f98dd1a338
Reviewed-on: https://go-review.googlesource.com/19200 From-SVN: r233110
305 lines
7.2 KiB
Go
305 lines
7.2 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
/*
|
|
Bessel function of the first and second kinds of order n.
|
|
*/
|
|
|
|
// The original C code and the long comment below are
|
|
// from FreeBSD's /usr/src/lib/msun/src/e_jn.c and
|
|
// came with this notice. The go code is a simplified
|
|
// version of the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
// __ieee754_jn(n, x), __ieee754_yn(n, x)
|
|
// floating point Bessel's function of the 1st and 2nd kind
|
|
// of order n
|
|
//
|
|
// Special cases:
|
|
// y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
|
|
// y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
|
|
// Note 2. About jn(n,x), yn(n,x)
|
|
// For n=0, j0(x) is called,
|
|
// for n=1, j1(x) is called,
|
|
// for n<x, forward recursion is used starting
|
|
// from values of j0(x) and j1(x).
|
|
// for n>x, a continued fraction approximation to
|
|
// j(n,x)/j(n-1,x) is evaluated and then backward
|
|
// recursion is used starting from a supposed value
|
|
// for j(n,x). The resulting value of j(0,x) is
|
|
// compared with the actual value to correct the
|
|
// supposed value of j(n,x).
|
|
//
|
|
// yn(n,x) is similar in all respects, except
|
|
// that forward recursion is used for all
|
|
// values of n>1.
|
|
|
|
// Jn returns the order-n Bessel function of the first kind.
|
|
//
|
|
// Special cases are:
|
|
// Jn(n, ±Inf) = 0
|
|
// Jn(n, NaN) = NaN
|
|
func Jn(n int, x float64) float64 {
|
|
const (
|
|
TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000
|
|
Two302 = 1 << 302 // 2**302 0x52D0000000000000
|
|
)
|
|
// special cases
|
|
switch {
|
|
case IsNaN(x):
|
|
return x
|
|
case IsInf(x, 0):
|
|
return 0
|
|
}
|
|
// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x)
|
|
// Thus, J(-n, x) = J(n, -x)
|
|
|
|
if n == 0 {
|
|
return J0(x)
|
|
}
|
|
if x == 0 {
|
|
return 0
|
|
}
|
|
if n < 0 {
|
|
n, x = -n, -x
|
|
}
|
|
if n == 1 {
|
|
return J1(x)
|
|
}
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
if n&1 == 1 {
|
|
sign = true // odd n and negative x
|
|
}
|
|
}
|
|
var b float64
|
|
if float64(n) <= x {
|
|
// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x)
|
|
if x >= Two302 { // x > 2**302
|
|
|
|
// (x >> n**2)
|
|
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
// Let s=sin(x), c=cos(x),
|
|
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
//
|
|
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
// ----------------------------------
|
|
// 0 s-c c+s
|
|
// 1 -s-c -c+s
|
|
// 2 -s+c -c-s
|
|
// 3 s+c c-s
|
|
|
|
var temp float64
|
|
switch n & 3 {
|
|
case 0:
|
|
temp = Cos(x) + Sin(x)
|
|
case 1:
|
|
temp = -Cos(x) + Sin(x)
|
|
case 2:
|
|
temp = -Cos(x) - Sin(x)
|
|
case 3:
|
|
temp = Cos(x) - Sin(x)
|
|
}
|
|
b = (1 / SqrtPi) * temp / Sqrt(x)
|
|
} else {
|
|
b = J1(x)
|
|
for i, a := 1, J0(x); i < n; i++ {
|
|
a, b = b, b*(float64(i+i)/x)-a // avoid underflow
|
|
}
|
|
}
|
|
} else {
|
|
if x < TwoM29 { // x < 2**-29
|
|
// x is tiny, return the first Taylor expansion of J(n,x)
|
|
// J(n,x) = 1/n!*(x/2)**n - ...
|
|
|
|
if n > 33 { // underflow
|
|
b = 0
|
|
} else {
|
|
temp := x * 0.5
|
|
b = temp
|
|
a := 1.0
|
|
for i := 2; i <= n; i++ {
|
|
a *= float64(i) // a = n!
|
|
b *= temp // b = (x/2)**n
|
|
}
|
|
b /= a
|
|
}
|
|
} else {
|
|
// use backward recurrence
|
|
// x x**2 x**2
|
|
// J(n,x)/J(n-1,x) = ---- ------ ------ .....
|
|
// 2n - 2(n+1) - 2(n+2)
|
|
//
|
|
// 1 1 1
|
|
// (for large x) = ---- ------ ------ .....
|
|
// 2n 2(n+1) 2(n+2)
|
|
// -- - ------ - ------ -
|
|
// x x x
|
|
//
|
|
// Let w = 2n/x and h=2/x, then the above quotient
|
|
// is equal to the continued fraction:
|
|
// 1
|
|
// = -----------------------
|
|
// 1
|
|
// w - -----------------
|
|
// 1
|
|
// w+h - ---------
|
|
// w+2h - ...
|
|
//
|
|
// To determine how many terms needed, let
|
|
// Q(0) = w, Q(1) = w(w+h) - 1,
|
|
// Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
|
|
// When Q(k) > 1e4 good for single
|
|
// When Q(k) > 1e9 good for double
|
|
// When Q(k) > 1e17 good for quadruple
|
|
|
|
// determine k
|
|
w := float64(n+n) / x
|
|
h := 2 / x
|
|
q0 := w
|
|
z := w + h
|
|
q1 := w*z - 1
|
|
k := 1
|
|
for q1 < 1e9 {
|
|
k += 1
|
|
z += h
|
|
q0, q1 = q1, z*q1-q0
|
|
}
|
|
m := n + n
|
|
t := 0.0
|
|
for i := 2 * (n + k); i >= m; i -= 2 {
|
|
t = 1 / (float64(i)/x - t)
|
|
}
|
|
a := t
|
|
b = 1
|
|
// estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n)
|
|
// Hence, if n*(log(2n/x)) > ...
|
|
// single 8.8722839355e+01
|
|
// double 7.09782712893383973096e+02
|
|
// long double 1.1356523406294143949491931077970765006170e+04
|
|
// then recurrent value may overflow and the result is
|
|
// likely underflow to zero
|
|
|
|
tmp := float64(n)
|
|
v := 2 / x
|
|
tmp = tmp * Log(Abs(v*tmp))
|
|
if tmp < 7.09782712893383973096e+02 {
|
|
for i := n - 1; i > 0; i-- {
|
|
di := float64(i + i)
|
|
a, b = b, b*di/x-a
|
|
}
|
|
} else {
|
|
for i := n - 1; i > 0; i-- {
|
|
di := float64(i + i)
|
|
a, b = b, b*di/x-a
|
|
// scale b to avoid spurious overflow
|
|
if b > 1e100 {
|
|
a /= b
|
|
t /= b
|
|
b = 1
|
|
}
|
|
}
|
|
}
|
|
b = t * J0(x) / b
|
|
}
|
|
}
|
|
if sign {
|
|
return -b
|
|
}
|
|
return b
|
|
}
|
|
|
|
// Yn returns the order-n Bessel function of the second kind.
|
|
//
|
|
// Special cases are:
|
|
// Yn(n, +Inf) = 0
|
|
// Yn(n > 0, 0) = -Inf
|
|
// Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even
|
|
// Y1(n, x < 0) = NaN
|
|
// Y1(n, NaN) = NaN
|
|
func Yn(n int, x float64) float64 {
|
|
const Two302 = 1 << 302 // 2**302 0x52D0000000000000
|
|
// special cases
|
|
switch {
|
|
case x < 0 || IsNaN(x):
|
|
return NaN()
|
|
case IsInf(x, 1):
|
|
return 0
|
|
}
|
|
|
|
if n == 0 {
|
|
return Y0(x)
|
|
}
|
|
if x == 0 {
|
|
if n < 0 && n&1 == 1 {
|
|
return Inf(1)
|
|
}
|
|
return Inf(-1)
|
|
}
|
|
sign := false
|
|
if n < 0 {
|
|
n = -n
|
|
if n&1 == 1 {
|
|
sign = true // sign true if n < 0 && |n| odd
|
|
}
|
|
}
|
|
if n == 1 {
|
|
if sign {
|
|
return -Y1(x)
|
|
}
|
|
return Y1(x)
|
|
}
|
|
var b float64
|
|
if x >= Two302 { // x > 2**302
|
|
// (x >> n**2)
|
|
// Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
// Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
|
|
// Let s=sin(x), c=cos(x),
|
|
// xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
|
|
//
|
|
// n sin(xn)*sqt2 cos(xn)*sqt2
|
|
// ----------------------------------
|
|
// 0 s-c c+s
|
|
// 1 -s-c -c+s
|
|
// 2 -s+c -c-s
|
|
// 3 s+c c-s
|
|
|
|
var temp float64
|
|
switch n & 3 {
|
|
case 0:
|
|
temp = Sin(x) - Cos(x)
|
|
case 1:
|
|
temp = -Sin(x) - Cos(x)
|
|
case 2:
|
|
temp = -Sin(x) + Cos(x)
|
|
case 3:
|
|
temp = Sin(x) + Cos(x)
|
|
}
|
|
b = (1 / SqrtPi) * temp / Sqrt(x)
|
|
} else {
|
|
a := Y0(x)
|
|
b = Y1(x)
|
|
// quit if b is -inf
|
|
for i := 1; i < n && !IsInf(b, -1); i++ {
|
|
a, b = b, (float64(i+i)/x)*b-a
|
|
}
|
|
}
|
|
if sign {
|
|
return -b
|
|
}
|
|
return b
|
|
}
|