90f8b69248
2004-02-02 Paolo Carlini <pcarlini@suse.de> PR libstdc++/13976 * include/ext/malloc_allocator.h (malloc_allocator::allocate): Make the second parameter unnamed, to void unused parameter warnings. * include/ext/mt_allocator.h (__mt_alloc::allocate): Ditto. * include/ext/new_allocator.h (new_allocator::allocate): Ditto. From-SVN: r77111
869 lines
26 KiB
C++
869 lines
26 KiB
C++
// MT-optimized allocator -*- C++ -*-
|
|
|
|
// Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
|
//
|
|
// This file is part of the GNU ISO C++ Library. This library is free
|
|
// software; you can redistribute it and/or modify it under the
|
|
// terms of the GNU General Public License as published by the
|
|
// Free Software Foundation; either version 2, or (at your option)
|
|
// any later version.
|
|
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
// GNU General Public License for more details.
|
|
|
|
// You should have received a copy of the GNU General Public License along
|
|
// with this library; see the file COPYING. If not, write to the Free
|
|
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
|
|
// USA.
|
|
|
|
// As a special exception, you may use this file as part of a free software
|
|
// library without restriction. Specifically, if other files instantiate
|
|
// templates or use macros or inline functions from this file, or you compile
|
|
// this file and link it with other files to produce an executable, this
|
|
// file does not by itself cause the resulting executable to be covered by
|
|
// the GNU General Public License. This exception does not however
|
|
// invalidate any other reasons why the executable file might be covered by
|
|
// the GNU General Public License.
|
|
|
|
/** @file ext/mt_allocator.h
|
|
* This file is a GNU extension to the Standard C++ Library.
|
|
* You should only include this header if you are using GCC 3 or later.
|
|
*/
|
|
|
|
#ifndef _MT_ALLOCATOR_H
|
|
#define _MT_ALLOCATOR_H 1
|
|
|
|
#include <new>
|
|
#include <bits/functexcept.h>
|
|
#include <bits/gthr.h>
|
|
#include <bits/atomicity.h>
|
|
|
|
namespace __gnu_cxx
|
|
{
|
|
/**
|
|
* This is a fixed size (power of 2) allocator which - when
|
|
* compiled with thread support - will maintain one freelist per
|
|
* size per thread plus a "global" one. Steps are taken to limit
|
|
* the per thread freelist sizes (by returning excess back to
|
|
* "global").
|
|
*
|
|
* Usage examples:
|
|
* @code
|
|
* vector<int, __gnu_cxx::__mt_alloc<int> > v1;
|
|
*
|
|
* typedef __gnu_cxx::__mt_alloc<char> > string_allocator;
|
|
* std::basic_string<char, std::char_traits<char>, string_allocator> s1;
|
|
* @endcode
|
|
*/
|
|
template<typename _Tp>
|
|
class __mt_alloc
|
|
{
|
|
public:
|
|
typedef size_t size_type;
|
|
typedef ptrdiff_t difference_type;
|
|
typedef _Tp* pointer;
|
|
typedef const _Tp* const_pointer;
|
|
typedef _Tp& reference;
|
|
typedef const _Tp& const_reference;
|
|
typedef _Tp value_type;
|
|
|
|
template<typename _Tp1>
|
|
struct rebind
|
|
{ typedef __mt_alloc<_Tp1> other; };
|
|
|
|
__mt_alloc() throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
__mt_alloc(const __mt_alloc&) throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
template<typename _Tp1>
|
|
__mt_alloc(const __mt_alloc<_Tp1>&) throw()
|
|
{
|
|
// XXX
|
|
}
|
|
|
|
~__mt_alloc() throw() { }
|
|
|
|
pointer
|
|
address(reference __x) const { return &__x; }
|
|
|
|
const_pointer
|
|
address(const_reference __x) const { return &__x; }
|
|
|
|
size_type
|
|
max_size() const throw()
|
|
{ return size_t(-1) / sizeof(_Tp); }
|
|
|
|
// _GLIBCXX_RESOLVE_LIB_DEFECTS
|
|
// 402. wrong new expression in [some_] allocator::construct
|
|
void
|
|
construct(pointer __p, const _Tp& __val)
|
|
{ ::new(__p) _Tp(__val); }
|
|
|
|
void
|
|
destroy(pointer __p) { __p->~_Tp(); }
|
|
|
|
private:
|
|
/*
|
|
* We need to create the initial lists and set up some variables
|
|
* before we can answer to the first request for memory.
|
|
* The initialization of these variables is done at file scope
|
|
* below class declaration.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
static __gthread_once_t _S_once_mt;
|
|
#endif
|
|
static bool volatile _S_initialized;
|
|
|
|
/*
|
|
* If the env var GLIBCXX_FORCE_NEW is set during _S_init()
|
|
* we set this var to true which causes all allocations to use new()
|
|
*/
|
|
static bool _S_force_new;
|
|
|
|
/*
|
|
* Using short int as type for the binmap implies we are never caching
|
|
* blocks larger than 65535 with this allocator
|
|
*/
|
|
typedef unsigned short int binmap_type;
|
|
static binmap_type* _S_binmap;
|
|
|
|
static void _S_init();
|
|
|
|
/*
|
|
* Variables used to "tune" the behavior of the allocator, assigned
|
|
* and explained in detail below.
|
|
*/
|
|
static size_t _S_max_bytes;
|
|
static size_t _S_chunk_size;
|
|
static size_t _S_max_threads;
|
|
static size_t _S_no_of_bins;
|
|
static size_t _S_freelist_headroom;
|
|
|
|
/*
|
|
* Each requesting thread is assigned an id ranging from 1 to
|
|
* _S_max_threads. Thread id 0 is used as a global memory pool.
|
|
* In order to get constant performance on the thread assignment
|
|
* routine, we keep a list of free ids. When a thread first requests
|
|
* memory we remove the first record in this list and stores the address
|
|
* in a __gthread_key. When initializing the __gthread_key
|
|
* we specify a destructor. When this destructor (i.e. the thread dies)
|
|
* is called, we return the thread id to the front of this list.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
struct thread_record
|
|
{
|
|
/*
|
|
* Points to next free thread id record. NULL if last record in list.
|
|
*/
|
|
thread_record* volatile next;
|
|
|
|
/*
|
|
* Thread id ranging from 1 to _S_max_threads.
|
|
*/
|
|
size_t id;
|
|
};
|
|
|
|
static thread_record* volatile _S_thread_freelist_first;
|
|
static __gthread_mutex_t _S_thread_freelist_mutex;
|
|
static void _S_thread_key_destr(void* freelist_pos);
|
|
static __gthread_key_t _S_thread_key;
|
|
static size_t _S_get_thread_id();
|
|
#endif
|
|
|
|
struct block_record
|
|
{
|
|
/*
|
|
* Points to the next block_record for its thread_id.
|
|
*/
|
|
block_record* volatile next;
|
|
|
|
/*
|
|
* The thread id of the thread which has requested this block.
|
|
*/
|
|
size_t thread_id;
|
|
};
|
|
|
|
struct bin_record
|
|
{
|
|
/*
|
|
* An "array" of pointers to the first/last free block for each
|
|
* thread id. Memory to these "arrays" is allocated in _S_init()
|
|
* for _S_max_threads + global pool 0.
|
|
*/
|
|
block_record** volatile first;
|
|
block_record** volatile last;
|
|
|
|
/*
|
|
* An "array" of counters used to keep track of the amount of blocks
|
|
* that are on the freelist/used for each thread id.
|
|
* Memory to these "arrays" is allocated in _S_init()
|
|
* for _S_max_threads + global pool 0.
|
|
*/
|
|
size_t* volatile free;
|
|
size_t* volatile used;
|
|
|
|
/*
|
|
* Each bin has its own mutex which is used to ensure data integrity
|
|
* while changing "ownership" on a block.
|
|
* The mutex is initialized in _S_init().
|
|
*/
|
|
#ifdef __GTHREADS
|
|
__gthread_mutex_t* mutex;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* An "array" of bin_records each of which represents a specific
|
|
* power of 2 size. Memory to this "array" is allocated in _S_init().
|
|
*/
|
|
static bin_record* volatile _S_bin;
|
|
|
|
public:
|
|
pointer
|
|
allocate(size_t __n, const void* = 0)
|
|
{
|
|
/*
|
|
* Although the test in __gthread_once() would suffice, we
|
|
* wrap test of the once condition in our own unlocked
|
|
* check. This saves one function call to pthread_once()
|
|
* (which itself only tests for the once value unlocked anyway
|
|
* and immediately returns if set)
|
|
*/
|
|
if (!_S_initialized)
|
|
{
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
__gthread_once(&_S_once_mt, _S_init);
|
|
else
|
|
#endif
|
|
{
|
|
_S_max_threads = 0;
|
|
_S_init();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Requests larger than _S_max_bytes are handled by
|
|
* new/delete directly
|
|
*/
|
|
if (__n * sizeof(_Tp) > _S_max_bytes || _S_force_new)
|
|
{
|
|
void* __ret = ::operator new(__n * sizeof(_Tp));
|
|
if (!__ret)
|
|
std::__throw_bad_alloc();
|
|
return static_cast<_Tp*>(__ret);
|
|
}
|
|
|
|
/*
|
|
* Round up to power of 2 and figure out which bin to use
|
|
*/
|
|
size_t bin = _S_binmap[__n * sizeof(_Tp)];
|
|
|
|
#ifdef __GTHREADS
|
|
size_t thread_id = _S_get_thread_id();
|
|
#else
|
|
size_t thread_id = 0;
|
|
#endif
|
|
|
|
block_record* block = NULL;
|
|
|
|
/*
|
|
* Find out if we have blocks on our freelist.
|
|
* If so, go ahead and use them directly without
|
|
* having to lock anything.
|
|
*/
|
|
if (_S_bin[bin].first[thread_id] == NULL)
|
|
{
|
|
/*
|
|
* Are we using threads?
|
|
* - Yes, check if there are free blocks on the global
|
|
* list. If so, grab up to block_count blocks in one
|
|
* lock and change ownership. If the global list is
|
|
* empty, we allocate a new chunk and add those blocks
|
|
* directly to our own freelist (with us as owner).
|
|
* - No, all operations are made directly to global pool 0
|
|
* no need to lock or change ownership but check for free
|
|
* blocks on global list (and if not add new ones) and
|
|
* get the first one.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
size_t bin_t = 1 << bin;
|
|
size_t block_count =
|
|
_S_chunk_size /(bin_t + sizeof(block_record));
|
|
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
{
|
|
/*
|
|
* No need to hold the lock when we are adding a
|
|
* whole chunk to our own list
|
|
*/
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
|
|
_S_bin[bin].first[thread_id] =
|
|
static_cast<block_record*>(::operator new(_S_chunk_size));
|
|
|
|
if (!_S_bin[bin].first[thread_id])
|
|
std::__throw_bad_alloc();
|
|
|
|
_S_bin[bin].free[thread_id] = block_count;
|
|
|
|
block_count--;
|
|
block = _S_bin[bin].first[thread_id];
|
|
|
|
while (block_count > 0)
|
|
{
|
|
block->next = (block_record*)((char*)block +
|
|
(bin_t + sizeof(block_record)));
|
|
block->thread_id = thread_id;
|
|
block = block->next;
|
|
block_count--;
|
|
}
|
|
|
|
block->next = NULL;
|
|
block->thread_id = thread_id;
|
|
_S_bin[bin].last[thread_id] = block;
|
|
}
|
|
else
|
|
{
|
|
size_t global_count = 0;
|
|
|
|
while( _S_bin[bin].first[0] != NULL &&
|
|
global_count < block_count )
|
|
{
|
|
block = _S_bin[bin].first[0];
|
|
|
|
if (_S_bin[bin].first[thread_id] == NULL)
|
|
_S_bin[bin].first[thread_id] = block;
|
|
else
|
|
_S_bin[bin].last[thread_id]->next = block;
|
|
|
|
_S_bin[bin].last[thread_id] = block;
|
|
|
|
block->thread_id = thread_id;
|
|
|
|
_S_bin[bin].free[thread_id]++;
|
|
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
|
|
|
|
global_count++;
|
|
}
|
|
|
|
block->next = NULL;
|
|
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
}
|
|
|
|
/*
|
|
* Return the first newly added block in our list and
|
|
* update the counters
|
|
*/
|
|
block = _S_bin[bin].first[thread_id];
|
|
_S_bin[bin].first[thread_id] =
|
|
_S_bin[bin].first[thread_id]->next;
|
|
|
|
_S_bin[bin].free[thread_id]--;
|
|
_S_bin[bin].used[thread_id]++;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
_S_bin[bin].first[0] =
|
|
static_cast<block_record*>(::operator new(_S_chunk_size));
|
|
|
|
if (!_S_bin[bin].first[0])
|
|
std::__throw_bad_alloc();
|
|
|
|
size_t bin_t = 1 << bin;
|
|
size_t block_count =
|
|
_S_chunk_size / (bin_t + sizeof(block_record));
|
|
|
|
block_count--;
|
|
block = _S_bin[bin].first[0];
|
|
|
|
while (block_count > 0)
|
|
{
|
|
block->next = (block_record*)((char*)block +
|
|
(bin_t + sizeof(block_record)));
|
|
block = block->next;
|
|
block_count--;
|
|
}
|
|
|
|
block->next = NULL;
|
|
_S_bin[bin].last[0] = block;
|
|
|
|
block = _S_bin[bin].first[0];
|
|
|
|
/*
|
|
* Remove from list
|
|
*/
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/*
|
|
* "Default" operation - we have blocks on our own freelist
|
|
* grab the first record and update the counters.
|
|
*/
|
|
block = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].first[thread_id] = _S_bin[bin].first[thread_id]->next;
|
|
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
_S_bin[bin].free[thread_id]--;
|
|
_S_bin[bin].used[thread_id]++;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
return static_cast<_Tp*>(static_cast<void*>((char*)block +
|
|
sizeof(block_record)));
|
|
}
|
|
|
|
void
|
|
deallocate(pointer __p, size_type __n)
|
|
{
|
|
/*
|
|
* Requests larger than _S_max_bytes are handled by
|
|
* operators new/delete directly
|
|
*/
|
|
if (__n * sizeof(_Tp) > _S_max_bytes || _S_force_new)
|
|
{
|
|
::operator delete(__p);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Round up to power of 2 and figure out which bin to use
|
|
*/
|
|
size_t bin = _S_binmap[__n * sizeof(_Tp)];
|
|
|
|
#ifdef __GTHREADS
|
|
size_t thread_id = _S_get_thread_id();
|
|
#else
|
|
size_t thread_id = 0;
|
|
#endif
|
|
|
|
block_record* block = (block_record*)((char*)__p
|
|
- sizeof(block_record));
|
|
|
|
/*
|
|
* This block will always be at the back of a list and thus
|
|
* we set its next pointer to NULL.
|
|
*/
|
|
block->next = NULL;
|
|
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
/*
|
|
* Calculate the number of records to remove from our freelist
|
|
*/
|
|
int remove = _S_bin[bin].free[thread_id] -
|
|
(_S_bin[bin].used[thread_id] / _S_freelist_headroom);
|
|
|
|
/*
|
|
* The calculation above will almost always tell us to
|
|
* remove one or two records at a time, but this creates
|
|
* too much contention when locking and therefore we
|
|
* wait until the number of records is "high enough".
|
|
*/
|
|
if (remove > (int)(100 * (_S_no_of_bins - bin)) &&
|
|
remove > (int)(_S_bin[bin].free[thread_id] /
|
|
_S_freelist_headroom))
|
|
{
|
|
__gthread_mutex_lock(_S_bin[bin].mutex);
|
|
|
|
while (remove > 0)
|
|
{
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = _S_bin[bin].first[thread_id];
|
|
else
|
|
_S_bin[bin].last[0]->next = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].last[0] = _S_bin[bin].first[thread_id];
|
|
|
|
_S_bin[bin].first[thread_id] =
|
|
_S_bin[bin].first[thread_id]->next;
|
|
|
|
_S_bin[bin].free[thread_id]--;
|
|
|
|
remove--;
|
|
}
|
|
|
|
_S_bin[bin].last[0]->next = NULL;
|
|
|
|
__gthread_mutex_unlock(_S_bin[bin].mutex);
|
|
}
|
|
|
|
/*
|
|
* Return this block to our list and update
|
|
* counters and owner id as needed
|
|
*/
|
|
if (_S_bin[bin].first[thread_id] == NULL)
|
|
_S_bin[bin].first[thread_id] = block;
|
|
else
|
|
_S_bin[bin].last[thread_id]->next = block;
|
|
|
|
_S_bin[bin].last[thread_id] = block;
|
|
|
|
_S_bin[bin].free[thread_id]++;
|
|
|
|
if (thread_id == block->thread_id)
|
|
_S_bin[bin].used[thread_id]--;
|
|
else
|
|
{
|
|
_S_bin[bin].used[block->thread_id]--;
|
|
block->thread_id = thread_id;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/*
|
|
* Single threaded application - return to global pool
|
|
*/
|
|
if (_S_bin[bin].first[0] == NULL)
|
|
_S_bin[bin].first[0] = block;
|
|
else
|
|
_S_bin[bin].last[0]->next = block;
|
|
|
|
_S_bin[bin].last[0] = block;
|
|
}
|
|
}
|
|
};
|
|
|
|
template<typename _Tp>
|
|
void
|
|
__mt_alloc<_Tp>::
|
|
_S_init()
|
|
{
|
|
if (getenv("GLIBCXX_FORCE_NEW"))
|
|
{
|
|
_S_force_new = true;
|
|
_S_initialized = true;
|
|
|
|
/*
|
|
* Since none of the code in allocate/deallocate ever will be
|
|
* executed due to that the GLIBCXX_FORCE_NEW flag is set
|
|
* there is no need to create the internal structures either.
|
|
*/
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Calculate the number of bins required based on _S_max_bytes,
|
|
* _S_no_of_bins is initialized to 1 below.
|
|
*/
|
|
{
|
|
size_t bin_t = 1;
|
|
while (_S_max_bytes > bin_t)
|
|
{
|
|
bin_t = bin_t << 1;
|
|
_S_no_of_bins++;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Setup the bin map for quick lookup of the relevant bin
|
|
*/
|
|
_S_binmap = (binmap_type*)
|
|
::operator new ((_S_max_bytes + 1) * sizeof(binmap_type));
|
|
|
|
if (!_S_binmap)
|
|
std::__throw_bad_alloc();
|
|
|
|
binmap_type* bp_t = _S_binmap;
|
|
binmap_type bin_max_t = 1;
|
|
binmap_type bin_t = 0;
|
|
for (binmap_type ct = 0; ct <= _S_max_bytes; ct++)
|
|
{
|
|
if (ct > bin_max_t)
|
|
{
|
|
bin_max_t <<= 1;
|
|
bin_t++;
|
|
}
|
|
*bp_t++ = bin_t;
|
|
}
|
|
|
|
/*
|
|
* If __gthread_active_p() create and initialize the list of
|
|
* free thread ids. Single threaded applications use thread id 0
|
|
* directly and have no need for this.
|
|
*/
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
_S_thread_freelist_first =
|
|
static_cast<thread_record*>(::operator
|
|
new(sizeof(thread_record) * _S_max_threads));
|
|
|
|
if (!_S_thread_freelist_first)
|
|
std::__throw_bad_alloc();
|
|
|
|
/*
|
|
* NOTE! The first assignable thread id is 1 since the global
|
|
* pool uses id 0
|
|
*/
|
|
size_t i;
|
|
for (i = 1; i < _S_max_threads; i++)
|
|
{
|
|
_S_thread_freelist_first[i - 1].next =
|
|
&_S_thread_freelist_first[i];
|
|
|
|
_S_thread_freelist_first[i - 1].id = i;
|
|
}
|
|
|
|
/*
|
|
* Set last record
|
|
*/
|
|
_S_thread_freelist_first[i - 1].next = NULL;
|
|
_S_thread_freelist_first[i - 1].id = i;
|
|
|
|
/*
|
|
* Initialize per thread key to hold pointer to
|
|
* _S_thread_freelist
|
|
*/
|
|
__gthread_key_create(&_S_thread_key, _S_thread_key_destr);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize _S_bin and its members
|
|
*/
|
|
_S_bin = static_cast<bin_record*>(::operator
|
|
new(sizeof(bin_record) * _S_no_of_bins));
|
|
|
|
if (!_S_bin)
|
|
std::__throw_bad_alloc();
|
|
|
|
std::size_t __n = 1;
|
|
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
__n = _S_max_threads + 1;
|
|
#endif
|
|
|
|
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
|
|
{
|
|
_S_bin[bin].first = static_cast<block_record**>(::operator
|
|
new(sizeof(block_record*) * __n));
|
|
|
|
if (!_S_bin[bin].first)
|
|
std::__throw_bad_alloc();
|
|
|
|
_S_bin[bin].last = static_cast<block_record**>(::operator
|
|
new(sizeof(block_record*) * __n));
|
|
|
|
if (!_S_bin[bin].last)
|
|
std::__throw_bad_alloc();
|
|
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
_S_bin[bin].free = static_cast<size_t*>(::operator
|
|
new(sizeof(size_t) * __n));
|
|
|
|
if (!_S_bin[bin].free)
|
|
std::__throw_bad_alloc();
|
|
|
|
_S_bin[bin].used = static_cast<size_t*>(::operator
|
|
new(sizeof(size_t) * __n));
|
|
|
|
if (!_S_bin[bin].used)
|
|
std::__throw_bad_alloc();
|
|
|
|
_S_bin[bin].mutex = static_cast<__gthread_mutex_t*>(::operator
|
|
new(sizeof(__gthread_mutex_t)));
|
|
|
|
#ifdef __GTHREAD_MUTEX_INIT
|
|
{
|
|
// Do not copy a POSIX/gthr mutex once in use.
|
|
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
|
|
*_S_bin[bin].mutex = __tmp;
|
|
}
|
|
#else
|
|
{ __GTHREAD_MUTEX_INIT_FUNCTION (_S_bin[bin].mutex); }
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
for (size_t thread = 0; thread < __n; thread++)
|
|
{
|
|
_S_bin[bin].first[thread] = NULL;
|
|
_S_bin[bin].last[thread] = NULL;
|
|
#ifdef __GTHREADS
|
|
if (__gthread_active_p())
|
|
{
|
|
_S_bin[bin].free[thread] = 0;
|
|
_S_bin[bin].used[thread] = 0;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
_S_initialized = true;
|
|
}
|
|
|
|
#ifdef __GTHREADS
|
|
template<typename _Tp>
|
|
void
|
|
__mt_alloc<_Tp>::
|
|
_S_thread_key_destr(void* freelist_pos)
|
|
{
|
|
/*
|
|
* Return this thread id record to front of thread_freelist
|
|
*/
|
|
__gthread_mutex_lock(&_S_thread_freelist_mutex);
|
|
((thread_record*)freelist_pos)->next = _S_thread_freelist_first;
|
|
_S_thread_freelist_first = (thread_record*)freelist_pos;
|
|
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
|
|
}
|
|
|
|
template<typename _Tp>
|
|
size_t
|
|
__mt_alloc<_Tp>::
|
|
_S_get_thread_id()
|
|
{
|
|
/*
|
|
* If we have thread support and it's active we check the thread
|
|
* key value and return it's id or if it's not set we take the
|
|
* first record from _S_thread_freelist and sets the key and
|
|
* returns it's id.
|
|
*/
|
|
if (__gthread_active_p())
|
|
{
|
|
thread_record* freelist_pos;
|
|
|
|
if ((freelist_pos =
|
|
(thread_record*)__gthread_getspecific(_S_thread_key)) == NULL)
|
|
{
|
|
/*
|
|
* Since _S_max_threads must be larger than the
|
|
* theoretical max number of threads of the OS the list
|
|
* can never be empty.
|
|
*/
|
|
__gthread_mutex_lock(&_S_thread_freelist_mutex);
|
|
freelist_pos = _S_thread_freelist_first;
|
|
_S_thread_freelist_first = _S_thread_freelist_first->next;
|
|
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
|
|
|
|
__gthread_setspecific(_S_thread_key, (void*)freelist_pos);
|
|
}
|
|
|
|
return freelist_pos->id;
|
|
}
|
|
|
|
/*
|
|
* Otherwise (no thread support or inactive) all requests are
|
|
* served from the global pool 0.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
template<typename _Tp> __gthread_once_t
|
|
__mt_alloc<_Tp>::_S_once_mt = __GTHREAD_ONCE_INIT;
|
|
#endif
|
|
|
|
template<typename _Tp>
|
|
bool volatile __mt_alloc<_Tp>::_S_initialized = false;
|
|
|
|
template<typename _Tp> bool
|
|
__mt_alloc<_Tp>::_S_force_new = false;
|
|
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::binmap_type*
|
|
__mt_alloc<_Tp>::_S_binmap = NULL;
|
|
|
|
/*
|
|
* Allocation requests (after round-up to power of 2) below this
|
|
* value will be handled by the allocator. A raw new/ call
|
|
* will be used for requests larger than this value.
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_max_bytes = 128;
|
|
|
|
/*
|
|
* In order to avoid fragmenting and minimize the number of new()
|
|
* calls we always request new memory using this value. Based on
|
|
* previous discussions on the libstdc++ mailing list we have
|
|
* choosen the value below. See
|
|
* http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_chunk_size = 4096 - 4 * sizeof(void*);
|
|
|
|
/*
|
|
* The maximum number of supported threads. Our Linux 2.4.18 reports
|
|
* 4070 in /proc/sys/kernel/threads-max
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_max_threads = 4096;
|
|
|
|
/*
|
|
* Actual value calculated in _S_init()
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_no_of_bins = 1;
|
|
|
|
/*
|
|
* Each time a deallocation occurs in a threaded application we make
|
|
* sure that there are no more than _S_freelist_headroom % of used
|
|
* memory on the freelist. If the number of additional records is
|
|
* more than _S_freelist_headroom % of the freelist, we move these
|
|
* records back to the global pool.
|
|
*/
|
|
template<typename _Tp> size_t
|
|
__mt_alloc<_Tp>::_S_freelist_headroom = 10;
|
|
|
|
/*
|
|
* Actual initialization in _S_init()
|
|
*/
|
|
#ifdef __GTHREADS
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::thread_record*
|
|
volatile __mt_alloc<_Tp>::_S_thread_freelist_first = NULL;
|
|
|
|
template<typename _Tp> __gthread_mutex_t
|
|
#ifdef __GTHREAD_MUTEX_INIT
|
|
__mt_alloc<_Tp>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
|
|
#else
|
|
// XXX
|
|
__mt_alloc<_Tp>::_S_thread_freelist_mutex;
|
|
#endif
|
|
|
|
/*
|
|
* Actual initialization in _S_init()
|
|
*/
|
|
template<typename _Tp> __gthread_key_t
|
|
__mt_alloc<_Tp>::_S_thread_key;
|
|
#endif
|
|
|
|
template<typename _Tp> typename __mt_alloc<_Tp>::bin_record*
|
|
volatile __mt_alloc<_Tp>::_S_bin = NULL;
|
|
|
|
template<typename _Tp>
|
|
inline bool
|
|
operator==(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
|
|
{ return true; }
|
|
|
|
template<typename _Tp>
|
|
inline bool
|
|
operator!=(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
|
|
{ return false; }
|
|
} // namespace __gnu_cxx
|
|
|
|
#endif
|