
	* math/expq.c: Include fenv.h.
	(USE_FENV_H): Define if libm support for fe* is there.
	(expq): Add fesetround etc. support if USE_FENV_H is defined.
	* math/fmaq.c: New file.
	* libquadmath.texi (fmaq): Add.

From-SVN: r168852
2011-01-16 17:40:05 +01:00

242 lines
7.9 KiB
C

/* Compute x * y + z as ternary operation.
Copyright (C) 2010 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jakub@redhat.com>, 2010.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include "quadmath-imp.h"
#include <math.h>
#include <float.h>
#ifdef HAVE_FENV_H
# include <fenv.h>
# if defined HAVE_FEHOLDEXCEPT && defined HAVE_FESETROUND \
&& defined HAVE_FEUPDATEENV && defined HAVE_FETESTEXCEPT \
&& defined FE_TOWARDZERO && defined FE_INEXACT
# define USE_FENV_H
# endif
#endif
/* This implementation uses rounding to odd to avoid problems with
double rounding. See a paper by Boldo and Melquiond:
http://www.lri.fr/~melquion/doc/08-tc.pdf */
__float128
fmaq (__float128 x, __float128 y, __float128 z)
{
ieee854_float128 u, v, w;
int adjust = 0;
u.value = x;
v.value = y;
w.value = z;
if (__builtin_expect (u.ieee.exponent + v.ieee.exponent
>= 0x7fff + IEEE854_FLOAT128_BIAS
- FLT128_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|| __builtin_expect (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|| __builtin_expect (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG, 0)
|| __builtin_expect (u.ieee.exponent + v.ieee.exponent
<= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG, 0))
{
/* If z is Inf, but x and y are finite, the result should be
z rather than NaN. */
if (w.ieee.exponent == 0x7fff
&& u.ieee.exponent != 0x7fff
&& v.ieee.exponent != 0x7fff)
return (z + x) + y;
/* If x or y or z is Inf/NaN, or if fma will certainly overflow,
or if x * y is less than half of FLT128_DENORM_MIN,
compute as x * y + z. */
if (u.ieee.exponent == 0x7fff
|| v.ieee.exponent == 0x7fff
|| w.ieee.exponent == 0x7fff
|| u.ieee.exponent + v.ieee.exponent
> 0x7fff + IEEE854_FLOAT128_BIAS
|| u.ieee.exponent + v.ieee.exponent
< IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG - 2)
return x * y + z;
if (u.ieee.exponent + v.ieee.exponent
>= 0x7fff + IEEE854_FLOAT128_BIAS - FLT128_MANT_DIG)
{
/* Compute 1p-113 times smaller result and multiply
at the end. */
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent -= FLT128_MANT_DIG;
else
v.ieee.exponent -= FLT128_MANT_DIG;
/* If x + y exponent is very large and z exponent is very small,
it doesn't matter if we don't adjust it. */
if (w.ieee.exponent > FLT128_MANT_DIG)
w.ieee.exponent -= FLT128_MANT_DIG;
adjust = 1;
}
else if (w.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
{
/* Similarly.
If z exponent is very large and x and y exponents are
very small, it doesn't matter if we don't adjust it. */
if (u.ieee.exponent > v.ieee.exponent)
{
if (u.ieee.exponent > FLT128_MANT_DIG)
u.ieee.exponent -= FLT128_MANT_DIG;
}
else if (v.ieee.exponent > FLT128_MANT_DIG)
v.ieee.exponent -= FLT128_MANT_DIG;
w.ieee.exponent -= FLT128_MANT_DIG;
adjust = 1;
}
else if (u.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
{
u.ieee.exponent -= FLT128_MANT_DIG;
if (v.ieee.exponent)
v.ieee.exponent += FLT128_MANT_DIG;
else
v.value *= 0x1p113Q;
}
else if (v.ieee.exponent >= 0x7fff - FLT128_MANT_DIG)
{
v.ieee.exponent -= FLT128_MANT_DIG;
if (u.ieee.exponent)
u.ieee.exponent += FLT128_MANT_DIG;
else
u.value *= 0x1p113Q;
}
else /* if (u.ieee.exponent + v.ieee.exponent
<= IEEE854_FLOAT128_BIAS + FLT128_MANT_DIG) */
{
if (u.ieee.exponent > v.ieee.exponent)
u.ieee.exponent += 2 * FLT128_MANT_DIG;
else
v.ieee.exponent += 2 * FLT128_MANT_DIG;
if (w.ieee.exponent <= 4 * FLT128_MANT_DIG + 4)
{
if (w.ieee.exponent)
w.ieee.exponent += 2 * FLT128_MANT_DIG;
else
w.value *= 0x1p226Q;
adjust = -1;
}
/* Otherwise x * y should just affect inexact
and nothing else. */
}
x = u.value;
y = v.value;
z = w.value;
}
/* Multiplication m1 + m2 = x * y using Dekker's algorithm. */
#define C ((1LL << (FLT128_MANT_DIG + 1) / 2) + 1)
__float128 x1 = x * C;
__float128 y1 = y * C;
__float128 m1 = x * y;
x1 = (x - x1) + x1;
y1 = (y - y1) + y1;
__float128 x2 = x - x1;
__float128 y2 = y - y1;
__float128 m2 = (((x1 * y1 - m1) + x1 * y2) + x2 * y1) + x2 * y2;
/* Addition a1 + a2 = z + m1 using Knuth's algorithm. */
__float128 a1 = z + m1;
__float128 t1 = a1 - z;
__float128 t2 = a1 - t1;
t1 = m1 - t1;
t2 = z - t2;
__float128 a2 = t1 + t2;
#ifdef USE_FENV_H
fenv_t env;
feholdexcept (&env);
fesetround (FE_TOWARDZERO);
#endif
/* Perform m2 + a2 addition with round to odd. */
u.value = a2 + m2;
if (__builtin_expect (adjust == 0, 1))
{
#ifdef USE_FENV_H
if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff)
u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
feupdateenv (&env);
#endif
/* Result is a1 + u.value. */
return a1 + u.value;
}
else if (__builtin_expect (adjust > 0, 1))
{
#ifdef USE_FENV_H
if ((u.ieee.mant_low & 1) == 0 && u.ieee.exponent != 0x7fff)
u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
feupdateenv (&env);
#endif
/* Result is a1 + u.value, scaled up. */
return (a1 + u.value) * 0x1p113Q;
}
else
{
#ifdef USE_FENV_H
if ((u.ieee.mant_low & 1) == 0)
u.ieee.mant_low |= fetestexcept (FE_INEXACT) != 0;
#endif
v.value = a1 + u.value;
/* Ensure the addition is not scheduled after fetestexcept call. */
asm volatile ("" : : "m" (v));
#ifdef USE_FENV_H
int j = fetestexcept (FE_INEXACT) != 0;
feupdateenv (&env);
#else
int j = 0;
#endif
/* Ensure the following computations are performed in default rounding
mode instead of just reusing the round to zero computation. */
asm volatile ("" : "=m" (u) : "m" (u));
/* If a1 + u.value is exact, the only rounding happens during
scaling down. */
if (j == 0)
return v.value * 0x1p-226Q;
/* If result rounded to zero is not subnormal, no double
rounding will occur. */
if (v.ieee.exponent > 226)
return (a1 + u.value) * 0x1p-226Q;
/* If v.value * 0x1p-226Q with round to zero is a subnormal above
or equal to FLT128_MIN / 2, then v.value * 0x1p-226Q shifts mantissa
down just by 1 bit, which means v.ieee.mant_low |= j would
change the round bit, not sticky or guard bit.
v.value * 0x1p-226Q never normalizes by shifting up,
so round bit plus sticky bit should be already enough
for proper rounding. */
if (v.ieee.exponent == 226)
{
/* v.ieee.mant_low & 2 is LSB bit of the result before rounding,
v.ieee.mant_low & 1 is the round bit and j is our sticky
bit. In round-to-nearest 001 rounds down like 00,
011 rounds up, even though 01 rounds down (thus we need
to adjust), 101 rounds down like 10 and 111 rounds up
like 11. */
if ((v.ieee.mant_low & 3) == 1)
{
v.value *= 0x1p-226Q;
if (v.ieee.negative)
return v.value - 0x1p-16494Q /* __FLT128_DENORM_MIN__ */;
else
return v.value + 0x1p-16494Q /* __FLT128_DENORM_MIN__ */;
}
else
return v.value * 0x1p-226Q;
}
v.ieee.mant_low |= j;
return v.value * 0x1p-226Q;
}
}