18767ebc32
* cfgloop.h (struct loop): New field constraints. (LOOP_C_INFINITE, LOOP_C_FINITE): New macros. (loop_constraint_set, loop_constraint_clr, loop_constraint_set_p): New functions. * cfgloop.c (alloc_loop): Initialize new field. * cfgloopmanip.c (copy_loop_info): Copy constraints. * tree-ssa-loop-niter.c (number_of_iterations_exit_assumptions): Adjust niter analysis wrto loop constraints. * doc/loop.texi (@node Number of iterations): Add description for loop constraints. From-SVN: r238876
2005 lines
50 KiB
C
2005 lines
50 KiB
C
/* Natural loop discovery code for GNU compiler.
|
||
Copyright (C) 2000-2016 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "cfghooks.h"
|
||
#include "gimple-ssa.h"
|
||
#include "diagnostic-core.h"
|
||
#include "cfganal.h"
|
||
#include "cfgloop.h"
|
||
#include "gimple-iterator.h"
|
||
#include "dumpfile.h"
|
||
|
||
static void flow_loops_cfg_dump (FILE *);
|
||
|
||
/* Dump loop related CFG information. */
|
||
|
||
static void
|
||
flow_loops_cfg_dump (FILE *file)
|
||
{
|
||
basic_block bb;
|
||
|
||
if (!file)
|
||
return;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge succ;
|
||
edge_iterator ei;
|
||
|
||
fprintf (file, ";; %d succs { ", bb->index);
|
||
FOR_EACH_EDGE (succ, ei, bb->succs)
|
||
fprintf (file, "%d ", succ->dest->index);
|
||
fprintf (file, "}\n");
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if the nodes of LOOP are a subset of OUTER. */
|
||
|
||
bool
|
||
flow_loop_nested_p (const struct loop *outer, const struct loop *loop)
|
||
{
|
||
unsigned odepth = loop_depth (outer);
|
||
|
||
return (loop_depth (loop) > odepth
|
||
&& (*loop->superloops)[odepth] == outer);
|
||
}
|
||
|
||
/* Returns the loop such that LOOP is nested DEPTH (indexed from zero)
|
||
loops within LOOP. */
|
||
|
||
struct loop *
|
||
superloop_at_depth (struct loop *loop, unsigned depth)
|
||
{
|
||
unsigned ldepth = loop_depth (loop);
|
||
|
||
gcc_assert (depth <= ldepth);
|
||
|
||
if (depth == ldepth)
|
||
return loop;
|
||
|
||
return (*loop->superloops)[depth];
|
||
}
|
||
|
||
/* Returns the list of the latch edges of LOOP. */
|
||
|
||
static vec<edge>
|
||
get_loop_latch_edges (const struct loop *loop)
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
vec<edge> ret = vNULL;
|
||
|
||
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
||
{
|
||
if (dominated_by_p (CDI_DOMINATORS, e->src, loop->header))
|
||
ret.safe_push (e);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Dump the loop information specified by LOOP to the stream FILE
|
||
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
|
||
|
||
void
|
||
flow_loop_dump (const struct loop *loop, FILE *file,
|
||
void (*loop_dump_aux) (const struct loop *, FILE *, int),
|
||
int verbose)
|
||
{
|
||
basic_block *bbs;
|
||
unsigned i;
|
||
vec<edge> latches;
|
||
edge e;
|
||
|
||
if (! loop || ! loop->header)
|
||
return;
|
||
|
||
fprintf (file, ";;\n;; Loop %d\n", loop->num);
|
||
|
||
fprintf (file, ";; header %d, ", loop->header->index);
|
||
if (loop->latch)
|
||
fprintf (file, "latch %d\n", loop->latch->index);
|
||
else
|
||
{
|
||
fprintf (file, "multiple latches:");
|
||
latches = get_loop_latch_edges (loop);
|
||
FOR_EACH_VEC_ELT (latches, i, e)
|
||
fprintf (file, " %d", e->src->index);
|
||
latches.release ();
|
||
fprintf (file, "\n");
|
||
}
|
||
|
||
fprintf (file, ";; depth %d, outer %ld\n",
|
||
loop_depth (loop), (long) (loop_outer (loop)
|
||
? loop_outer (loop)->num : -1));
|
||
|
||
if (loop->latch)
|
||
{
|
||
bool read_profile_p;
|
||
gcov_type nit = expected_loop_iterations_unbounded (loop, &read_profile_p);
|
||
if (read_profile_p && !loop->any_estimate)
|
||
fprintf (file, ";; profile-based iteration count: %" PRIu64 "\n",
|
||
(uint64_t) nit);
|
||
}
|
||
|
||
fprintf (file, ";; nodes:");
|
||
bbs = get_loop_body (loop);
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
fprintf (file, " %d", bbs[i]->index);
|
||
free (bbs);
|
||
fprintf (file, "\n");
|
||
|
||
if (loop_dump_aux)
|
||
loop_dump_aux (loop, file, verbose);
|
||
}
|
||
|
||
/* Dump the loop information about loops to the stream FILE,
|
||
using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
|
||
|
||
void
|
||
flow_loops_dump (FILE *file, void (*loop_dump_aux) (const struct loop *, FILE *, int), int verbose)
|
||
{
|
||
struct loop *loop;
|
||
|
||
if (!current_loops || ! file)
|
||
return;
|
||
|
||
fprintf (file, ";; %d loops found\n", number_of_loops (cfun));
|
||
|
||
FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
|
||
{
|
||
flow_loop_dump (loop, file, loop_dump_aux, verbose);
|
||
}
|
||
|
||
if (verbose)
|
||
flow_loops_cfg_dump (file);
|
||
}
|
||
|
||
/* Free data allocated for LOOP. */
|
||
|
||
void
|
||
flow_loop_free (struct loop *loop)
|
||
{
|
||
struct loop_exit *exit, *next;
|
||
|
||
vec_free (loop->superloops);
|
||
|
||
/* Break the list of the loop exit records. They will be freed when the
|
||
corresponding edge is rescanned or removed, and this avoids
|
||
accessing the (already released) head of the list stored in the
|
||
loop structure. */
|
||
for (exit = loop->exits->next; exit != loop->exits; exit = next)
|
||
{
|
||
next = exit->next;
|
||
exit->next = exit;
|
||
exit->prev = exit;
|
||
}
|
||
|
||
ggc_free (loop->exits);
|
||
ggc_free (loop);
|
||
}
|
||
|
||
/* Free all the memory allocated for LOOPS. */
|
||
|
||
void
|
||
flow_loops_free (struct loops *loops)
|
||
{
|
||
if (loops->larray)
|
||
{
|
||
unsigned i;
|
||
loop_p loop;
|
||
|
||
/* Free the loop descriptors. */
|
||
FOR_EACH_VEC_SAFE_ELT (loops->larray, i, loop)
|
||
{
|
||
if (!loop)
|
||
continue;
|
||
|
||
flow_loop_free (loop);
|
||
}
|
||
|
||
vec_free (loops->larray);
|
||
}
|
||
}
|
||
|
||
/* Find the nodes contained within the LOOP with header HEADER.
|
||
Return the number of nodes within the loop. */
|
||
|
||
int
|
||
flow_loop_nodes_find (basic_block header, struct loop *loop)
|
||
{
|
||
vec<basic_block> stack = vNULL;
|
||
int num_nodes = 1;
|
||
edge latch;
|
||
edge_iterator latch_ei;
|
||
|
||
header->loop_father = loop;
|
||
|
||
FOR_EACH_EDGE (latch, latch_ei, loop->header->preds)
|
||
{
|
||
if (latch->src->loop_father == loop
|
||
|| !dominated_by_p (CDI_DOMINATORS, latch->src, loop->header))
|
||
continue;
|
||
|
||
num_nodes++;
|
||
stack.safe_push (latch->src);
|
||
latch->src->loop_father = loop;
|
||
|
||
while (!stack.is_empty ())
|
||
{
|
||
basic_block node;
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
node = stack.pop ();
|
||
|
||
FOR_EACH_EDGE (e, ei, node->preds)
|
||
{
|
||
basic_block ancestor = e->src;
|
||
|
||
if (ancestor->loop_father != loop)
|
||
{
|
||
ancestor->loop_father = loop;
|
||
num_nodes++;
|
||
stack.safe_push (ancestor);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
stack.release ();
|
||
|
||
return num_nodes;
|
||
}
|
||
|
||
/* Records the vector of superloops of the loop LOOP, whose immediate
|
||
superloop is FATHER. */
|
||
|
||
static void
|
||
establish_preds (struct loop *loop, struct loop *father)
|
||
{
|
||
loop_p ploop;
|
||
unsigned depth = loop_depth (father) + 1;
|
||
unsigned i;
|
||
|
||
loop->superloops = 0;
|
||
vec_alloc (loop->superloops, depth);
|
||
FOR_EACH_VEC_SAFE_ELT (father->superloops, i, ploop)
|
||
loop->superloops->quick_push (ploop);
|
||
loop->superloops->quick_push (father);
|
||
|
||
for (ploop = loop->inner; ploop; ploop = ploop->next)
|
||
establish_preds (ploop, loop);
|
||
}
|
||
|
||
/* Add LOOP to the loop hierarchy tree where FATHER is father of the
|
||
added loop. If LOOP has some children, take care of that their
|
||
pred field will be initialized correctly. */
|
||
|
||
void
|
||
flow_loop_tree_node_add (struct loop *father, struct loop *loop)
|
||
{
|
||
loop->next = father->inner;
|
||
father->inner = loop;
|
||
|
||
establish_preds (loop, father);
|
||
}
|
||
|
||
/* Remove LOOP from the loop hierarchy tree. */
|
||
|
||
void
|
||
flow_loop_tree_node_remove (struct loop *loop)
|
||
{
|
||
struct loop *prev, *father;
|
||
|
||
father = loop_outer (loop);
|
||
|
||
/* Remove loop from the list of sons. */
|
||
if (father->inner == loop)
|
||
father->inner = loop->next;
|
||
else
|
||
{
|
||
for (prev = father->inner; prev->next != loop; prev = prev->next)
|
||
continue;
|
||
prev->next = loop->next;
|
||
}
|
||
|
||
loop->superloops = NULL;
|
||
}
|
||
|
||
/* Allocates and returns new loop structure. */
|
||
|
||
struct loop *
|
||
alloc_loop (void)
|
||
{
|
||
struct loop *loop = ggc_cleared_alloc<struct loop> ();
|
||
|
||
loop->exits = ggc_cleared_alloc<loop_exit> ();
|
||
loop->exits->next = loop->exits->prev = loop->exits;
|
||
loop->can_be_parallel = false;
|
||
loop->constraints = 0;
|
||
loop->nb_iterations_upper_bound = 0;
|
||
loop->nb_iterations_likely_upper_bound = 0;
|
||
loop->nb_iterations_estimate = 0;
|
||
return loop;
|
||
}
|
||
|
||
/* Initializes loops structure LOOPS, reserving place for NUM_LOOPS loops
|
||
(including the root of the loop tree). */
|
||
|
||
void
|
||
init_loops_structure (struct function *fn,
|
||
struct loops *loops, unsigned num_loops)
|
||
{
|
||
struct loop *root;
|
||
|
||
memset (loops, 0, sizeof *loops);
|
||
vec_alloc (loops->larray, num_loops);
|
||
|
||
/* Dummy loop containing whole function. */
|
||
root = alloc_loop ();
|
||
root->num_nodes = n_basic_blocks_for_fn (fn);
|
||
root->latch = EXIT_BLOCK_PTR_FOR_FN (fn);
|
||
root->header = ENTRY_BLOCK_PTR_FOR_FN (fn);
|
||
ENTRY_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
|
||
EXIT_BLOCK_PTR_FOR_FN (fn)->loop_father = root;
|
||
|
||
loops->larray->quick_push (root);
|
||
loops->tree_root = root;
|
||
}
|
||
|
||
/* Returns whether HEADER is a loop header. */
|
||
|
||
bool
|
||
bb_loop_header_p (basic_block header)
|
||
{
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
/* If we have an abnormal predecessor, do not consider the
|
||
loop (not worth the problems). */
|
||
if (bb_has_abnormal_pred (header))
|
||
return false;
|
||
|
||
/* Look for back edges where a predecessor is dominated
|
||
by this block. A natural loop has a single entry
|
||
node (header) that dominates all the nodes in the
|
||
loop. It also has single back edge to the header
|
||
from a latch node. */
|
||
FOR_EACH_EDGE (e, ei, header->preds)
|
||
{
|
||
basic_block latch = e->src;
|
||
if (latch != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
&& dominated_by_p (CDI_DOMINATORS, latch, header))
|
||
return true;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Find all the natural loops in the function and save in LOOPS structure and
|
||
recalculate loop_father information in basic block structures.
|
||
If LOOPS is non-NULL then the loop structures for already recorded loops
|
||
will be re-used and their number will not change. We assume that no
|
||
stale loops exist in LOOPS.
|
||
When LOOPS is NULL it is allocated and re-built from scratch.
|
||
Return the built LOOPS structure. */
|
||
|
||
struct loops *
|
||
flow_loops_find (struct loops *loops)
|
||
{
|
||
bool from_scratch = (loops == NULL);
|
||
int *rc_order;
|
||
int b;
|
||
unsigned i;
|
||
|
||
/* Ensure that the dominators are computed. */
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
|
||
if (!loops)
|
||
{
|
||
loops = ggc_cleared_alloc<struct loops> ();
|
||
init_loops_structure (cfun, loops, 1);
|
||
}
|
||
|
||
/* Ensure that loop exits were released. */
|
||
gcc_assert (loops->exits == NULL);
|
||
|
||
/* Taking care of this degenerate case makes the rest of
|
||
this code simpler. */
|
||
if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
|
||
return loops;
|
||
|
||
/* The root loop node contains all basic-blocks. */
|
||
loops->tree_root->num_nodes = n_basic_blocks_for_fn (cfun);
|
||
|
||
/* Compute depth first search order of the CFG so that outer
|
||
natural loops will be found before inner natural loops. */
|
||
rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
||
pre_and_rev_post_order_compute (NULL, rc_order, false);
|
||
|
||
/* Gather all loop headers in reverse completion order and allocate
|
||
loop structures for loops that are not already present. */
|
||
auto_vec<loop_p> larray (loops->larray->length ());
|
||
for (b = 0; b < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; b++)
|
||
{
|
||
basic_block header = BASIC_BLOCK_FOR_FN (cfun, rc_order[b]);
|
||
if (bb_loop_header_p (header))
|
||
{
|
||
struct loop *loop;
|
||
|
||
/* The current active loop tree has valid loop-fathers for
|
||
header blocks. */
|
||
if (!from_scratch
|
||
&& header->loop_father->header == header)
|
||
{
|
||
loop = header->loop_father;
|
||
/* If we found an existing loop remove it from the
|
||
loop tree. It is going to be inserted again
|
||
below. */
|
||
flow_loop_tree_node_remove (loop);
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise allocate a new loop structure for the loop. */
|
||
loop = alloc_loop ();
|
||
/* ??? We could re-use unused loop slots here. */
|
||
loop->num = loops->larray->length ();
|
||
vec_safe_push (loops->larray, loop);
|
||
loop->header = header;
|
||
|
||
if (!from_scratch
|
||
&& dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "flow_loops_find: discovered new "
|
||
"loop %d with header %d\n",
|
||
loop->num, header->index);
|
||
}
|
||
/* Reset latch, we recompute it below. */
|
||
loop->latch = NULL;
|
||
larray.safe_push (loop);
|
||
}
|
||
|
||
/* Make blocks part of the loop root node at start. */
|
||
header->loop_father = loops->tree_root;
|
||
}
|
||
|
||
free (rc_order);
|
||
|
||
/* Now iterate over the loops found, insert them into the loop tree
|
||
and assign basic-block ownership. */
|
||
for (i = 0; i < larray.length (); ++i)
|
||
{
|
||
struct loop *loop = larray[i];
|
||
basic_block header = loop->header;
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
flow_loop_tree_node_add (header->loop_father, loop);
|
||
loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
|
||
|
||
/* Look for the latch for this header block, if it has just a
|
||
single one. */
|
||
FOR_EACH_EDGE (e, ei, header->preds)
|
||
{
|
||
basic_block latch = e->src;
|
||
|
||
if (flow_bb_inside_loop_p (loop, latch))
|
||
{
|
||
if (loop->latch != NULL)
|
||
{
|
||
/* More than one latch edge. */
|
||
loop->latch = NULL;
|
||
break;
|
||
}
|
||
loop->latch = latch;
|
||
}
|
||
}
|
||
}
|
||
|
||
return loops;
|
||
}
|
||
|
||
/* Ratio of frequencies of edges so that one of more latch edges is
|
||
considered to belong to inner loop with same header. */
|
||
#define HEAVY_EDGE_RATIO 8
|
||
|
||
/* Minimum number of samples for that we apply
|
||
find_subloop_latch_edge_by_profile heuristics. */
|
||
#define HEAVY_EDGE_MIN_SAMPLES 10
|
||
|
||
/* If the profile info is available, finds an edge in LATCHES that much more
|
||
frequent than the remaining edges. Returns such an edge, or NULL if we do
|
||
not find one.
|
||
|
||
We do not use guessed profile here, only the measured one. The guessed
|
||
profile is usually too flat and unreliable for this (and it is mostly based
|
||
on the loop structure of the program, so it does not make much sense to
|
||
derive the loop structure from it). */
|
||
|
||
static edge
|
||
find_subloop_latch_edge_by_profile (vec<edge> latches)
|
||
{
|
||
unsigned i;
|
||
edge e, me = NULL;
|
||
gcov_type mcount = 0, tcount = 0;
|
||
|
||
FOR_EACH_VEC_ELT (latches, i, e)
|
||
{
|
||
if (e->count > mcount)
|
||
{
|
||
me = e;
|
||
mcount = e->count;
|
||
}
|
||
tcount += e->count;
|
||
}
|
||
|
||
if (tcount < HEAVY_EDGE_MIN_SAMPLES
|
||
|| (tcount - mcount) * HEAVY_EDGE_RATIO > tcount)
|
||
return NULL;
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Found latch edge %d -> %d using profile information.\n",
|
||
me->src->index, me->dest->index);
|
||
return me;
|
||
}
|
||
|
||
/* Among LATCHES, guesses a latch edge of LOOP corresponding to subloop, based
|
||
on the structure of induction variables. Returns this edge, or NULL if we
|
||
do not find any.
|
||
|
||
We are quite conservative, and look just for an obvious simple innermost
|
||
loop (which is the case where we would lose the most performance by not
|
||
disambiguating the loop). More precisely, we look for the following
|
||
situation: The source of the chosen latch edge dominates sources of all
|
||
the other latch edges. Additionally, the header does not contain a phi node
|
||
such that the argument from the chosen edge is equal to the argument from
|
||
another edge. */
|
||
|
||
static edge
|
||
find_subloop_latch_edge_by_ivs (struct loop *loop ATTRIBUTE_UNUSED, vec<edge> latches)
|
||
{
|
||
edge e, latch = latches[0];
|
||
unsigned i;
|
||
gphi *phi;
|
||
gphi_iterator psi;
|
||
tree lop;
|
||
basic_block bb;
|
||
|
||
/* Find the candidate for the latch edge. */
|
||
for (i = 1; latches.iterate (i, &e); i++)
|
||
if (dominated_by_p (CDI_DOMINATORS, latch->src, e->src))
|
||
latch = e;
|
||
|
||
/* Verify that it dominates all the latch edges. */
|
||
FOR_EACH_VEC_ELT (latches, i, e)
|
||
if (!dominated_by_p (CDI_DOMINATORS, e->src, latch->src))
|
||
return NULL;
|
||
|
||
/* Check for a phi node that would deny that this is a latch edge of
|
||
a subloop. */
|
||
for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi))
|
||
{
|
||
phi = psi.phi ();
|
||
lop = PHI_ARG_DEF_FROM_EDGE (phi, latch);
|
||
|
||
/* Ignore the values that are not changed inside the subloop. */
|
||
if (TREE_CODE (lop) != SSA_NAME
|
||
|| SSA_NAME_DEF_STMT (lop) == phi)
|
||
continue;
|
||
bb = gimple_bb (SSA_NAME_DEF_STMT (lop));
|
||
if (!bb || !flow_bb_inside_loop_p (loop, bb))
|
||
continue;
|
||
|
||
FOR_EACH_VEC_ELT (latches, i, e)
|
||
if (e != latch
|
||
&& PHI_ARG_DEF_FROM_EDGE (phi, e) == lop)
|
||
return NULL;
|
||
}
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file,
|
||
"Found latch edge %d -> %d using iv structure.\n",
|
||
latch->src->index, latch->dest->index);
|
||
return latch;
|
||
}
|
||
|
||
/* If we can determine that one of the several latch edges of LOOP behaves
|
||
as a latch edge of a separate subloop, returns this edge. Otherwise
|
||
returns NULL. */
|
||
|
||
static edge
|
||
find_subloop_latch_edge (struct loop *loop)
|
||
{
|
||
vec<edge> latches = get_loop_latch_edges (loop);
|
||
edge latch = NULL;
|
||
|
||
if (latches.length () > 1)
|
||
{
|
||
latch = find_subloop_latch_edge_by_profile (latches);
|
||
|
||
if (!latch
|
||
/* We consider ivs to guess the latch edge only in SSA. Perhaps we
|
||
should use cfghook for this, but it is hard to imagine it would
|
||
be useful elsewhere. */
|
||
&& current_ir_type () == IR_GIMPLE)
|
||
latch = find_subloop_latch_edge_by_ivs (loop, latches);
|
||
}
|
||
|
||
latches.release ();
|
||
return latch;
|
||
}
|
||
|
||
/* Callback for make_forwarder_block. Returns true if the edge E is marked
|
||
in the set MFB_REIS_SET. */
|
||
|
||
static hash_set<edge> *mfb_reis_set;
|
||
static bool
|
||
mfb_redirect_edges_in_set (edge e)
|
||
{
|
||
return mfb_reis_set->contains (e);
|
||
}
|
||
|
||
/* Creates a subloop of LOOP with latch edge LATCH. */
|
||
|
||
static void
|
||
form_subloop (struct loop *loop, edge latch)
|
||
{
|
||
edge_iterator ei;
|
||
edge e, new_entry;
|
||
struct loop *new_loop;
|
||
|
||
mfb_reis_set = new hash_set<edge>;
|
||
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
||
{
|
||
if (e != latch)
|
||
mfb_reis_set->add (e);
|
||
}
|
||
new_entry = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
|
||
NULL);
|
||
delete mfb_reis_set;
|
||
|
||
loop->header = new_entry->src;
|
||
|
||
/* Find the blocks and subloops that belong to the new loop, and add it to
|
||
the appropriate place in the loop tree. */
|
||
new_loop = alloc_loop ();
|
||
new_loop->header = new_entry->dest;
|
||
new_loop->latch = latch->src;
|
||
add_loop (new_loop, loop);
|
||
}
|
||
|
||
/* Make all the latch edges of LOOP to go to a single forwarder block --
|
||
a new latch of LOOP. */
|
||
|
||
static void
|
||
merge_latch_edges (struct loop *loop)
|
||
{
|
||
vec<edge> latches = get_loop_latch_edges (loop);
|
||
edge latch, e;
|
||
unsigned i;
|
||
|
||
gcc_assert (latches.length () > 0);
|
||
|
||
if (latches.length () == 1)
|
||
loop->latch = latches[0]->src;
|
||
else
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Merged latch edges of loop %d\n", loop->num);
|
||
|
||
mfb_reis_set = new hash_set<edge>;
|
||
FOR_EACH_VEC_ELT (latches, i, e)
|
||
mfb_reis_set->add (e);
|
||
latch = make_forwarder_block (loop->header, mfb_redirect_edges_in_set,
|
||
NULL);
|
||
delete mfb_reis_set;
|
||
|
||
loop->header = latch->dest;
|
||
loop->latch = latch->src;
|
||
}
|
||
|
||
latches.release ();
|
||
}
|
||
|
||
/* LOOP may have several latch edges. Transform it into (possibly several)
|
||
loops with single latch edge. */
|
||
|
||
static void
|
||
disambiguate_multiple_latches (struct loop *loop)
|
||
{
|
||
edge e;
|
||
|
||
/* We eliminate the multiple latches by splitting the header to the forwarder
|
||
block F and the rest R, and redirecting the edges. There are two cases:
|
||
|
||
1) If there is a latch edge E that corresponds to a subloop (we guess
|
||
that based on profile -- if it is taken much more often than the
|
||
remaining edges; and on trees, using the information about induction
|
||
variables of the loops), we redirect E to R, all the remaining edges to
|
||
F, then rescan the loops and try again for the outer loop.
|
||
2) If there is no such edge, we redirect all latch edges to F, and the
|
||
entry edges to R, thus making F the single latch of the loop. */
|
||
|
||
if (dump_file)
|
||
fprintf (dump_file, "Disambiguating loop %d with multiple latches\n",
|
||
loop->num);
|
||
|
||
/* During latch merging, we may need to redirect the entry edges to a new
|
||
block. This would cause problems if the entry edge was the one from the
|
||
entry block. To avoid having to handle this case specially, split
|
||
such entry edge. */
|
||
e = find_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun), loop->header);
|
||
if (e)
|
||
split_edge (e);
|
||
|
||
while (1)
|
||
{
|
||
e = find_subloop_latch_edge (loop);
|
||
if (!e)
|
||
break;
|
||
|
||
form_subloop (loop, e);
|
||
}
|
||
|
||
merge_latch_edges (loop);
|
||
}
|
||
|
||
/* Split loops with multiple latch edges. */
|
||
|
||
void
|
||
disambiguate_loops_with_multiple_latches (void)
|
||
{
|
||
struct loop *loop;
|
||
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
if (!loop->latch)
|
||
disambiguate_multiple_latches (loop);
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if basic block BB belongs to LOOP. */
|
||
bool
|
||
flow_bb_inside_loop_p (const struct loop *loop, const_basic_block bb)
|
||
{
|
||
struct loop *source_loop;
|
||
|
||
if (bb == ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
return 0;
|
||
|
||
source_loop = bb->loop_father;
|
||
return loop == source_loop || flow_loop_nested_p (loop, source_loop);
|
||
}
|
||
|
||
/* Enumeration predicate for get_loop_body_with_size. */
|
||
static bool
|
||
glb_enum_p (const_basic_block bb, const void *glb_loop)
|
||
{
|
||
const struct loop *const loop = (const struct loop *) glb_loop;
|
||
return (bb != loop->header
|
||
&& dominated_by_p (CDI_DOMINATORS, bb, loop->header));
|
||
}
|
||
|
||
/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
|
||
order against direction of edges from latch. Specially, if
|
||
header != latch, latch is the 1-st block. LOOP cannot be the fake
|
||
loop tree root, and its size must be at most MAX_SIZE. The blocks
|
||
in the LOOP body are stored to BODY, and the size of the LOOP is
|
||
returned. */
|
||
|
||
unsigned
|
||
get_loop_body_with_size (const struct loop *loop, basic_block *body,
|
||
unsigned max_size)
|
||
{
|
||
return dfs_enumerate_from (loop->header, 1, glb_enum_p,
|
||
body, max_size, loop);
|
||
}
|
||
|
||
/* Gets basic blocks of a LOOP. Header is the 0-th block, rest is in dfs
|
||
order against direction of edges from latch. Specially, if
|
||
header != latch, latch is the 1-st block. */
|
||
|
||
basic_block *
|
||
get_loop_body (const struct loop *loop)
|
||
{
|
||
basic_block *body, bb;
|
||
unsigned tv = 0;
|
||
|
||
gcc_assert (loop->num_nodes);
|
||
|
||
body = XNEWVEC (basic_block, loop->num_nodes);
|
||
|
||
if (loop->latch == EXIT_BLOCK_PTR_FOR_FN (cfun))
|
||
{
|
||
/* There may be blocks unreachable from EXIT_BLOCK, hence we need to
|
||
special-case the fake loop that contains the whole function. */
|
||
gcc_assert (loop->num_nodes == (unsigned) n_basic_blocks_for_fn (cfun));
|
||
body[tv++] = loop->header;
|
||
body[tv++] = EXIT_BLOCK_PTR_FOR_FN (cfun);
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
body[tv++] = bb;
|
||
}
|
||
else
|
||
tv = get_loop_body_with_size (loop, body, loop->num_nodes);
|
||
|
||
gcc_assert (tv == loop->num_nodes);
|
||
return body;
|
||
}
|
||
|
||
/* Fills dominance descendants inside LOOP of the basic block BB into
|
||
array TOVISIT from index *TV. */
|
||
|
||
static void
|
||
fill_sons_in_loop (const struct loop *loop, basic_block bb,
|
||
basic_block *tovisit, int *tv)
|
||
{
|
||
basic_block son, postpone = NULL;
|
||
|
||
tovisit[(*tv)++] = bb;
|
||
for (son = first_dom_son (CDI_DOMINATORS, bb);
|
||
son;
|
||
son = next_dom_son (CDI_DOMINATORS, son))
|
||
{
|
||
if (!flow_bb_inside_loop_p (loop, son))
|
||
continue;
|
||
|
||
if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
|
||
{
|
||
postpone = son;
|
||
continue;
|
||
}
|
||
fill_sons_in_loop (loop, son, tovisit, tv);
|
||
}
|
||
|
||
if (postpone)
|
||
fill_sons_in_loop (loop, postpone, tovisit, tv);
|
||
}
|
||
|
||
/* Gets body of a LOOP (that must be different from the outermost loop)
|
||
sorted by dominance relation. Additionally, if a basic block s dominates
|
||
the latch, then only blocks dominated by s are be after it. */
|
||
|
||
basic_block *
|
||
get_loop_body_in_dom_order (const struct loop *loop)
|
||
{
|
||
basic_block *tovisit;
|
||
int tv;
|
||
|
||
gcc_assert (loop->num_nodes);
|
||
|
||
tovisit = XNEWVEC (basic_block, loop->num_nodes);
|
||
|
||
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
tv = 0;
|
||
fill_sons_in_loop (loop, loop->header, tovisit, &tv);
|
||
|
||
gcc_assert (tv == (int) loop->num_nodes);
|
||
|
||
return tovisit;
|
||
}
|
||
|
||
/* Gets body of a LOOP sorted via provided BB_COMPARATOR. */
|
||
|
||
basic_block *
|
||
get_loop_body_in_custom_order (const struct loop *loop,
|
||
int (*bb_comparator) (const void *, const void *))
|
||
{
|
||
basic_block *bbs = get_loop_body (loop);
|
||
|
||
qsort (bbs, loop->num_nodes, sizeof (basic_block), bb_comparator);
|
||
|
||
return bbs;
|
||
}
|
||
|
||
/* Get body of a LOOP in breadth first sort order. */
|
||
|
||
basic_block *
|
||
get_loop_body_in_bfs_order (const struct loop *loop)
|
||
{
|
||
basic_block *blocks;
|
||
basic_block bb;
|
||
bitmap visited;
|
||
unsigned int i = 1;
|
||
unsigned int vc = 0;
|
||
|
||
gcc_assert (loop->num_nodes);
|
||
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
blocks = XNEWVEC (basic_block, loop->num_nodes);
|
||
visited = BITMAP_ALLOC (NULL);
|
||
blocks[0] = loop->header;
|
||
bitmap_set_bit (visited, loop->header->index);
|
||
while (i < loop->num_nodes)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
gcc_assert (i > vc);
|
||
bb = blocks[vc++];
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (flow_bb_inside_loop_p (loop, e->dest))
|
||
{
|
||
/* This bb is now visited. */
|
||
if (bitmap_set_bit (visited, e->dest->index))
|
||
blocks[i++] = e->dest;
|
||
}
|
||
}
|
||
}
|
||
|
||
BITMAP_FREE (visited);
|
||
return blocks;
|
||
}
|
||
|
||
/* Hash function for struct loop_exit. */
|
||
|
||
hashval_t
|
||
loop_exit_hasher::hash (loop_exit *exit)
|
||
{
|
||
return htab_hash_pointer (exit->e);
|
||
}
|
||
|
||
/* Equality function for struct loop_exit. Compares with edge. */
|
||
|
||
bool
|
||
loop_exit_hasher::equal (loop_exit *exit, edge e)
|
||
{
|
||
return exit->e == e;
|
||
}
|
||
|
||
/* Frees the list of loop exit descriptions EX. */
|
||
|
||
void
|
||
loop_exit_hasher::remove (loop_exit *exit)
|
||
{
|
||
loop_exit *next;
|
||
for (; exit; exit = next)
|
||
{
|
||
next = exit->next_e;
|
||
|
||
exit->next->prev = exit->prev;
|
||
exit->prev->next = exit->next;
|
||
|
||
ggc_free (exit);
|
||
}
|
||
}
|
||
|
||
/* Returns the list of records for E as an exit of a loop. */
|
||
|
||
static struct loop_exit *
|
||
get_exit_descriptions (edge e)
|
||
{
|
||
return current_loops->exits->find_with_hash (e, htab_hash_pointer (e));
|
||
}
|
||
|
||
/* Updates the lists of loop exits in that E appears.
|
||
If REMOVED is true, E is being removed, and we
|
||
just remove it from the lists of exits.
|
||
If NEW_EDGE is true and E is not a loop exit, we
|
||
do not try to remove it from loop exit lists. */
|
||
|
||
void
|
||
rescan_loop_exit (edge e, bool new_edge, bool removed)
|
||
{
|
||
struct loop_exit *exits = NULL, *exit;
|
||
struct loop *aloop, *cloop;
|
||
|
||
if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
return;
|
||
|
||
if (!removed
|
||
&& e->src->loop_father != NULL
|
||
&& e->dest->loop_father != NULL
|
||
&& !flow_bb_inside_loop_p (e->src->loop_father, e->dest))
|
||
{
|
||
cloop = find_common_loop (e->src->loop_father, e->dest->loop_father);
|
||
for (aloop = e->src->loop_father;
|
||
aloop != cloop;
|
||
aloop = loop_outer (aloop))
|
||
{
|
||
exit = ggc_alloc<loop_exit> ();
|
||
exit->e = e;
|
||
|
||
exit->next = aloop->exits->next;
|
||
exit->prev = aloop->exits;
|
||
exit->next->prev = exit;
|
||
exit->prev->next = exit;
|
||
|
||
exit->next_e = exits;
|
||
exits = exit;
|
||
}
|
||
}
|
||
|
||
if (!exits && new_edge)
|
||
return;
|
||
|
||
loop_exit **slot
|
||
= current_loops->exits->find_slot_with_hash (e, htab_hash_pointer (e),
|
||
exits ? INSERT : NO_INSERT);
|
||
if (!slot)
|
||
return;
|
||
|
||
if (exits)
|
||
{
|
||
if (*slot)
|
||
loop_exit_hasher::remove (*slot);
|
||
*slot = exits;
|
||
}
|
||
else
|
||
current_loops->exits->clear_slot (slot);
|
||
}
|
||
|
||
/* For each loop, record list of exit edges, and start maintaining these
|
||
lists. */
|
||
|
||
void
|
||
record_loop_exits (void)
|
||
{
|
||
basic_block bb;
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
if (!current_loops)
|
||
return;
|
||
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
return;
|
||
loops_state_set (LOOPS_HAVE_RECORDED_EXITS);
|
||
|
||
gcc_assert (current_loops->exits == NULL);
|
||
current_loops->exits
|
||
= hash_table<loop_exit_hasher>::create_ggc (2 * number_of_loops (cfun));
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
rescan_loop_exit (e, true, false);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Dumps information about the exit in *SLOT to FILE.
|
||
Callback for htab_traverse. */
|
||
|
||
int
|
||
dump_recorded_exit (loop_exit **slot, FILE *file)
|
||
{
|
||
struct loop_exit *exit = *slot;
|
||
unsigned n = 0;
|
||
edge e = exit->e;
|
||
|
||
for (; exit != NULL; exit = exit->next_e)
|
||
n++;
|
||
|
||
fprintf (file, "Edge %d->%d exits %u loops\n",
|
||
e->src->index, e->dest->index, n);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Dumps the recorded exits of loops to FILE. */
|
||
|
||
extern void dump_recorded_exits (FILE *);
|
||
void
|
||
dump_recorded_exits (FILE *file)
|
||
{
|
||
if (!current_loops->exits)
|
||
return;
|
||
current_loops->exits->traverse<FILE *, dump_recorded_exit> (file);
|
||
}
|
||
|
||
/* Releases lists of loop exits. */
|
||
|
||
void
|
||
release_recorded_exits (function *fn)
|
||
{
|
||
gcc_assert (loops_state_satisfies_p (fn, LOOPS_HAVE_RECORDED_EXITS));
|
||
loops_for_fn (fn)->exits->empty ();
|
||
loops_for_fn (fn)->exits = NULL;
|
||
loops_state_clear (fn, LOOPS_HAVE_RECORDED_EXITS);
|
||
}
|
||
|
||
/* Returns the list of the exit edges of a LOOP. */
|
||
|
||
vec<edge>
|
||
get_loop_exit_edges (const struct loop *loop)
|
||
{
|
||
vec<edge> edges = vNULL;
|
||
edge e;
|
||
unsigned i;
|
||
basic_block *body;
|
||
edge_iterator ei;
|
||
struct loop_exit *exit;
|
||
|
||
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
/* If we maintain the lists of exits, use them. Otherwise we must
|
||
scan the body of the loop. */
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
{
|
||
for (exit = loop->exits->next; exit->e; exit = exit->next)
|
||
edges.safe_push (exit->e);
|
||
}
|
||
else
|
||
{
|
||
body = get_loop_body (loop);
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
FOR_EACH_EDGE (e, ei, body[i]->succs)
|
||
{
|
||
if (!flow_bb_inside_loop_p (loop, e->dest))
|
||
edges.safe_push (e);
|
||
}
|
||
free (body);
|
||
}
|
||
|
||
return edges;
|
||
}
|
||
|
||
/* Counts the number of conditional branches inside LOOP. */
|
||
|
||
unsigned
|
||
num_loop_branches (const struct loop *loop)
|
||
{
|
||
unsigned i, n;
|
||
basic_block * body;
|
||
|
||
gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun));
|
||
|
||
body = get_loop_body (loop);
|
||
n = 0;
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
if (EDGE_COUNT (body[i]->succs) >= 2)
|
||
n++;
|
||
free (body);
|
||
|
||
return n;
|
||
}
|
||
|
||
/* Adds basic block BB to LOOP. */
|
||
void
|
||
add_bb_to_loop (basic_block bb, struct loop *loop)
|
||
{
|
||
unsigned i;
|
||
loop_p ploop;
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
gcc_assert (bb->loop_father == NULL);
|
||
bb->loop_father = loop;
|
||
loop->num_nodes++;
|
||
FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
|
||
ploop->num_nodes++;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
rescan_loop_exit (e, true, false);
|
||
}
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
rescan_loop_exit (e, true, false);
|
||
}
|
||
}
|
||
|
||
/* Remove basic block BB from loops. */
|
||
void
|
||
remove_bb_from_loops (basic_block bb)
|
||
{
|
||
unsigned i;
|
||
struct loop *loop = bb->loop_father;
|
||
loop_p ploop;
|
||
edge_iterator ei;
|
||
edge e;
|
||
|
||
gcc_assert (loop != NULL);
|
||
loop->num_nodes--;
|
||
FOR_EACH_VEC_SAFE_ELT (loop->superloops, i, ploop)
|
||
ploop->num_nodes--;
|
||
bb->loop_father = NULL;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
rescan_loop_exit (e, false, true);
|
||
}
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
{
|
||
rescan_loop_exit (e, false, true);
|
||
}
|
||
}
|
||
|
||
/* Finds nearest common ancestor in loop tree for given loops. */
|
||
struct loop *
|
||
find_common_loop (struct loop *loop_s, struct loop *loop_d)
|
||
{
|
||
unsigned sdepth, ddepth;
|
||
|
||
if (!loop_s) return loop_d;
|
||
if (!loop_d) return loop_s;
|
||
|
||
sdepth = loop_depth (loop_s);
|
||
ddepth = loop_depth (loop_d);
|
||
|
||
if (sdepth < ddepth)
|
||
loop_d = (*loop_d->superloops)[sdepth];
|
||
else if (sdepth > ddepth)
|
||
loop_s = (*loop_s->superloops)[ddepth];
|
||
|
||
while (loop_s != loop_d)
|
||
{
|
||
loop_s = loop_outer (loop_s);
|
||
loop_d = loop_outer (loop_d);
|
||
}
|
||
return loop_s;
|
||
}
|
||
|
||
/* Removes LOOP from structures and frees its data. */
|
||
|
||
void
|
||
delete_loop (struct loop *loop)
|
||
{
|
||
/* Remove the loop from structure. */
|
||
flow_loop_tree_node_remove (loop);
|
||
|
||
/* Remove loop from loops array. */
|
||
(*current_loops->larray)[loop->num] = NULL;
|
||
|
||
/* Free loop data. */
|
||
flow_loop_free (loop);
|
||
}
|
||
|
||
/* Cancels the LOOP; it must be innermost one. */
|
||
|
||
static void
|
||
cancel_loop (struct loop *loop)
|
||
{
|
||
basic_block *bbs;
|
||
unsigned i;
|
||
struct loop *outer = loop_outer (loop);
|
||
|
||
gcc_assert (!loop->inner);
|
||
|
||
/* Move blocks up one level (they should be removed as soon as possible). */
|
||
bbs = get_loop_body (loop);
|
||
for (i = 0; i < loop->num_nodes; i++)
|
||
bbs[i]->loop_father = outer;
|
||
|
||
free (bbs);
|
||
delete_loop (loop);
|
||
}
|
||
|
||
/* Cancels LOOP and all its subloops. */
|
||
void
|
||
cancel_loop_tree (struct loop *loop)
|
||
{
|
||
while (loop->inner)
|
||
cancel_loop_tree (loop->inner);
|
||
cancel_loop (loop);
|
||
}
|
||
|
||
/* Checks that information about loops is correct
|
||
-- sizes of loops are all right
|
||
-- results of get_loop_body really belong to the loop
|
||
-- loop header have just single entry edge and single latch edge
|
||
-- loop latches have only single successor that is header of their loop
|
||
-- irreducible loops are correctly marked
|
||
-- the cached loop depth and loop father of each bb is correct
|
||
*/
|
||
DEBUG_FUNCTION void
|
||
verify_loop_structure (void)
|
||
{
|
||
unsigned *sizes, i, j;
|
||
basic_block bb, *bbs;
|
||
struct loop *loop;
|
||
int err = 0;
|
||
edge e;
|
||
unsigned num = number_of_loops (cfun);
|
||
struct loop_exit *exit, *mexit;
|
||
bool dom_available = dom_info_available_p (CDI_DOMINATORS);
|
||
|
||
if (loops_state_satisfies_p (LOOPS_NEED_FIXUP))
|
||
{
|
||
error ("loop verification on loop tree that needs fixup");
|
||
err = 1;
|
||
}
|
||
|
||
/* We need up-to-date dominators, compute or verify them. */
|
||
if (!dom_available)
|
||
calculate_dominance_info (CDI_DOMINATORS);
|
||
else
|
||
verify_dominators (CDI_DOMINATORS);
|
||
|
||
/* Check the loop tree root. */
|
||
if (current_loops->tree_root->header != ENTRY_BLOCK_PTR_FOR_FN (cfun)
|
||
|| current_loops->tree_root->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| (current_loops->tree_root->num_nodes
|
||
!= (unsigned) n_basic_blocks_for_fn (cfun)))
|
||
{
|
||
error ("corrupt loop tree root");
|
||
err = 1;
|
||
}
|
||
|
||
/* Check the headers. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
if (bb_loop_header_p (bb))
|
||
{
|
||
if (bb->loop_father->header == NULL)
|
||
{
|
||
error ("loop with header %d marked for removal", bb->index);
|
||
err = 1;
|
||
}
|
||
else if (bb->loop_father->header != bb)
|
||
{
|
||
error ("loop with header %d not in loop tree", bb->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
else if (bb->loop_father->header == bb)
|
||
{
|
||
error ("non-loop with header %d not marked for removal", bb->index);
|
||
err = 1;
|
||
}
|
||
|
||
/* Check the recorded loop father and sizes of loops. */
|
||
auto_sbitmap visited (last_basic_block_for_fn (cfun));
|
||
bitmap_clear (visited);
|
||
bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
||
FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
|
||
{
|
||
unsigned n;
|
||
|
||
if (loop->header == NULL)
|
||
{
|
||
error ("removed loop %d in loop tree", loop->num);
|
||
err = 1;
|
||
continue;
|
||
}
|
||
|
||
n = get_loop_body_with_size (loop, bbs, n_basic_blocks_for_fn (cfun));
|
||
if (loop->num_nodes != n)
|
||
{
|
||
error ("size of loop %d should be %d, not %d",
|
||
loop->num, n, loop->num_nodes);
|
||
err = 1;
|
||
}
|
||
|
||
for (j = 0; j < n; j++)
|
||
{
|
||
bb = bbs[j];
|
||
|
||
if (!flow_bb_inside_loop_p (loop, bb))
|
||
{
|
||
error ("bb %d does not belong to loop %d",
|
||
bb->index, loop->num);
|
||
err = 1;
|
||
}
|
||
|
||
/* Ignore this block if it is in an inner loop. */
|
||
if (bitmap_bit_p (visited, bb->index))
|
||
continue;
|
||
bitmap_set_bit (visited, bb->index);
|
||
|
||
if (bb->loop_father != loop)
|
||
{
|
||
error ("bb %d has father loop %d, should be loop %d",
|
||
bb->index, bb->loop_father->num, loop->num);
|
||
err = 1;
|
||
}
|
||
}
|
||
}
|
||
free (bbs);
|
||
|
||
/* Check headers and latches. */
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
i = loop->num;
|
||
if (loop->header == NULL)
|
||
continue;
|
||
if (!bb_loop_header_p (loop->header))
|
||
{
|
||
error ("loop %d%'s header is not a loop header", i);
|
||
err = 1;
|
||
}
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS)
|
||
&& EDGE_COUNT (loop->header->preds) != 2)
|
||
{
|
||
error ("loop %d%'s header does not have exactly 2 entries", i);
|
||
err = 1;
|
||
}
|
||
if (loop->latch)
|
||
{
|
||
if (!find_edge (loop->latch, loop->header))
|
||
{
|
||
error ("loop %d%'s latch does not have an edge to its header", i);
|
||
err = 1;
|
||
}
|
||
if (!dominated_by_p (CDI_DOMINATORS, loop->latch, loop->header))
|
||
{
|
||
error ("loop %d%'s latch is not dominated by its header", i);
|
||
err = 1;
|
||
}
|
||
}
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
|
||
{
|
||
if (!single_succ_p (loop->latch))
|
||
{
|
||
error ("loop %d%'s latch does not have exactly 1 successor", i);
|
||
err = 1;
|
||
}
|
||
if (single_succ (loop->latch) != loop->header)
|
||
{
|
||
error ("loop %d%'s latch does not have header as successor", i);
|
||
err = 1;
|
||
}
|
||
if (loop->latch->loop_father != loop)
|
||
{
|
||
error ("loop %d%'s latch does not belong directly to it", i);
|
||
err = 1;
|
||
}
|
||
}
|
||
if (loop->header->loop_father != loop)
|
||
{
|
||
error ("loop %d%'s header does not belong directly to it", i);
|
||
err = 1;
|
||
}
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS)
|
||
&& (loop_latch_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP))
|
||
{
|
||
error ("loop %d%'s latch is marked as part of irreducible region", i);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
/* Check irreducible loops. */
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
|
||
{
|
||
/* Record old info. */
|
||
auto_sbitmap irreds (last_basic_block_for_fn (cfun));
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge_iterator ei;
|
||
if (bb->flags & BB_IRREDUCIBLE_LOOP)
|
||
bitmap_set_bit (irreds, bb->index);
|
||
else
|
||
bitmap_clear_bit (irreds, bb->index);
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (e->flags & EDGE_IRREDUCIBLE_LOOP)
|
||
e->flags |= EDGE_ALL_FLAGS + 1;
|
||
}
|
||
|
||
/* Recount it. */
|
||
mark_irreducible_loops ();
|
||
|
||
/* Compare. */
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge_iterator ei;
|
||
|
||
if ((bb->flags & BB_IRREDUCIBLE_LOOP)
|
||
&& !bitmap_bit_p (irreds, bb->index))
|
||
{
|
||
error ("basic block %d should be marked irreducible", bb->index);
|
||
err = 1;
|
||
}
|
||
else if (!(bb->flags & BB_IRREDUCIBLE_LOOP)
|
||
&& bitmap_bit_p (irreds, bb->index))
|
||
{
|
||
error ("basic block %d should not be marked irreducible", bb->index);
|
||
err = 1;
|
||
}
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if ((e->flags & EDGE_IRREDUCIBLE_LOOP)
|
||
&& !(e->flags & (EDGE_ALL_FLAGS + 1)))
|
||
{
|
||
error ("edge from %d to %d should be marked irreducible",
|
||
e->src->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
else if (!(e->flags & EDGE_IRREDUCIBLE_LOOP)
|
||
&& (e->flags & (EDGE_ALL_FLAGS + 1)))
|
||
{
|
||
error ("edge from %d to %d should not be marked irreducible",
|
||
e->src->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
e->flags &= ~(EDGE_ALL_FLAGS + 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check the recorded loop exits. */
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
if (!loop->exits || loop->exits->e != NULL)
|
||
{
|
||
error ("corrupted head of the exits list of loop %d",
|
||
loop->num);
|
||
err = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Check that the list forms a cycle, and all elements except
|
||
for the head are nonnull. */
|
||
for (mexit = loop->exits, exit = mexit->next, i = 0;
|
||
exit->e && exit != mexit;
|
||
exit = exit->next)
|
||
{
|
||
if (i++ & 1)
|
||
mexit = mexit->next;
|
||
}
|
||
|
||
if (exit != loop->exits)
|
||
{
|
||
error ("corrupted exits list of loop %d", loop->num);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
{
|
||
if (loop->exits->next != loop->exits)
|
||
{
|
||
error ("nonempty exits list of loop %d, but exits are not recorded",
|
||
loop->num);
|
||
err = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
{
|
||
unsigned n_exits = 0, eloops;
|
||
|
||
sizes = XCNEWVEC (unsigned, num);
|
||
memset (sizes, 0, sizeof (unsigned) * num);
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
edge_iterator ei;
|
||
if (bb->loop_father == current_loops->tree_root)
|
||
continue;
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
{
|
||
if (flow_bb_inside_loop_p (bb->loop_father, e->dest))
|
||
continue;
|
||
|
||
n_exits++;
|
||
exit = get_exit_descriptions (e);
|
||
if (!exit)
|
||
{
|
||
error ("exit %d->%d not recorded",
|
||
e->src->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
eloops = 0;
|
||
for (; exit; exit = exit->next_e)
|
||
eloops++;
|
||
|
||
for (loop = bb->loop_father;
|
||
loop != e->dest->loop_father
|
||
/* When a loop exit is also an entry edge which
|
||
can happen when avoiding CFG manipulations
|
||
then the last loop exited is the outer loop
|
||
of the loop entered. */
|
||
&& loop != loop_outer (e->dest->loop_father);
|
||
loop = loop_outer (loop))
|
||
{
|
||
eloops--;
|
||
sizes[loop->num]++;
|
||
}
|
||
|
||
if (eloops != 0)
|
||
{
|
||
error ("wrong list of exited loops for edge %d->%d",
|
||
e->src->index, e->dest->index);
|
||
err = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (n_exits != current_loops->exits->elements ())
|
||
{
|
||
error ("too many loop exits recorded");
|
||
err = 1;
|
||
}
|
||
|
||
FOR_EACH_LOOP (loop, 0)
|
||
{
|
||
eloops = 0;
|
||
for (exit = loop->exits->next; exit->e; exit = exit->next)
|
||
eloops++;
|
||
if (eloops != sizes[loop->num])
|
||
{
|
||
error ("%d exits recorded for loop %d (having %d exits)",
|
||
eloops, loop->num, sizes[loop->num]);
|
||
err = 1;
|
||
}
|
||
}
|
||
|
||
free (sizes);
|
||
}
|
||
|
||
gcc_assert (!err);
|
||
|
||
if (!dom_available)
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
}
|
||
|
||
/* Returns latch edge of LOOP. */
|
||
edge
|
||
loop_latch_edge (const struct loop *loop)
|
||
{
|
||
return find_edge (loop->latch, loop->header);
|
||
}
|
||
|
||
/* Returns preheader edge of LOOP. */
|
||
edge
|
||
loop_preheader_edge (const struct loop *loop)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
gcc_assert (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS));
|
||
|
||
FOR_EACH_EDGE (e, ei, loop->header->preds)
|
||
if (e->src != loop->latch)
|
||
break;
|
||
|
||
return e;
|
||
}
|
||
|
||
/* Returns true if E is an exit of LOOP. */
|
||
|
||
bool
|
||
loop_exit_edge_p (const struct loop *loop, const_edge e)
|
||
{
|
||
return (flow_bb_inside_loop_p (loop, e->src)
|
||
&& !flow_bb_inside_loop_p (loop, e->dest));
|
||
}
|
||
|
||
/* Returns the single exit edge of LOOP, or NULL if LOOP has either no exit
|
||
or more than one exit. If loops do not have the exits recorded, NULL
|
||
is returned always. */
|
||
|
||
edge
|
||
single_exit (const struct loop *loop)
|
||
{
|
||
struct loop_exit *exit = loop->exits->next;
|
||
|
||
if (!loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
|
||
return NULL;
|
||
|
||
if (exit->e && exit->next == loop->exits)
|
||
return exit->e;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Returns true when BB has an incoming edge exiting LOOP. */
|
||
|
||
bool
|
||
loop_exits_to_bb_p (struct loop *loop, basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->preds)
|
||
if (loop_exit_edge_p (loop, e))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Returns true when BB has an outgoing edge exiting LOOP. */
|
||
|
||
bool
|
||
loop_exits_from_bb_p (struct loop *loop, basic_block bb)
|
||
{
|
||
edge e;
|
||
edge_iterator ei;
|
||
|
||
FOR_EACH_EDGE (e, ei, bb->succs)
|
||
if (loop_exit_edge_p (loop, e))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return location corresponding to the loop control condition if possible. */
|
||
|
||
location_t
|
||
get_loop_location (struct loop *loop)
|
||
{
|
||
rtx_insn *insn = NULL;
|
||
struct niter_desc *desc = NULL;
|
||
edge exit;
|
||
|
||
/* For a for or while loop, we would like to return the location
|
||
of the for or while statement, if possible. To do this, look
|
||
for the branch guarding the loop back-edge. */
|
||
|
||
/* If this is a simple loop with an in_edge, then the loop control
|
||
branch is typically at the end of its source. */
|
||
desc = get_simple_loop_desc (loop);
|
||
if (desc->in_edge)
|
||
{
|
||
FOR_BB_INSNS_REVERSE (desc->in_edge->src, insn)
|
||
{
|
||
if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
|
||
return INSN_LOCATION (insn);
|
||
}
|
||
}
|
||
/* If loop has a single exit, then the loop control branch
|
||
must be at the end of its source. */
|
||
if ((exit = single_exit (loop)))
|
||
{
|
||
FOR_BB_INSNS_REVERSE (exit->src, insn)
|
||
{
|
||
if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
|
||
return INSN_LOCATION (insn);
|
||
}
|
||
}
|
||
/* Next check the latch, to see if it is non-empty. */
|
||
FOR_BB_INSNS_REVERSE (loop->latch, insn)
|
||
{
|
||
if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
|
||
return INSN_LOCATION (insn);
|
||
}
|
||
/* Finally, if none of the above identifies the loop control branch,
|
||
return the first location in the loop header. */
|
||
FOR_BB_INSNS (loop->header, insn)
|
||
{
|
||
if (INSN_P (insn) && INSN_HAS_LOCATION (insn))
|
||
return INSN_LOCATION (insn);
|
||
}
|
||
/* If all else fails, simply return the current function location. */
|
||
return DECL_SOURCE_LOCATION (current_function_decl);
|
||
}
|
||
|
||
/* Records that every statement in LOOP is executed I_BOUND times.
|
||
REALISTIC is true if I_BOUND is expected to be close to the real number
|
||
of iterations. UPPER is true if we are sure the loop iterates at most
|
||
I_BOUND times. */
|
||
|
||
void
|
||
record_niter_bound (struct loop *loop, const widest_int &i_bound,
|
||
bool realistic, bool upper)
|
||
{
|
||
/* Update the bounds only when there is no previous estimation, or when the
|
||
current estimation is smaller. */
|
||
if (upper
|
||
&& (!loop->any_upper_bound
|
||
|| wi::ltu_p (i_bound, loop->nb_iterations_upper_bound)))
|
||
{
|
||
loop->any_upper_bound = true;
|
||
loop->nb_iterations_upper_bound = i_bound;
|
||
if (!loop->any_likely_upper_bound)
|
||
{
|
||
loop->any_likely_upper_bound = true;
|
||
loop->nb_iterations_likely_upper_bound = i_bound;
|
||
}
|
||
}
|
||
if (realistic
|
||
&& (!loop->any_estimate
|
||
|| wi::ltu_p (i_bound, loop->nb_iterations_estimate)))
|
||
{
|
||
loop->any_estimate = true;
|
||
loop->nb_iterations_estimate = i_bound;
|
||
}
|
||
if (!realistic
|
||
&& (!loop->any_likely_upper_bound
|
||
|| wi::ltu_p (i_bound, loop->nb_iterations_likely_upper_bound)))
|
||
{
|
||
loop->any_likely_upper_bound = true;
|
||
loop->nb_iterations_likely_upper_bound = i_bound;
|
||
}
|
||
|
||
/* If an upper bound is smaller than the realistic estimate of the
|
||
number of iterations, use the upper bound instead. */
|
||
if (loop->any_upper_bound
|
||
&& loop->any_estimate
|
||
&& wi::ltu_p (loop->nb_iterations_upper_bound,
|
||
loop->nb_iterations_estimate))
|
||
loop->nb_iterations_estimate = loop->nb_iterations_upper_bound;
|
||
if (loop->any_upper_bound
|
||
&& loop->any_likely_upper_bound
|
||
&& wi::ltu_p (loop->nb_iterations_upper_bound,
|
||
loop->nb_iterations_likely_upper_bound))
|
||
loop->nb_iterations_likely_upper_bound = loop->nb_iterations_upper_bound;
|
||
}
|
||
|
||
/* Similar to get_estimated_loop_iterations, but returns the estimate only
|
||
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
||
on the number of iterations of LOOP could not be derived, returns -1. */
|
||
|
||
HOST_WIDE_INT
|
||
get_estimated_loop_iterations_int (struct loop *loop)
|
||
{
|
||
widest_int nit;
|
||
HOST_WIDE_INT hwi_nit;
|
||
|
||
if (!get_estimated_loop_iterations (loop, &nit))
|
||
return -1;
|
||
|
||
if (!wi::fits_shwi_p (nit))
|
||
return -1;
|
||
hwi_nit = nit.to_shwi ();
|
||
|
||
return hwi_nit < 0 ? -1 : hwi_nit;
|
||
}
|
||
|
||
/* Returns an upper bound on the number of executions of statements
|
||
in the LOOP. For statements before the loop exit, this exceeds
|
||
the number of execution of the latch by one. */
|
||
|
||
HOST_WIDE_INT
|
||
max_stmt_executions_int (struct loop *loop)
|
||
{
|
||
HOST_WIDE_INT nit = get_max_loop_iterations_int (loop);
|
||
HOST_WIDE_INT snit;
|
||
|
||
if (nit == -1)
|
||
return -1;
|
||
|
||
snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
|
||
|
||
/* If the computation overflows, return -1. */
|
||
return snit < 0 ? -1 : snit;
|
||
}
|
||
|
||
/* Returns an likely upper bound on the number of executions of statements
|
||
in the LOOP. For statements before the loop exit, this exceeds
|
||
the number of execution of the latch by one. */
|
||
|
||
HOST_WIDE_INT
|
||
likely_max_stmt_executions_int (struct loop *loop)
|
||
{
|
||
HOST_WIDE_INT nit = get_likely_max_loop_iterations_int (loop);
|
||
HOST_WIDE_INT snit;
|
||
|
||
if (nit == -1)
|
||
return -1;
|
||
|
||
snit = (HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) nit + 1);
|
||
|
||
/* If the computation overflows, return -1. */
|
||
return snit < 0 ? -1 : snit;
|
||
}
|
||
|
||
/* Sets NIT to the estimated number of executions of the latch of the
|
||
LOOP. If we have no reliable estimate, the function returns false, otherwise
|
||
returns true. */
|
||
|
||
bool
|
||
get_estimated_loop_iterations (struct loop *loop, widest_int *nit)
|
||
{
|
||
/* Even if the bound is not recorded, possibly we can derrive one from
|
||
profile. */
|
||
if (!loop->any_estimate)
|
||
{
|
||
if (loop->header->count)
|
||
{
|
||
*nit = gcov_type_to_wide_int
|
||
(expected_loop_iterations_unbounded (loop) + 1);
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
*nit = loop->nb_iterations_estimate;
|
||
return true;
|
||
}
|
||
|
||
/* Sets NIT to an upper bound for the maximum number of executions of the
|
||
latch of the LOOP. If we have no reliable estimate, the function returns
|
||
false, otherwise returns true. */
|
||
|
||
bool
|
||
get_max_loop_iterations (const struct loop *loop, widest_int *nit)
|
||
{
|
||
if (!loop->any_upper_bound)
|
||
return false;
|
||
|
||
*nit = loop->nb_iterations_upper_bound;
|
||
return true;
|
||
}
|
||
|
||
/* Similar to get_max_loop_iterations, but returns the estimate only
|
||
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
||
on the number of iterations of LOOP could not be derived, returns -1. */
|
||
|
||
HOST_WIDE_INT
|
||
get_max_loop_iterations_int (const struct loop *loop)
|
||
{
|
||
widest_int nit;
|
||
HOST_WIDE_INT hwi_nit;
|
||
|
||
if (!get_max_loop_iterations (loop, &nit))
|
||
return -1;
|
||
|
||
if (!wi::fits_shwi_p (nit))
|
||
return -1;
|
||
hwi_nit = nit.to_shwi ();
|
||
|
||
return hwi_nit < 0 ? -1 : hwi_nit;
|
||
}
|
||
|
||
/* Sets NIT to an upper bound for the maximum number of executions of the
|
||
latch of the LOOP. If we have no reliable estimate, the function returns
|
||
false, otherwise returns true. */
|
||
|
||
bool
|
||
get_likely_max_loop_iterations (struct loop *loop, widest_int *nit)
|
||
{
|
||
if (!loop->any_likely_upper_bound)
|
||
return false;
|
||
|
||
*nit = loop->nb_iterations_likely_upper_bound;
|
||
return true;
|
||
}
|
||
|
||
/* Similar to get_max_loop_iterations, but returns the estimate only
|
||
if it fits to HOST_WIDE_INT. If this is not the case, or the estimate
|
||
on the number of iterations of LOOP could not be derived, returns -1. */
|
||
|
||
HOST_WIDE_INT
|
||
get_likely_max_loop_iterations_int (struct loop *loop)
|
||
{
|
||
widest_int nit;
|
||
HOST_WIDE_INT hwi_nit;
|
||
|
||
if (!get_likely_max_loop_iterations (loop, &nit))
|
||
return -1;
|
||
|
||
if (!wi::fits_shwi_p (nit))
|
||
return -1;
|
||
hwi_nit = nit.to_shwi ();
|
||
|
||
return hwi_nit < 0 ? -1 : hwi_nit;
|
||
}
|
||
|
||
/* Returns the loop depth of the loop BB belongs to. */
|
||
|
||
int
|
||
bb_loop_depth (const_basic_block bb)
|
||
{
|
||
return bb->loop_father ? loop_depth (bb->loop_father) : 0;
|
||
}
|
||
|
||
/* Marks LOOP for removal and sets LOOPS_NEED_FIXUP. */
|
||
|
||
void
|
||
mark_loop_for_removal (loop_p loop)
|
||
{
|
||
if (loop->header == NULL)
|
||
return;
|
||
loop->former_header = loop->header;
|
||
loop->header = NULL;
|
||
loop->latch = NULL;
|
||
loops_state_set (LOOPS_NEED_FIXUP);
|
||
}
|