gcc/libgfortran/generated/matmul_c16.c
Janne Blomqvist 92e6f3a43e Introduce xmallocarray, an overflow checking variant of xmalloc.
2014-06-17  Janne Blomqvist  <jb@gcc.gnu.org>

	* libgfortran.h (xmallocarray): New prototype.
	* runtime/memory.c (xmallocarray): New function.
	(xcalloc): Check for nonzero separately instead of multiplying.
	* generated/*.c: Regenerated.
	* intrinsics/cshift0.c (cshift0): Call xmallocarray instead of
	xmalloc.
	* intrinsics/eoshift0.c (eoshift0): Likewise.
	* intrinsics/eoshift2.c (eoshift2): Likewise.
	* intrinsics/pack_generic.c (pack_internal): Likewise.
	(pack_s_internal): Likewise.
	* intrinsics/reshape_generic.c (reshape_internal): Likewise.
	* intrinsics/spread_generic.c (spread_internal): Likewise.
	(spread_internal_scalar): Likewise.
	* intrinsics/string_intrinsics_inc.c (string_trim): Likewise.
	(string_minmax): Likewise.
	* intrinsics/transpose_generic.c (transpose_internal): Likewise.
	* intrinsics/unpack_generic.c (unpack_internal): Likewise.
	* io/list_read.c (nml_touch_nodes): Don't cast xmalloc return value.
	* io/transfer.c (st_set_nml_var): Call xmallocarray instead of
	xmalloc.
	* io/unit.c (get_internal_unit): Likewise.
	(filename_from_unit): Don't cast xmalloc return value.
	* io/write.c (nml_write_obj): Likewise, formatting.
	* m4/bessel.m4 (bessel_jn_r'rtype_kind`): Call xmallocarray
	instead of xmalloc.
	(besse_yn_r'rtype_kind`): Likewise.
	* m4/cshift1.m4 (cshift1): Likewise.
	* m4/eoshift1.m4 (eoshift1): Likewise.
	* m4/eoshift3.m4 (eoshift3): Likewise.
	* m4/iforeach.m4: Likewise.
	* m4/ifunction.m4: Likewise.
	* m4/ifunction_logical.m4 (name`'rtype_qual`_'atype_code):
	Likewise.
	* m4/in_pack.m4 (internal_pack_'rtype_ccode`): Likewise.
	* m4/matmul.m4 (matmul_'rtype_code`): Likewise.
	* m4/matmull.m4 (matmul_'rtype_code`): Likewise.
	* m4/pack.m4 (pack_'rtype_code`): Likewise.
	* m4/reshape.m4 (reshape_'rtype_ccode`): Likewise.
	* m4/shape.m4 (shape_'rtype_kind`): Likewise.
	* m4/spread.m4 (spread_'rtype_code`): Likewise.
	(spread_scalar_'rtype_code`): Likewise.
	* m4/transpose.m4 (transpose_'rtype_code`): Likewise.
	* m4/unpack.m4 (unpack0_'rtype_code`): Likewise.
	(unpack1_'rtype_code`): Likewise.
	* runtime/convert_char.c (convert_char1_to_char4): Likewise.
	(convert_char4_to_char1): Simplify.
	* runtime/environ.c (init_unformatted): Call xmallocarray instead
	of xmalloc.
	* runtime/in_pack_generic.c (internal_pack): Likewise.

From-SVN: r211721
2014-06-17 06:50:34 +03:00

377 lines
11 KiB
C

/* Implementation of the MATMUL intrinsic
Copyright (C) 2002-2014 Free Software Foundation, Inc.
Contributed by Paul Brook <paul@nowt.org>
This file is part of the GNU Fortran runtime library (libgfortran).
Libgfortran is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.
Libgfortran is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
#include "libgfortran.h"
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#if defined (HAVE_GFC_COMPLEX_16)
/* Prototype for the BLAS ?gemm subroutine, a pointer to which can be
passed to us by the front-end, in which case we'll call it for large
matrices. */
typedef void (*blas_call)(const char *, const char *, const int *, const int *,
const int *, const GFC_COMPLEX_16 *, const GFC_COMPLEX_16 *,
const int *, const GFC_COMPLEX_16 *, const int *,
const GFC_COMPLEX_16 *, GFC_COMPLEX_16 *, const int *,
int, int);
/* The order of loops is different in the case of plain matrix
multiplication C=MATMUL(A,B), and in the frequent special case where
the argument A is the temporary result of a TRANSPOSE intrinsic:
C=MATMUL(TRANSPOSE(A),B). Transposed temporaries are detected by
looking at their strides.
The equivalent Fortran pseudo-code is:
DIMENSION A(M,COUNT), B(COUNT,N), C(M,N)
IF (.NOT.IS_TRANSPOSED(A)) THEN
C = 0
DO J=1,N
DO K=1,COUNT
DO I=1,M
C(I,J) = C(I,J)+A(I,K)*B(K,J)
ELSE
DO J=1,N
DO I=1,M
S = 0
DO K=1,COUNT
S = S+A(I,K)*B(K,J)
C(I,J) = S
ENDIF
*/
/* If try_blas is set to a nonzero value, then the matmul function will
see if there is a way to perform the matrix multiplication by a call
to the BLAS gemm function. */
extern void matmul_c16 (gfc_array_c16 * const restrict retarray,
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
int blas_limit, blas_call gemm);
export_proto(matmul_c16);
void
matmul_c16 (gfc_array_c16 * const restrict retarray,
gfc_array_c16 * const restrict a, gfc_array_c16 * const restrict b, int try_blas,
int blas_limit, blas_call gemm)
{
const GFC_COMPLEX_16 * restrict abase;
const GFC_COMPLEX_16 * restrict bbase;
GFC_COMPLEX_16 * restrict dest;
index_type rxstride, rystride, axstride, aystride, bxstride, bystride;
index_type x, y, n, count, xcount, ycount;
assert (GFC_DESCRIPTOR_RANK (a) == 2
|| GFC_DESCRIPTOR_RANK (b) == 2);
/* C[xcount,ycount] = A[xcount, count] * B[count,ycount]
Either A or B (but not both) can be rank 1:
o One-dimensional argument A is implicitly treated as a row matrix
dimensioned [1,count], so xcount=1.
o One-dimensional argument B is implicitly treated as a column matrix
dimensioned [count, 1], so ycount=1.
*/
if (retarray->base_addr == NULL)
{
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1, 1);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
}
else
{
GFC_DIMENSION_SET(retarray->dim[0], 0,
GFC_DESCRIPTOR_EXTENT(a,0) - 1, 1);
GFC_DIMENSION_SET(retarray->dim[1], 0,
GFC_DESCRIPTOR_EXTENT(b,1) - 1,
GFC_DESCRIPTOR_EXTENT(retarray,0));
}
retarray->base_addr
= xmallocarray (size0 ((array_t *) retarray), sizeof (GFC_COMPLEX_16));
retarray->offset = 0;
}
else if (unlikely (compile_options.bounds_check))
{
index_type ret_extent, arg_extent;
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else if (GFC_DESCRIPTOR_RANK (b) == 1)
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic: is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
else
{
arg_extent = GFC_DESCRIPTOR_EXTENT(a,0);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,0);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 1:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
arg_extent = GFC_DESCRIPTOR_EXTENT(b,1);
ret_extent = GFC_DESCRIPTOR_EXTENT(retarray,1);
if (arg_extent != ret_extent)
runtime_error ("Incorrect extent in return array in"
" MATMUL intrinsic for dimension 2:"
" is %ld, should be %ld",
(long int) ret_extent, (long int) arg_extent);
}
}
if (GFC_DESCRIPTOR_RANK (retarray) == 1)
{
/* One-dimensional result may be addressed in the code below
either as a row or a column matrix. We want both cases to
work. */
rxstride = rystride = GFC_DESCRIPTOR_STRIDE(retarray,0);
}
else
{
rxstride = GFC_DESCRIPTOR_STRIDE(retarray,0);
rystride = GFC_DESCRIPTOR_STRIDE(retarray,1);
}
if (GFC_DESCRIPTOR_RANK (a) == 1)
{
/* Treat it as a a row matrix A[1,count]. */
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
aystride = 1;
xcount = 1;
count = GFC_DESCRIPTOR_EXTENT(a,0);
}
else
{
axstride = GFC_DESCRIPTOR_STRIDE(a,0);
aystride = GFC_DESCRIPTOR_STRIDE(a,1);
count = GFC_DESCRIPTOR_EXTENT(a,1);
xcount = GFC_DESCRIPTOR_EXTENT(a,0);
}
if (count != GFC_DESCRIPTOR_EXTENT(b,0))
{
if (count > 0 || GFC_DESCRIPTOR_EXTENT(b,0) > 0)
runtime_error ("dimension of array B incorrect in MATMUL intrinsic");
}
if (GFC_DESCRIPTOR_RANK (b) == 1)
{
/* Treat it as a column matrix B[count,1] */
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
/* bystride should never be used for 1-dimensional b.
in case it is we want it to cause a segfault, rather than
an incorrect result. */
bystride = 0xDEADBEEF;
ycount = 1;
}
else
{
bxstride = GFC_DESCRIPTOR_STRIDE(b,0);
bystride = GFC_DESCRIPTOR_STRIDE(b,1);
ycount = GFC_DESCRIPTOR_EXTENT(b,1);
}
abase = a->base_addr;
bbase = b->base_addr;
dest = retarray->base_addr;
/* Now that everything is set up, we're performing the multiplication
itself. */
#define POW3(x) (((float) (x)) * ((float) (x)) * ((float) (x)))
if (try_blas && rxstride == 1 && (axstride == 1 || aystride == 1)
&& (bxstride == 1 || bystride == 1)
&& (((float) xcount) * ((float) ycount) * ((float) count)
> POW3(blas_limit)))
{
const int m = xcount, n = ycount, k = count, ldc = rystride;
const GFC_COMPLEX_16 one = 1, zero = 0;
const int lda = (axstride == 1) ? aystride : axstride,
ldb = (bxstride == 1) ? bystride : bxstride;
if (lda > 0 && ldb > 0 && ldc > 0 && m > 1 && n > 1 && k > 1)
{
assert (gemm != NULL);
gemm (axstride == 1 ? "N" : "T", bxstride == 1 ? "N" : "T", &m, &n, &k,
&one, abase, &lda, bbase, &ldb, &zero, dest, &ldc, 1, 1);
return;
}
}
if (rxstride == 1 && axstride == 1 && bxstride == 1)
{
const GFC_COMPLEX_16 * restrict bbase_y;
GFC_COMPLEX_16 * restrict dest_y;
const GFC_COMPLEX_16 * restrict abase_n;
GFC_COMPLEX_16 bbase_yn;
if (rystride == xcount)
memset (dest, 0, (sizeof (GFC_COMPLEX_16) * xcount * ycount));
else
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x + y*rystride] = (GFC_COMPLEX_16)0;
}
for (y = 0; y < ycount; y++)
{
bbase_y = bbase + y*bystride;
dest_y = dest + y*rystride;
for (n = 0; n < count; n++)
{
abase_n = abase + n*aystride;
bbase_yn = bbase_y[n];
for (x = 0; x < xcount; x++)
{
dest_y[x] += abase_n[x] * bbase_yn;
}
}
}
}
else if (rxstride == 1 && aystride == 1 && bxstride == 1)
{
if (GFC_DESCRIPTOR_RANK (a) != 1)
{
const GFC_COMPLEX_16 *restrict abase_x;
const GFC_COMPLEX_16 *restrict bbase_y;
GFC_COMPLEX_16 *restrict dest_y;
GFC_COMPLEX_16 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = (GFC_COMPLEX_16) 0;
for (n = 0; n < count; n++)
s += abase_x[n] * bbase_y[n];
dest_y[x] = s;
}
}
}
else
{
const GFC_COMPLEX_16 *restrict bbase_y;
GFC_COMPLEX_16 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = (GFC_COMPLEX_16) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n];
dest[y*rystride] = s;
}
}
}
else if (axstride < aystride)
{
for (y = 0; y < ycount; y++)
for (x = 0; x < xcount; x++)
dest[x*rxstride + y*rystride] = (GFC_COMPLEX_16)0;
for (y = 0; y < ycount; y++)
for (n = 0; n < count; n++)
for (x = 0; x < xcount; x++)
/* dest[x,y] += a[x,n] * b[n,y] */
dest[x*rxstride + y*rystride] += abase[x*axstride + n*aystride] * bbase[n*bxstride + y*bystride];
}
else if (GFC_DESCRIPTOR_RANK (a) == 1)
{
const GFC_COMPLEX_16 *restrict bbase_y;
GFC_COMPLEX_16 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
s = (GFC_COMPLEX_16) 0;
for (n = 0; n < count; n++)
s += abase[n*axstride] * bbase_y[n*bxstride];
dest[y*rxstride] = s;
}
}
else
{
const GFC_COMPLEX_16 *restrict abase_x;
const GFC_COMPLEX_16 *restrict bbase_y;
GFC_COMPLEX_16 *restrict dest_y;
GFC_COMPLEX_16 s;
for (y = 0; y < ycount; y++)
{
bbase_y = &bbase[y*bystride];
dest_y = &dest[y*rystride];
for (x = 0; x < xcount; x++)
{
abase_x = &abase[x*axstride];
s = (GFC_COMPLEX_16) 0;
for (n = 0; n < count; n++)
s += abase_x[n*aystride] * bbase_y[n*bxstride];
dest_y[x*rxstride] = s;
}
}
}
}
#endif