08c8a26e9c
Recognize for i := range a { a[i] = zero } for array or slice a, and rewrite it to call memclr, as the gc compiler does. Reviewed-on: https://go-review.googlesource.com/c/gofrontend/+/169398 From-SVN: r270862
334 lines
12 KiB
Go
334 lines
12 KiB
Go
// Copyright 2015 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector: write barriers.
|
|
//
|
|
// For the concurrent garbage collector, the Go compiler implements
|
|
// updates to pointer-valued fields that may be in heap objects by
|
|
// emitting calls to write barriers. The main write barrier for
|
|
// individual pointer writes is gcWriteBarrier and is implemented in
|
|
// assembly. This file contains write barrier entry points for bulk
|
|
// operations. See also mwbbuf.go.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// For gccgo, use go:linkname to rename compiler-called functions to
|
|
// themselves, so that the compiler will export them.
|
|
//
|
|
//go:linkname typedmemmove runtime.typedmemmove
|
|
//go:linkname typedslicecopy runtime.typedslicecopy
|
|
//go:linkname memclrHasPointers runtime.memclrHasPointers
|
|
|
|
// Go uses a hybrid barrier that combines a Yuasa-style deletion
|
|
// barrier—which shades the object whose reference is being
|
|
// overwritten—with Dijkstra insertion barrier—which shades the object
|
|
// whose reference is being written. The insertion part of the barrier
|
|
// is necessary while the calling goroutine's stack is grey. In
|
|
// pseudocode, the barrier is:
|
|
//
|
|
// writePointer(slot, ptr):
|
|
// shade(*slot)
|
|
// if current stack is grey:
|
|
// shade(ptr)
|
|
// *slot = ptr
|
|
//
|
|
// slot is the destination in Go code.
|
|
// ptr is the value that goes into the slot in Go code.
|
|
//
|
|
// Shade indicates that it has seen a white pointer by adding the referent
|
|
// to wbuf as well as marking it.
|
|
//
|
|
// The two shades and the condition work together to prevent a mutator
|
|
// from hiding an object from the garbage collector:
|
|
//
|
|
// 1. shade(*slot) prevents a mutator from hiding an object by moving
|
|
// the sole pointer to it from the heap to its stack. If it attempts
|
|
// to unlink an object from the heap, this will shade it.
|
|
//
|
|
// 2. shade(ptr) prevents a mutator from hiding an object by moving
|
|
// the sole pointer to it from its stack into a black object in the
|
|
// heap. If it attempts to install the pointer into a black object,
|
|
// this will shade it.
|
|
//
|
|
// 3. Once a goroutine's stack is black, the shade(ptr) becomes
|
|
// unnecessary. shade(ptr) prevents hiding an object by moving it from
|
|
// the stack to the heap, but this requires first having a pointer
|
|
// hidden on the stack. Immediately after a stack is scanned, it only
|
|
// points to shaded objects, so it's not hiding anything, and the
|
|
// shade(*slot) prevents it from hiding any other pointers on its
|
|
// stack.
|
|
//
|
|
// For a detailed description of this barrier and proof of
|
|
// correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
|
|
//
|
|
//
|
|
//
|
|
// Dealing with memory ordering:
|
|
//
|
|
// Both the Yuasa and Dijkstra barriers can be made conditional on the
|
|
// color of the object containing the slot. We chose not to make these
|
|
// conditional because the cost of ensuring that the object holding
|
|
// the slot doesn't concurrently change color without the mutator
|
|
// noticing seems prohibitive.
|
|
//
|
|
// Consider the following example where the mutator writes into
|
|
// a slot and then loads the slot's mark bit while the GC thread
|
|
// writes to the slot's mark bit and then as part of scanning reads
|
|
// the slot.
|
|
//
|
|
// Initially both [slot] and [slotmark] are 0 (nil)
|
|
// Mutator thread GC thread
|
|
// st [slot], ptr st [slotmark], 1
|
|
//
|
|
// ld r1, [slotmark] ld r2, [slot]
|
|
//
|
|
// Without an expensive memory barrier between the st and the ld, the final
|
|
// result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
|
|
// example of what can happen when loads are allowed to be reordered with older
|
|
// stores (avoiding such reorderings lies at the heart of the classic
|
|
// Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
|
|
// barriers, which will slow down both the mutator and the GC, we always grey
|
|
// the ptr object regardless of the slot's color.
|
|
//
|
|
// Another place where we intentionally omit memory barriers is when
|
|
// accessing mheap_.arena_used to check if a pointer points into the
|
|
// heap. On relaxed memory machines, it's possible for a mutator to
|
|
// extend the size of the heap by updating arena_used, allocate an
|
|
// object from this new region, and publish a pointer to that object,
|
|
// but for tracing running on another processor to observe the pointer
|
|
// but use the old value of arena_used. In this case, tracing will not
|
|
// mark the object, even though it's reachable. However, the mutator
|
|
// is guaranteed to execute a write barrier when it publishes the
|
|
// pointer, so it will take care of marking the object. A general
|
|
// consequence of this is that the garbage collector may cache the
|
|
// value of mheap_.arena_used. (See issue #9984.)
|
|
//
|
|
//
|
|
// Stack writes:
|
|
//
|
|
// The compiler omits write barriers for writes to the current frame,
|
|
// but if a stack pointer has been passed down the call stack, the
|
|
// compiler will generate a write barrier for writes through that
|
|
// pointer (because it doesn't know it's not a heap pointer).
|
|
//
|
|
// One might be tempted to ignore the write barrier if slot points
|
|
// into to the stack. Don't do it! Mark termination only re-scans
|
|
// frames that have potentially been active since the concurrent scan,
|
|
// so it depends on write barriers to track changes to pointers in
|
|
// stack frames that have not been active.
|
|
//
|
|
//
|
|
// Global writes:
|
|
//
|
|
// The Go garbage collector requires write barriers when heap pointers
|
|
// are stored in globals. Many garbage collectors ignore writes to
|
|
// globals and instead pick up global -> heap pointers during
|
|
// termination. This increases pause time, so we instead rely on write
|
|
// barriers for writes to globals so that we don't have to rescan
|
|
// global during mark termination.
|
|
//
|
|
//
|
|
// Publication ordering:
|
|
//
|
|
// The write barrier is *pre-publication*, meaning that the write
|
|
// barrier happens prior to the *slot = ptr write that may make ptr
|
|
// reachable by some goroutine that currently cannot reach it.
|
|
//
|
|
//
|
|
// Signal handler pointer writes:
|
|
//
|
|
// In general, the signal handler cannot safely invoke the write
|
|
// barrier because it may run without a P or even during the write
|
|
// barrier.
|
|
//
|
|
// There is exactly one exception: profbuf.go omits a barrier during
|
|
// signal handler profile logging. That's safe only because of the
|
|
// deletion barrier. See profbuf.go for a detailed argument. If we
|
|
// remove the deletion barrier, we'll have to work out a new way to
|
|
// handle the profile logging.
|
|
|
|
// typedmemmove copies a value of type t to dst from src.
|
|
// Must be nosplit, see #16026.
|
|
//
|
|
// TODO: Perfect for go:nosplitrec since we can't have a safe point
|
|
// anywhere in the bulk barrier or memmove.
|
|
//
|
|
//go:nosplit
|
|
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
|
|
if dst == src {
|
|
return
|
|
}
|
|
if typ.kind&kindNoPointers == 0 {
|
|
bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.size)
|
|
}
|
|
// There's a race here: if some other goroutine can write to
|
|
// src, it may change some pointer in src after we've
|
|
// performed the write barrier but before we perform the
|
|
// memory copy. This safe because the write performed by that
|
|
// other goroutine must also be accompanied by a write
|
|
// barrier, so at worst we've unnecessarily greyed the old
|
|
// pointer that was in src.
|
|
memmove(dst, src, typ.size)
|
|
if writeBarrier.cgo {
|
|
cgoCheckMemmove(typ, dst, src, 0, typ.size)
|
|
}
|
|
}
|
|
|
|
//go:linkname reflect_typedmemmove reflect.typedmemmove
|
|
func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
|
|
if raceenabled {
|
|
raceWriteObjectPC(typ, dst, getcallerpc(), funcPC(reflect_typedmemmove))
|
|
raceReadObjectPC(typ, src, getcallerpc(), funcPC(reflect_typedmemmove))
|
|
}
|
|
if msanenabled {
|
|
msanwrite(dst, typ.size)
|
|
msanread(src, typ.size)
|
|
}
|
|
typedmemmove(typ, dst, src)
|
|
}
|
|
|
|
// typedmemmovepartial is like typedmemmove but assumes that
|
|
// dst and src point off bytes into the value and only copies size bytes.
|
|
//go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
|
|
func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
|
|
if writeBarrier.needed && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
|
|
// Pointer-align start address for bulk barrier.
|
|
adst, asrc, asize := dst, src, size
|
|
if frag := -off & (sys.PtrSize - 1); frag != 0 {
|
|
adst = add(dst, frag)
|
|
asrc = add(src, frag)
|
|
asize -= frag
|
|
}
|
|
bulkBarrierPreWrite(uintptr(adst), uintptr(asrc), asize&^(sys.PtrSize-1))
|
|
}
|
|
|
|
memmove(dst, src, size)
|
|
if writeBarrier.cgo {
|
|
cgoCheckMemmove(typ, dst, src, off, size)
|
|
}
|
|
}
|
|
|
|
//go:nosplit
|
|
func typedslicecopy(typ *_type, dst, src slice) int {
|
|
n := dst.len
|
|
if n > src.len {
|
|
n = src.len
|
|
}
|
|
if n == 0 {
|
|
return 0
|
|
}
|
|
dstp := dst.array
|
|
srcp := src.array
|
|
|
|
// The compiler emits calls to typedslicecopy before
|
|
// instrumentation runs, so unlike the other copying and
|
|
// assignment operations, it's not instrumented in the calling
|
|
// code and needs its own instrumentation.
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(slicecopy)
|
|
racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
|
|
racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(dstp, uintptr(n)*typ.size)
|
|
msanread(srcp, uintptr(n)*typ.size)
|
|
}
|
|
|
|
if writeBarrier.cgo {
|
|
cgoCheckSliceCopy(typ, dst, src, n)
|
|
}
|
|
|
|
if dstp == srcp {
|
|
return n
|
|
}
|
|
|
|
// Note: No point in checking typ.kind&kindNoPointers here:
|
|
// compiler only emits calls to typedslicecopy for types with pointers,
|
|
// and growslice and reflect_typedslicecopy check for pointers
|
|
// before calling typedslicecopy.
|
|
size := uintptr(n) * typ.size
|
|
if writeBarrier.needed {
|
|
bulkBarrierPreWrite(uintptr(dstp), uintptr(srcp), size)
|
|
}
|
|
// See typedmemmove for a discussion of the race between the
|
|
// barrier and memmove.
|
|
memmove(dstp, srcp, size)
|
|
return n
|
|
}
|
|
|
|
//go:linkname reflect_typedslicecopy reflect.typedslicecopy
|
|
func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
|
|
if elemType.kind&kindNoPointers != 0 {
|
|
n := dst.len
|
|
if n > src.len {
|
|
n = src.len
|
|
}
|
|
if n == 0 {
|
|
return 0
|
|
}
|
|
|
|
size := uintptr(n) * elemType.size
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := funcPC(reflect_typedslicecopy)
|
|
racewriterangepc(dst.array, size, callerpc, pc)
|
|
racereadrangepc(src.array, size, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanwrite(dst.array, size)
|
|
msanread(src.array, size)
|
|
}
|
|
|
|
memmove(dst.array, src.array, size)
|
|
return n
|
|
}
|
|
return typedslicecopy(elemType, dst, src)
|
|
}
|
|
|
|
// typedmemclr clears the typed memory at ptr with type typ. The
|
|
// memory at ptr must already be initialized (and hence in type-safe
|
|
// state). If the memory is being initialized for the first time, see
|
|
// memclrNoHeapPointers.
|
|
//
|
|
// If the caller knows that typ has pointers, it can alternatively
|
|
// call memclrHasPointers.
|
|
//
|
|
//go:nosplit
|
|
func typedmemclr(typ *_type, ptr unsafe.Pointer) {
|
|
if typ.kind&kindNoPointers == 0 {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, typ.size)
|
|
}
|
|
memclrNoHeapPointers(ptr, typ.size)
|
|
}
|
|
|
|
//go:linkname reflect_typedmemclr reflect.typedmemclr
|
|
func reflect_typedmemclr(typ *_type, ptr unsafe.Pointer) {
|
|
typedmemclr(typ, ptr)
|
|
}
|
|
|
|
//go:linkname reflect_typedmemclrpartial reflect.typedmemclrpartial
|
|
func reflect_typedmemclrpartial(typ *_type, ptr unsafe.Pointer, off, size uintptr) {
|
|
if typ.kind&kindNoPointers == 0 {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, size)
|
|
}
|
|
memclrNoHeapPointers(ptr, size)
|
|
}
|
|
|
|
// memclrHasPointers clears n bytes of typed memory starting at ptr.
|
|
// The caller must ensure that the type of the object at ptr has
|
|
// pointers, usually by checking typ.kind&kindNoPointers. However, ptr
|
|
// does not have to point to the start of the allocation.
|
|
//
|
|
//go:nosplit
|
|
func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
|
|
bulkBarrierPreWrite(uintptr(ptr), 0, n)
|
|
memclrNoHeapPointers(ptr, n)
|
|
}
|