d9ad3b422f
gcc/ChangeLog: * value-prof.c (get_nth_most_common_value): Use %s instead of %qs string.
1967 lines
56 KiB
C
1967 lines
56 KiB
C
/* Transformations based on profile information for values.
|
||
Copyright (C) 2003-2021 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "cfghooks.h"
|
||
#include "ssa.h"
|
||
#include "cgraph.h"
|
||
#include "coverage.h"
|
||
#include "data-streamer.h"
|
||
#include "diagnostic.h"
|
||
#include "fold-const.h"
|
||
#include "tree-nested.h"
|
||
#include "calls.h"
|
||
#include "expr.h"
|
||
#include "value-prof.h"
|
||
#include "tree-eh.h"
|
||
#include "gimplify.h"
|
||
#include "gimple-iterator.h"
|
||
#include "tree-cfg.h"
|
||
#include "gimple-pretty-print.h"
|
||
#include "dumpfile.h"
|
||
#include "builtins.h"
|
||
|
||
/* In this file value profile based optimizations are placed. Currently the
|
||
following optimizations are implemented (for more detailed descriptions
|
||
see comments at value_profile_transformations):
|
||
|
||
1) Division/modulo specialization. Provided that we can determine that the
|
||
operands of the division have some special properties, we may use it to
|
||
produce more effective code.
|
||
|
||
2) Indirect/virtual call specialization. If we can determine most
|
||
common function callee in indirect/virtual call. We can use this
|
||
information to improve code effectiveness (especially info for
|
||
the inliner).
|
||
|
||
3) Speculative prefetching. If we are able to determine that the difference
|
||
between addresses accessed by a memory reference is usually constant, we
|
||
may add the prefetch instructions.
|
||
FIXME: This transformation was removed together with RTL based value
|
||
profiling.
|
||
|
||
|
||
Value profiling internals
|
||
==========================
|
||
|
||
Every value profiling transformation starts with defining what values
|
||
to profile. There are different histogram types (see HIST_TYPE_* in
|
||
value-prof.h) and each transformation can request one or more histogram
|
||
types per GIMPLE statement. The function gimple_find_values_to_profile()
|
||
collects the values to profile in a vec, and adds the number of counters
|
||
required for the different histogram types.
|
||
|
||
For a -fprofile-generate run, the statements for which values should be
|
||
recorded, are instrumented in instrument_values(). The instrumentation
|
||
is done by helper functions that can be found in tree-profile.c, where
|
||
new types of histograms can be added if necessary.
|
||
|
||
After a -fprofile-use, the value profiling data is read back in by
|
||
compute_value_histograms() that translates the collected data to
|
||
histograms and attaches them to the profiled statements via
|
||
gimple_add_histogram_value(). Histograms are stored in a hash table
|
||
that is attached to every intrumented function, see VALUE_HISTOGRAMS
|
||
in function.h.
|
||
|
||
The value-profile transformations driver is the function
|
||
gimple_value_profile_transformations(). It traverses all statements in
|
||
the to-be-transformed function, and looks for statements with one or
|
||
more histograms attached to it. If a statement has histograms, the
|
||
transformation functions are called on the statement.
|
||
|
||
Limitations / FIXME / TODO:
|
||
* Only one histogram of each type can be associated with a statement.
|
||
* Some value profile transformations are done in builtins.c (?!)
|
||
* Updating of histograms needs some TLC.
|
||
* The value profiling code could be used to record analysis results
|
||
from non-profiling (e.g. VRP).
|
||
* Adding new profilers should be simplified, starting with a cleanup
|
||
of what-happens-where and with making gimple_find_values_to_profile
|
||
and gimple_value_profile_transformations table-driven, perhaps...
|
||
*/
|
||
|
||
static bool gimple_divmod_fixed_value_transform (gimple_stmt_iterator *);
|
||
static bool gimple_mod_pow2_value_transform (gimple_stmt_iterator *);
|
||
static bool gimple_mod_subtract_transform (gimple_stmt_iterator *);
|
||
static bool gimple_stringops_transform (gimple_stmt_iterator *);
|
||
static void dump_ic_profile (gimple_stmt_iterator *gsi);
|
||
|
||
/* Allocate histogram value. */
|
||
|
||
histogram_value
|
||
gimple_alloc_histogram_value (struct function *fun ATTRIBUTE_UNUSED,
|
||
enum hist_type type, gimple *stmt, tree value)
|
||
{
|
||
histogram_value hist = (histogram_value) xcalloc (1, sizeof (*hist));
|
||
hist->hvalue.value = value;
|
||
hist->hvalue.stmt = stmt;
|
||
hist->type = type;
|
||
return hist;
|
||
}
|
||
|
||
/* Hash value for histogram. */
|
||
|
||
static hashval_t
|
||
histogram_hash (const void *x)
|
||
{
|
||
return htab_hash_pointer (((const_histogram_value)x)->hvalue.stmt);
|
||
}
|
||
|
||
/* Return nonzero if statement for histogram_value X is Y. */
|
||
|
||
static int
|
||
histogram_eq (const void *x, const void *y)
|
||
{
|
||
return ((const_histogram_value) x)->hvalue.stmt == (const gimple *) y;
|
||
}
|
||
|
||
/* Set histogram for STMT. */
|
||
|
||
static void
|
||
set_histogram_value (struct function *fun, gimple *stmt, histogram_value hist)
|
||
{
|
||
void **loc;
|
||
if (!hist && !VALUE_HISTOGRAMS (fun))
|
||
return;
|
||
if (!VALUE_HISTOGRAMS (fun))
|
||
VALUE_HISTOGRAMS (fun) = htab_create (1, histogram_hash,
|
||
histogram_eq, NULL);
|
||
loc = htab_find_slot_with_hash (VALUE_HISTOGRAMS (fun), stmt,
|
||
htab_hash_pointer (stmt),
|
||
hist ? INSERT : NO_INSERT);
|
||
if (!hist)
|
||
{
|
||
if (loc)
|
||
htab_clear_slot (VALUE_HISTOGRAMS (fun), loc);
|
||
return;
|
||
}
|
||
*loc = hist;
|
||
}
|
||
|
||
/* Get histogram list for STMT. */
|
||
|
||
histogram_value
|
||
gimple_histogram_value (struct function *fun, gimple *stmt)
|
||
{
|
||
if (!VALUE_HISTOGRAMS (fun))
|
||
return NULL;
|
||
return (histogram_value) htab_find_with_hash (VALUE_HISTOGRAMS (fun), stmt,
|
||
htab_hash_pointer (stmt));
|
||
}
|
||
|
||
/* Add histogram for STMT. */
|
||
|
||
void
|
||
gimple_add_histogram_value (struct function *fun, gimple *stmt,
|
||
histogram_value hist)
|
||
{
|
||
hist->hvalue.next = gimple_histogram_value (fun, stmt);
|
||
set_histogram_value (fun, stmt, hist);
|
||
hist->fun = fun;
|
||
}
|
||
|
||
/* Remove histogram HIST from STMT's histogram list. */
|
||
|
||
void
|
||
gimple_remove_histogram_value (struct function *fun, gimple *stmt,
|
||
histogram_value hist)
|
||
{
|
||
histogram_value hist2 = gimple_histogram_value (fun, stmt);
|
||
if (hist == hist2)
|
||
{
|
||
set_histogram_value (fun, stmt, hist->hvalue.next);
|
||
}
|
||
else
|
||
{
|
||
while (hist2->hvalue.next != hist)
|
||
hist2 = hist2->hvalue.next;
|
||
hist2->hvalue.next = hist->hvalue.next;
|
||
}
|
||
free (hist->hvalue.counters);
|
||
if (flag_checking)
|
||
memset (hist, 0xab, sizeof (*hist));
|
||
free (hist);
|
||
}
|
||
|
||
/* Lookup histogram of type TYPE in the STMT. */
|
||
|
||
histogram_value
|
||
gimple_histogram_value_of_type (struct function *fun, gimple *stmt,
|
||
enum hist_type type)
|
||
{
|
||
histogram_value hist;
|
||
for (hist = gimple_histogram_value (fun, stmt); hist;
|
||
hist = hist->hvalue.next)
|
||
if (hist->type == type)
|
||
return hist;
|
||
return NULL;
|
||
}
|
||
|
||
/* Dump information about HIST to DUMP_FILE. */
|
||
|
||
static void
|
||
dump_histogram_value (FILE *dump_file, histogram_value hist)
|
||
{
|
||
switch (hist->type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
if (hist->hvalue.counters)
|
||
{
|
||
fprintf (dump_file, "Interval counter range [%d,%d]: [",
|
||
hist->hdata.intvl.int_start,
|
||
(hist->hdata.intvl.int_start
|
||
+ hist->hdata.intvl.steps - 1));
|
||
|
||
unsigned int i;
|
||
for (i = 0; i < hist->hdata.intvl.steps; i++)
|
||
{
|
||
fprintf (dump_file, "%d:%" PRId64,
|
||
hist->hdata.intvl.int_start + i,
|
||
(int64_t) hist->hvalue.counters[i]);
|
||
if (i != hist->hdata.intvl.steps - 1)
|
||
fprintf (dump_file, ", ");
|
||
}
|
||
fprintf (dump_file, "] outside range: %" PRId64 ".\n",
|
||
(int64_t) hist->hvalue.counters[i]);
|
||
}
|
||
break;
|
||
|
||
case HIST_TYPE_POW2:
|
||
if (hist->hvalue.counters)
|
||
fprintf (dump_file, "Pow2 counter pow2:%" PRId64
|
||
" nonpow2:%" PRId64 ".\n",
|
||
(int64_t) hist->hvalue.counters[1],
|
||
(int64_t) hist->hvalue.counters[0]);
|
||
break;
|
||
|
||
case HIST_TYPE_TOPN_VALUES:
|
||
case HIST_TYPE_INDIR_CALL:
|
||
if (hist->hvalue.counters)
|
||
{
|
||
fprintf (dump_file,
|
||
(hist->type == HIST_TYPE_TOPN_VALUES
|
||
? "Top N value counter" : "Indirect call counter"));
|
||
if (hist->hvalue.counters)
|
||
{
|
||
unsigned count = hist->hvalue.counters[1];
|
||
fprintf (dump_file, " all: %" PRId64 ", %" PRId64 " values: ",
|
||
(int64_t) hist->hvalue.counters[0], (int64_t) count);
|
||
for (unsigned i = 0; i < count; i++)
|
||
{
|
||
fprintf (dump_file, "[%" PRId64 ":%" PRId64 "]",
|
||
(int64_t) hist->hvalue.counters[2 * i + 2],
|
||
(int64_t) hist->hvalue.counters[2 * i + 3]);
|
||
if (i != count - 1)
|
||
fprintf (dump_file, ", ");
|
||
}
|
||
fprintf (dump_file, ".\n");
|
||
}
|
||
}
|
||
break;
|
||
|
||
case HIST_TYPE_AVERAGE:
|
||
if (hist->hvalue.counters)
|
||
fprintf (dump_file, "Average value sum:%" PRId64
|
||
" times:%" PRId64 ".\n",
|
||
(int64_t) hist->hvalue.counters[0],
|
||
(int64_t) hist->hvalue.counters[1]);
|
||
break;
|
||
|
||
case HIST_TYPE_IOR:
|
||
if (hist->hvalue.counters)
|
||
fprintf (dump_file, "IOR value ior:%" PRId64 ".\n",
|
||
(int64_t) hist->hvalue.counters[0]);
|
||
break;
|
||
|
||
case HIST_TYPE_TIME_PROFILE:
|
||
if (hist->hvalue.counters)
|
||
fprintf (dump_file, "Time profile time:%" PRId64 ".\n",
|
||
(int64_t) hist->hvalue.counters[0]);
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Dump information about HIST to DUMP_FILE. */
|
||
|
||
void
|
||
stream_out_histogram_value (struct output_block *ob, histogram_value hist)
|
||
{
|
||
struct bitpack_d bp;
|
||
unsigned int i;
|
||
|
||
bp = bitpack_create (ob->main_stream);
|
||
bp_pack_enum (&bp, hist_type, HIST_TYPE_MAX, hist->type);
|
||
bp_pack_value (&bp, hist->hvalue.next != NULL, 1);
|
||
streamer_write_bitpack (&bp);
|
||
switch (hist->type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
streamer_write_hwi (ob, hist->hdata.intvl.int_start);
|
||
streamer_write_uhwi (ob, hist->hdata.intvl.steps);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
for (i = 0; i < hist->n_counters; i++)
|
||
{
|
||
/* When user uses an unsigned type with a big value, constant converted
|
||
to gcov_type (a signed type) can be negative. */
|
||
gcov_type value = hist->hvalue.counters[i];
|
||
if (hist->type == HIST_TYPE_TOPN_VALUES
|
||
|| hist->type == HIST_TYPE_IOR)
|
||
/* Note that the IOR counter tracks pointer values and these can have
|
||
sign bit set. */
|
||
;
|
||
else
|
||
gcc_assert (value >= 0);
|
||
|
||
streamer_write_gcov_count (ob, value);
|
||
}
|
||
if (hist->hvalue.next)
|
||
stream_out_histogram_value (ob, hist->hvalue.next);
|
||
}
|
||
|
||
/* Dump information about HIST to DUMP_FILE. */
|
||
|
||
void
|
||
stream_in_histogram_value (class lto_input_block *ib, gimple *stmt)
|
||
{
|
||
enum hist_type type;
|
||
unsigned int ncounters = 0;
|
||
struct bitpack_d bp;
|
||
unsigned int i;
|
||
histogram_value new_val;
|
||
bool next;
|
||
histogram_value *next_p = NULL;
|
||
|
||
do
|
||
{
|
||
bp = streamer_read_bitpack (ib);
|
||
type = bp_unpack_enum (&bp, hist_type, HIST_TYPE_MAX);
|
||
next = bp_unpack_value (&bp, 1);
|
||
new_val = gimple_alloc_histogram_value (cfun, type, stmt);
|
||
switch (type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
new_val->hdata.intvl.int_start = streamer_read_hwi (ib);
|
||
new_val->hdata.intvl.steps = streamer_read_uhwi (ib);
|
||
ncounters = new_val->hdata.intvl.steps + 2;
|
||
break;
|
||
|
||
case HIST_TYPE_POW2:
|
||
case HIST_TYPE_AVERAGE:
|
||
ncounters = 2;
|
||
break;
|
||
|
||
case HIST_TYPE_TOPN_VALUES:
|
||
case HIST_TYPE_INDIR_CALL:
|
||
break;
|
||
|
||
case HIST_TYPE_IOR:
|
||
case HIST_TYPE_TIME_PROFILE:
|
||
ncounters = 1;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* TOP N counters have variable number of counters. */
|
||
if (type == HIST_TYPE_INDIR_CALL || type == HIST_TYPE_TOPN_VALUES)
|
||
{
|
||
gcov_type total = streamer_read_gcov_count (ib);
|
||
gcov_type ncounters = streamer_read_gcov_count (ib);
|
||
new_val->hvalue.counters = XNEWVAR (gcov_type,
|
||
sizeof (*new_val->hvalue.counters)
|
||
* (2 + 2 * ncounters));
|
||
new_val->hvalue.counters[0] = total;
|
||
new_val->hvalue.counters[1] = ncounters;
|
||
new_val->n_counters = 2 + 2 * ncounters;
|
||
for (i = 0; i < 2 * ncounters; i++)
|
||
new_val->hvalue.counters[2 + i] = streamer_read_gcov_count (ib);
|
||
}
|
||
else
|
||
{
|
||
new_val->hvalue.counters = XNEWVAR (gcov_type,
|
||
sizeof (*new_val->hvalue.counters)
|
||
* ncounters);
|
||
new_val->n_counters = ncounters;
|
||
for (i = 0; i < ncounters; i++)
|
||
new_val->hvalue.counters[i] = streamer_read_gcov_count (ib);
|
||
}
|
||
|
||
if (!next_p)
|
||
gimple_add_histogram_value (cfun, stmt, new_val);
|
||
else
|
||
*next_p = new_val;
|
||
next_p = &new_val->hvalue.next;
|
||
}
|
||
while (next);
|
||
}
|
||
|
||
/* Dump all histograms attached to STMT to DUMP_FILE. */
|
||
|
||
void
|
||
dump_histograms_for_stmt (struct function *fun, FILE *dump_file, gimple *stmt)
|
||
{
|
||
histogram_value hist;
|
||
for (hist = gimple_histogram_value (fun, stmt); hist; hist = hist->hvalue.next)
|
||
dump_histogram_value (dump_file, hist);
|
||
}
|
||
|
||
/* Remove all histograms associated with STMT. */
|
||
|
||
void
|
||
gimple_remove_stmt_histograms (struct function *fun, gimple *stmt)
|
||
{
|
||
histogram_value val;
|
||
while ((val = gimple_histogram_value (fun, stmt)) != NULL)
|
||
gimple_remove_histogram_value (fun, stmt, val);
|
||
}
|
||
|
||
/* Duplicate all histograms associates with OSTMT to STMT. */
|
||
|
||
void
|
||
gimple_duplicate_stmt_histograms (struct function *fun, gimple *stmt,
|
||
struct function *ofun, gimple *ostmt)
|
||
{
|
||
histogram_value val;
|
||
for (val = gimple_histogram_value (ofun, ostmt); val != NULL; val = val->hvalue.next)
|
||
{
|
||
histogram_value new_val = gimple_alloc_histogram_value (fun, val->type);
|
||
memcpy (new_val, val, sizeof (*val));
|
||
new_val->hvalue.stmt = stmt;
|
||
new_val->hvalue.counters = XNEWVAR (gcov_type, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
|
||
memcpy (new_val->hvalue.counters, val->hvalue.counters, sizeof (*new_val->hvalue.counters) * new_val->n_counters);
|
||
gimple_add_histogram_value (fun, stmt, new_val);
|
||
}
|
||
}
|
||
|
||
/* Move all histograms associated with OSTMT to STMT. */
|
||
|
||
void
|
||
gimple_move_stmt_histograms (struct function *fun, gimple *stmt, gimple *ostmt)
|
||
{
|
||
histogram_value val = gimple_histogram_value (fun, ostmt);
|
||
if (val)
|
||
{
|
||
/* The following three statements can't be reordered,
|
||
because histogram hashtab relies on stmt field value
|
||
for finding the exact slot. */
|
||
set_histogram_value (fun, ostmt, NULL);
|
||
for (; val != NULL; val = val->hvalue.next)
|
||
val->hvalue.stmt = stmt;
|
||
set_histogram_value (fun, stmt, val);
|
||
}
|
||
}
|
||
|
||
static bool error_found = false;
|
||
|
||
/* Helper function for verify_histograms. For each histogram reachable via htab
|
||
walk verify that it was reached via statement walk. */
|
||
|
||
static int
|
||
visit_hist (void **slot, void *data)
|
||
{
|
||
hash_set<histogram_value> *visited = (hash_set<histogram_value> *) data;
|
||
histogram_value hist = *(histogram_value *) slot;
|
||
|
||
if (!visited->contains (hist)
|
||
&& hist->type != HIST_TYPE_TIME_PROFILE)
|
||
{
|
||
error ("dead histogram");
|
||
dump_histogram_value (stderr, hist);
|
||
debug_gimple_stmt (hist->hvalue.stmt);
|
||
error_found = true;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
/* Verify sanity of the histograms. */
|
||
|
||
DEBUG_FUNCTION void
|
||
verify_histograms (void)
|
||
{
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
histogram_value hist;
|
||
|
||
error_found = false;
|
||
hash_set<histogram_value> visited_hists;
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (gsi);
|
||
|
||
for (hist = gimple_histogram_value (cfun, stmt); hist;
|
||
hist = hist->hvalue.next)
|
||
{
|
||
if (hist->hvalue.stmt != stmt)
|
||
{
|
||
error ("histogram value statement does not correspond to "
|
||
"the statement it is associated with");
|
||
debug_gimple_stmt (stmt);
|
||
dump_histogram_value (stderr, hist);
|
||
error_found = true;
|
||
}
|
||
visited_hists.add (hist);
|
||
}
|
||
}
|
||
if (VALUE_HISTOGRAMS (cfun))
|
||
htab_traverse (VALUE_HISTOGRAMS (cfun), visit_hist, &visited_hists);
|
||
if (error_found)
|
||
internal_error ("%qs failed", __func__);
|
||
}
|
||
|
||
/* Helper function for verify_histograms. For each histogram reachable via htab
|
||
walk verify that it was reached via statement walk. */
|
||
|
||
static int
|
||
free_hist (void **slot, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
histogram_value hist = *(histogram_value *) slot;
|
||
free (hist->hvalue.counters);
|
||
free (hist);
|
||
return 1;
|
||
}
|
||
|
||
void
|
||
free_histograms (struct function *fn)
|
||
{
|
||
if (VALUE_HISTOGRAMS (fn))
|
||
{
|
||
htab_traverse (VALUE_HISTOGRAMS (fn), free_hist, NULL);
|
||
htab_delete (VALUE_HISTOGRAMS (fn));
|
||
VALUE_HISTOGRAMS (fn) = NULL;
|
||
}
|
||
}
|
||
|
||
/* The overall number of invocations of the counter should match
|
||
execution count of basic block. Report it as error rather than
|
||
internal error as it might mean that user has misused the profile
|
||
somehow. */
|
||
|
||
static bool
|
||
check_counter (gimple *stmt, const char * name,
|
||
gcov_type *count, gcov_type *all, profile_count bb_count_d)
|
||
{
|
||
gcov_type bb_count = bb_count_d.ipa ().to_gcov_type ();
|
||
if (*all != bb_count || *count > *all)
|
||
{
|
||
dump_user_location_t locus;
|
||
locus = ((stmt != NULL)
|
||
? dump_user_location_t (stmt)
|
||
: dump_user_location_t::from_function_decl
|
||
(current_function_decl));
|
||
if (flag_profile_correction)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_MISSED_OPTIMIZATION, locus,
|
||
"correcting inconsistent value profile: %s "
|
||
"profiler overall count (%d) does not match BB "
|
||
"count (%d)\n", name, (int)*all, (int)bb_count);
|
||
*all = bb_count;
|
||
if (*count > *all)
|
||
*count = *all;
|
||
return false;
|
||
}
|
||
else
|
||
{
|
||
error_at (locus.get_location_t (), "corrupted value profile: %s "
|
||
"profile counter (%d out of %d) inconsistent with "
|
||
"basic-block count (%d)",
|
||
name,
|
||
(int) *count,
|
||
(int) *all,
|
||
(int) bb_count);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* GIMPLE based transformations. */
|
||
|
||
bool
|
||
gimple_value_profile_transformations (void)
|
||
{
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
bool changed = false;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
{
|
||
gimple *stmt = gsi_stmt (gsi);
|
||
histogram_value th = gimple_histogram_value (cfun, stmt);
|
||
if (!th)
|
||
continue;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "Trying transformations on stmt ");
|
||
print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
|
||
dump_histograms_for_stmt (cfun, dump_file, stmt);
|
||
}
|
||
|
||
/* Transformations: */
|
||
/* The order of things in this conditional controls which
|
||
transformation is used when more than one is applicable. */
|
||
/* It is expected that any code added by the transformations
|
||
will be added before the current statement, and that the
|
||
current statement remain valid (although possibly
|
||
modified) upon return. */
|
||
if (gimple_mod_subtract_transform (&gsi)
|
||
|| gimple_divmod_fixed_value_transform (&gsi)
|
||
|| gimple_mod_pow2_value_transform (&gsi)
|
||
|| gimple_stringops_transform (&gsi))
|
||
{
|
||
stmt = gsi_stmt (gsi);
|
||
changed = true;
|
||
/* Original statement may no longer be in the same block. */
|
||
if (bb != gimple_bb (stmt))
|
||
{
|
||
bb = gimple_bb (stmt);
|
||
gsi = gsi_for_stmt (stmt);
|
||
}
|
||
}
|
||
|
||
/* The function never thansforms a GIMPLE statement. */
|
||
if (dump_enabled_p ())
|
||
dump_ic_profile (&gsi);
|
||
}
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Generate code for transformation 1 (with parent gimple assignment
|
||
STMT and probability of taking the optimal path PROB, which is
|
||
equivalent to COUNT/ALL within roundoff error). This generates the
|
||
result into a temp and returns the temp; it does not replace or
|
||
alter the original STMT. */
|
||
|
||
static tree
|
||
gimple_divmod_fixed_value (gassign *stmt, tree value, profile_probability prob,
|
||
gcov_type count, gcov_type all)
|
||
{
|
||
gassign *stmt1, *stmt2;
|
||
gcond *stmt3;
|
||
tree tmp0, tmp1, tmp2;
|
||
gimple *bb1end, *bb2end, *bb3end;
|
||
basic_block bb, bb2, bb3, bb4;
|
||
tree optype, op1, op2;
|
||
edge e12, e13, e23, e24, e34;
|
||
gimple_stmt_iterator gsi;
|
||
|
||
gcc_assert (is_gimple_assign (stmt)
|
||
&& (gimple_assign_rhs_code (stmt) == TRUNC_DIV_EXPR
|
||
|| gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR));
|
||
|
||
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
op1 = gimple_assign_rhs1 (stmt);
|
||
op2 = gimple_assign_rhs2 (stmt);
|
||
|
||
bb = gimple_bb (stmt);
|
||
gsi = gsi_for_stmt (stmt);
|
||
|
||
tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
stmt1 = gimple_build_assign (tmp0, fold_convert (optype, value));
|
||
stmt2 = gimple_build_assign (tmp1, op2);
|
||
stmt3 = gimple_build_cond (NE_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
||
bb1end = stmt3;
|
||
|
||
tmp2 = create_tmp_reg (optype, "PROF");
|
||
stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, tmp0);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
bb2end = stmt1;
|
||
|
||
stmt1 = gimple_build_assign (tmp2, gimple_assign_rhs_code (stmt), op1, op2);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
bb3end = stmt1;
|
||
|
||
/* Fix CFG. */
|
||
/* Edge e23 connects bb2 to bb3, etc. */
|
||
e12 = split_block (bb, bb1end);
|
||
bb2 = e12->dest;
|
||
bb2->count = profile_count::from_gcov_type (count);
|
||
e23 = split_block (bb2, bb2end);
|
||
bb3 = e23->dest;
|
||
bb3->count = profile_count::from_gcov_type (all - count);
|
||
e34 = split_block (bb3, bb3end);
|
||
bb4 = e34->dest;
|
||
bb4->count = profile_count::from_gcov_type (all);
|
||
|
||
e12->flags &= ~EDGE_FALLTHRU;
|
||
e12->flags |= EDGE_FALSE_VALUE;
|
||
e12->probability = prob;
|
||
|
||
e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
|
||
e13->probability = prob.invert ();
|
||
|
||
remove_edge (e23);
|
||
|
||
e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
|
||
e24->probability = profile_probability::always ();
|
||
|
||
e34->probability = profile_probability::always ();
|
||
|
||
return tmp2;
|
||
}
|
||
|
||
/* Return the n-th value count of TOPN_VALUE histogram. If
|
||
there's a value, return true and set VALUE and COUNT
|
||
arguments.
|
||
|
||
Counters have the following meaning.
|
||
|
||
abs (counters[0]) is the number of executions
|
||
for i in 0 ... TOPN-1
|
||
counters[2 * i + 2] is target
|
||
counters[2 * i + 3] is corresponding hitrate counter.
|
||
|
||
Value of counters[0] negative when counter became
|
||
full during merging and some values are lost. */
|
||
|
||
bool
|
||
get_nth_most_common_value (gimple *stmt, const char *counter_type,
|
||
histogram_value hist, gcov_type *value,
|
||
gcov_type *count, gcov_type *all, unsigned n)
|
||
{
|
||
unsigned counters = hist->hvalue.counters[1];
|
||
if (n >= counters)
|
||
return false;
|
||
|
||
*count = 0;
|
||
*value = 0;
|
||
|
||
gcov_type read_all = abs_hwi (hist->hvalue.counters[0]);
|
||
gcov_type covered = 0;
|
||
for (unsigned i = 0; i < counters; ++i)
|
||
covered += hist->hvalue.counters[2 * i + 3];
|
||
|
||
gcov_type v = hist->hvalue.counters[2 * n + 2];
|
||
gcov_type c = hist->hvalue.counters[2 * n + 3];
|
||
|
||
if (hist->hvalue.counters[0] < 0
|
||
&& flag_profile_reproducible == PROFILE_REPRODUCIBILITY_PARALLEL_RUNS)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Histogram value dropped in '%s' mode\n",
|
||
"-fprofile-reproducible=parallel-runs");
|
||
return false;
|
||
}
|
||
else if (covered != read_all
|
||
&& flag_profile_reproducible == PROFILE_REPRODUCIBILITY_MULTITHREADED)
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "Histogram value dropped in '%s' mode\n",
|
||
"-fprofile-reproducible=multithreaded");
|
||
return false;
|
||
}
|
||
|
||
/* Indirect calls can't be verified. */
|
||
if (stmt
|
||
&& check_counter (stmt, counter_type, &c, &read_all,
|
||
gimple_bb (stmt)->count))
|
||
return false;
|
||
|
||
*all = read_all;
|
||
|
||
*value = v;
|
||
*count = c;
|
||
return true;
|
||
}
|
||
|
||
/* Do transform 1) on INSN if applicable. */
|
||
|
||
static bool
|
||
gimple_divmod_fixed_value_transform (gimple_stmt_iterator *si)
|
||
{
|
||
histogram_value histogram;
|
||
enum tree_code code;
|
||
gcov_type val, count, all;
|
||
tree result, value, tree_val;
|
||
profile_probability prob;
|
||
gassign *stmt;
|
||
|
||
stmt = dyn_cast <gassign *> (gsi_stmt (*si));
|
||
if (!stmt)
|
||
return false;
|
||
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))))
|
||
return false;
|
||
|
||
code = gimple_assign_rhs_code (stmt);
|
||
|
||
if (code != TRUNC_DIV_EXPR && code != TRUNC_MOD_EXPR)
|
||
return false;
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt,
|
||
HIST_TYPE_TOPN_VALUES);
|
||
if (!histogram)
|
||
return false;
|
||
|
||
if (!get_nth_most_common_value (stmt, "divmod", histogram, &val, &count,
|
||
&all))
|
||
return false;
|
||
|
||
value = histogram->hvalue.value;
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
|
||
/* We require that count is at least half of all. */
|
||
if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
|
||
|| 2 * count < all
|
||
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
||
return false;
|
||
|
||
/* Compute probability of taking the optimal path. */
|
||
if (all > 0)
|
||
prob = profile_probability::probability_in_gcov_type (count, all);
|
||
else
|
||
prob = profile_probability::never ();
|
||
|
||
if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
|
||
tree_val = build_int_cst (get_gcov_type (), val);
|
||
else
|
||
{
|
||
HOST_WIDE_INT a[2];
|
||
a[0] = (unsigned HOST_WIDE_INT) val;
|
||
a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;
|
||
|
||
tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
|
||
TYPE_PRECISION (get_gcov_type ()), false));
|
||
}
|
||
result = gimple_divmod_fixed_value (stmt, tree_val, prob, count, all);
|
||
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
||
"Transformation done: div/mod by constant %T\n", tree_val);
|
||
|
||
gimple_assign_set_rhs_from_tree (si, result);
|
||
update_stmt (gsi_stmt (*si));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Generate code for transformation 2 (with parent gimple assign STMT and
|
||
probability of taking the optimal path PROB, which is equivalent to COUNT/ALL
|
||
within roundoff error). This generates the result into a temp and returns
|
||
the temp; it does not replace or alter the original STMT. */
|
||
|
||
static tree
|
||
gimple_mod_pow2 (gassign *stmt, profile_probability prob, gcov_type count, gcov_type all)
|
||
{
|
||
gassign *stmt1, *stmt2, *stmt3;
|
||
gcond *stmt4;
|
||
tree tmp2, tmp3;
|
||
gimple *bb1end, *bb2end, *bb3end;
|
||
basic_block bb, bb2, bb3, bb4;
|
||
tree optype, op1, op2;
|
||
edge e12, e13, e23, e24, e34;
|
||
gimple_stmt_iterator gsi;
|
||
tree result;
|
||
|
||
gcc_assert (is_gimple_assign (stmt)
|
||
&& gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
|
||
|
||
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
op1 = gimple_assign_rhs1 (stmt);
|
||
op2 = gimple_assign_rhs2 (stmt);
|
||
|
||
bb = gimple_bb (stmt);
|
||
gsi = gsi_for_stmt (stmt);
|
||
|
||
result = create_tmp_reg (optype, "PROF");
|
||
tmp2 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
tmp3 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
stmt2 = gimple_build_assign (tmp2, PLUS_EXPR, op2,
|
||
build_int_cst (optype, -1));
|
||
stmt3 = gimple_build_assign (tmp3, BIT_AND_EXPR, tmp2, op2);
|
||
stmt4 = gimple_build_cond (NE_EXPR, tmp3, build_int_cst (optype, 0),
|
||
NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt4, GSI_SAME_STMT);
|
||
bb1end = stmt4;
|
||
|
||
/* tmp2 == op2-1 inherited from previous block. */
|
||
stmt1 = gimple_build_assign (result, BIT_AND_EXPR, op1, tmp2);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
bb2end = stmt1;
|
||
|
||
stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
|
||
op1, op2);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
bb3end = stmt1;
|
||
|
||
/* Fix CFG. */
|
||
/* Edge e23 connects bb2 to bb3, etc. */
|
||
e12 = split_block (bb, bb1end);
|
||
bb2 = e12->dest;
|
||
bb2->count = profile_count::from_gcov_type (count);
|
||
e23 = split_block (bb2, bb2end);
|
||
bb3 = e23->dest;
|
||
bb3->count = profile_count::from_gcov_type (all - count);
|
||
e34 = split_block (bb3, bb3end);
|
||
bb4 = e34->dest;
|
||
bb4->count = profile_count::from_gcov_type (all);
|
||
|
||
e12->flags &= ~EDGE_FALLTHRU;
|
||
e12->flags |= EDGE_FALSE_VALUE;
|
||
e12->probability = prob;
|
||
|
||
e13 = make_edge (bb, bb3, EDGE_TRUE_VALUE);
|
||
e13->probability = prob.invert ();
|
||
|
||
remove_edge (e23);
|
||
|
||
e24 = make_edge (bb2, bb4, EDGE_FALLTHRU);
|
||
e24->probability = profile_probability::always ();
|
||
|
||
e34->probability = profile_probability::always ();
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Do transform 2) on INSN if applicable. */
|
||
|
||
static bool
|
||
gimple_mod_pow2_value_transform (gimple_stmt_iterator *si)
|
||
{
|
||
histogram_value histogram;
|
||
enum tree_code code;
|
||
gcov_type count, wrong_values, all;
|
||
tree lhs_type, result, value;
|
||
profile_probability prob;
|
||
gassign *stmt;
|
||
|
||
stmt = dyn_cast <gassign *> (gsi_stmt (*si));
|
||
if (!stmt)
|
||
return false;
|
||
|
||
lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
if (!INTEGRAL_TYPE_P (lhs_type))
|
||
return false;
|
||
|
||
code = gimple_assign_rhs_code (stmt);
|
||
|
||
if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
|
||
return false;
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_POW2);
|
||
if (!histogram)
|
||
return false;
|
||
|
||
value = histogram->hvalue.value;
|
||
wrong_values = histogram->hvalue.counters[0];
|
||
count = histogram->hvalue.counters[1];
|
||
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
|
||
/* We require that we hit a power of 2 at least half of all evaluations. */
|
||
if (simple_cst_equal (gimple_assign_rhs2 (stmt), value) != 1
|
||
|| count < wrong_values
|
||
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
||
return false;
|
||
|
||
/* Compute probability of taking the optimal path. */
|
||
all = count + wrong_values;
|
||
|
||
if (check_counter (stmt, "pow2", &count, &all, gimple_bb (stmt)->count))
|
||
return false;
|
||
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
||
"Transformation done: mod power of 2\n");
|
||
|
||
if (all > 0)
|
||
prob = profile_probability::probability_in_gcov_type (count, all);
|
||
else
|
||
prob = profile_probability::never ();
|
||
|
||
result = gimple_mod_pow2 (stmt, prob, count, all);
|
||
|
||
gimple_assign_set_rhs_from_tree (si, result);
|
||
update_stmt (gsi_stmt (*si));
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Generate code for transformations 3 and 4 (with parent gimple assign STMT, and
|
||
NCOUNTS the number of cases to support. Currently only NCOUNTS==0 or 1 is
|
||
supported and this is built into this interface. The probabilities of taking
|
||
the optimal paths are PROB1 and PROB2, which are equivalent to COUNT1/ALL and
|
||
COUNT2/ALL respectively within roundoff error). This generates the
|
||
result into a temp and returns the temp; it does not replace or alter
|
||
the original STMT. */
|
||
/* FIXME: Generalize the interface to handle NCOUNTS > 1. */
|
||
|
||
static tree
|
||
gimple_mod_subtract (gassign *stmt, profile_probability prob1,
|
||
profile_probability prob2, int ncounts,
|
||
gcov_type count1, gcov_type count2, gcov_type all)
|
||
{
|
||
gassign *stmt1;
|
||
gimple *stmt2;
|
||
gcond *stmt3;
|
||
tree tmp1;
|
||
gimple *bb1end, *bb2end = NULL, *bb3end;
|
||
basic_block bb, bb2, bb3, bb4;
|
||
tree optype, op1, op2;
|
||
edge e12, e23 = 0, e24, e34, e14;
|
||
gimple_stmt_iterator gsi;
|
||
tree result;
|
||
|
||
gcc_assert (is_gimple_assign (stmt)
|
||
&& gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR);
|
||
|
||
optype = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
op1 = gimple_assign_rhs1 (stmt);
|
||
op2 = gimple_assign_rhs2 (stmt);
|
||
|
||
bb = gimple_bb (stmt);
|
||
gsi = gsi_for_stmt (stmt);
|
||
|
||
result = create_tmp_reg (optype, "PROF");
|
||
tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
stmt1 = gimple_build_assign (result, op1);
|
||
stmt2 = gimple_build_assign (tmp1, op2);
|
||
stmt3 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt3, GSI_SAME_STMT);
|
||
bb1end = stmt3;
|
||
|
||
if (ncounts) /* Assumed to be 0 or 1 */
|
||
{
|
||
stmt1 = gimple_build_assign (result, MINUS_EXPR, result, tmp1);
|
||
stmt2 = gimple_build_cond (LT_EXPR, result, tmp1, NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
gsi_insert_before (&gsi, stmt2, GSI_SAME_STMT);
|
||
bb2end = stmt2;
|
||
}
|
||
|
||
/* Fallback case. */
|
||
stmt1 = gimple_build_assign (result, gimple_assign_rhs_code (stmt),
|
||
result, tmp1);
|
||
gsi_insert_before (&gsi, stmt1, GSI_SAME_STMT);
|
||
bb3end = stmt1;
|
||
|
||
/* Fix CFG. */
|
||
/* Edge e23 connects bb2 to bb3, etc. */
|
||
/* However block 3 is optional; if it is not there, references
|
||
to 3 really refer to block 2. */
|
||
e12 = split_block (bb, bb1end);
|
||
bb2 = e12->dest;
|
||
bb2->count = profile_count::from_gcov_type (all - count1);
|
||
|
||
if (ncounts) /* Assumed to be 0 or 1. */
|
||
{
|
||
e23 = split_block (bb2, bb2end);
|
||
bb3 = e23->dest;
|
||
bb3->count = profile_count::from_gcov_type (all - count1 - count2);
|
||
}
|
||
|
||
e34 = split_block (ncounts ? bb3 : bb2, bb3end);
|
||
bb4 = e34->dest;
|
||
bb4->count = profile_count::from_gcov_type (all);
|
||
|
||
e12->flags &= ~EDGE_FALLTHRU;
|
||
e12->flags |= EDGE_FALSE_VALUE;
|
||
e12->probability = prob1.invert ();
|
||
|
||
e14 = make_edge (bb, bb4, EDGE_TRUE_VALUE);
|
||
e14->probability = prob1;
|
||
|
||
if (ncounts) /* Assumed to be 0 or 1. */
|
||
{
|
||
e23->flags &= ~EDGE_FALLTHRU;
|
||
e23->flags |= EDGE_FALSE_VALUE;
|
||
e23->probability = prob2.invert ();
|
||
|
||
e24 = make_edge (bb2, bb4, EDGE_TRUE_VALUE);
|
||
e24->probability = prob2;
|
||
}
|
||
|
||
e34->probability = profile_probability::always ();
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Do transforms 3) and 4) on the statement pointed-to by SI if applicable. */
|
||
|
||
static bool
|
||
gimple_mod_subtract_transform (gimple_stmt_iterator *si)
|
||
{
|
||
histogram_value histogram;
|
||
enum tree_code code;
|
||
gcov_type count, wrong_values, all;
|
||
tree lhs_type, result;
|
||
profile_probability prob1, prob2;
|
||
unsigned int i, steps;
|
||
gcov_type count1, count2;
|
||
gassign *stmt;
|
||
stmt = dyn_cast <gassign *> (gsi_stmt (*si));
|
||
if (!stmt)
|
||
return false;
|
||
|
||
lhs_type = TREE_TYPE (gimple_assign_lhs (stmt));
|
||
if (!INTEGRAL_TYPE_P (lhs_type))
|
||
return false;
|
||
|
||
code = gimple_assign_rhs_code (stmt);
|
||
|
||
if (code != TRUNC_MOD_EXPR || !TYPE_UNSIGNED (lhs_type))
|
||
return false;
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INTERVAL);
|
||
if (!histogram)
|
||
return false;
|
||
|
||
all = 0;
|
||
wrong_values = 0;
|
||
for (i = 0; i < histogram->hdata.intvl.steps; i++)
|
||
all += histogram->hvalue.counters[i];
|
||
|
||
wrong_values += histogram->hvalue.counters[i];
|
||
wrong_values += histogram->hvalue.counters[i+1];
|
||
steps = histogram->hdata.intvl.steps;
|
||
all += wrong_values;
|
||
count1 = histogram->hvalue.counters[0];
|
||
count2 = histogram->hvalue.counters[1];
|
||
|
||
if (check_counter (stmt, "interval", &count1, &all, gimple_bb (stmt)->count))
|
||
{
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
return false;
|
||
}
|
||
|
||
if (flag_profile_correction && count1 + count2 > all)
|
||
all = count1 + count2;
|
||
|
||
gcc_assert (count1 + count2 <= all);
|
||
|
||
/* We require that we use just subtractions in at least 50% of all
|
||
evaluations. */
|
||
count = 0;
|
||
for (i = 0; i < histogram->hdata.intvl.steps; i++)
|
||
{
|
||
count += histogram->hvalue.counters[i];
|
||
if (count * 2 >= all)
|
||
break;
|
||
}
|
||
if (i == steps
|
||
|| optimize_bb_for_size_p (gimple_bb (stmt)))
|
||
return false;
|
||
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
||
"Transformation done: mod subtract\n");
|
||
|
||
/* Compute probability of taking the optimal path(s). */
|
||
if (all > 0)
|
||
{
|
||
prob1 = profile_probability::probability_in_gcov_type (count1, all);
|
||
prob2 = profile_probability::probability_in_gcov_type (count2, all);
|
||
}
|
||
else
|
||
{
|
||
prob1 = prob2 = profile_probability::never ();
|
||
}
|
||
|
||
/* In practice, "steps" is always 2. This interface reflects this,
|
||
and will need to be changed if "steps" can change. */
|
||
result = gimple_mod_subtract (stmt, prob1, prob2, i, count1, count2, all);
|
||
|
||
gimple_assign_set_rhs_from_tree (si, result);
|
||
update_stmt (gsi_stmt (*si));
|
||
|
||
return true;
|
||
}
|
||
|
||
typedef int_hash <unsigned int, 0, UINT_MAX> profile_id_hash;
|
||
|
||
static hash_map<profile_id_hash, cgraph_node *> *cgraph_node_map = 0;
|
||
|
||
/* Returns true if node graph is initialized. This
|
||
is used to test if profile_id has been created
|
||
for cgraph_nodes. */
|
||
|
||
bool
|
||
coverage_node_map_initialized_p (void)
|
||
{
|
||
return cgraph_node_map != 0;
|
||
}
|
||
|
||
/* Initialize map from PROFILE_ID to CGRAPH_NODE.
|
||
When LOCAL is true, the PROFILE_IDs are computed. when it is false we assume
|
||
that the PROFILE_IDs was already assigned. */
|
||
|
||
void
|
||
init_node_map (bool local)
|
||
{
|
||
struct cgraph_node *n;
|
||
cgraph_node_map = new hash_map<profile_id_hash, cgraph_node *>;
|
||
|
||
FOR_EACH_DEFINED_FUNCTION (n)
|
||
if (n->has_gimple_body_p () || n->thunk)
|
||
{
|
||
cgraph_node **val;
|
||
dump_user_location_t loc
|
||
= dump_user_location_t::from_function_decl (n->decl);
|
||
if (local)
|
||
{
|
||
n->profile_id = coverage_compute_profile_id (n);
|
||
while ((val = cgraph_node_map->get (n->profile_id))
|
||
|| !n->profile_id)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
||
"Local profile-id %i conflict"
|
||
" with nodes %s %s\n",
|
||
n->profile_id,
|
||
n->dump_name (),
|
||
(*val)->dump_name ());
|
||
n->profile_id = (n->profile_id + 1) & 0x7fffffff;
|
||
}
|
||
}
|
||
else if (!n->profile_id)
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
||
"Node %s has no profile-id"
|
||
" (profile feedback missing?)\n",
|
||
n->dump_name ());
|
||
continue;
|
||
}
|
||
else if ((val = cgraph_node_map->get (n->profile_id)))
|
||
{
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_MISSED_OPTIMIZATION, loc,
|
||
"Node %s has IP profile-id %i conflict. "
|
||
"Giving up.\n",
|
||
n->dump_name (), n->profile_id);
|
||
*val = NULL;
|
||
continue;
|
||
}
|
||
cgraph_node_map->put (n->profile_id, n);
|
||
}
|
||
}
|
||
|
||
/* Delete the CGRAPH_NODE_MAP. */
|
||
|
||
void
|
||
del_node_map (void)
|
||
{
|
||
delete cgraph_node_map;
|
||
}
|
||
|
||
/* Return cgraph node for function with pid */
|
||
|
||
struct cgraph_node*
|
||
find_func_by_profile_id (int profile_id)
|
||
{
|
||
cgraph_node **val = cgraph_node_map->get (profile_id);
|
||
if (val)
|
||
return *val;
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
/* Do transformation
|
||
|
||
if (actual_callee_address == address_of_most_common_function/method)
|
||
do direct call
|
||
else
|
||
old call
|
||
*/
|
||
|
||
gcall *
|
||
gimple_ic (gcall *icall_stmt, struct cgraph_node *direct_call,
|
||
profile_probability prob)
|
||
{
|
||
gcall *dcall_stmt;
|
||
gassign *load_stmt;
|
||
gcond *cond_stmt;
|
||
tree tmp0, tmp1, tmp;
|
||
basic_block cond_bb, dcall_bb, icall_bb, join_bb = NULL;
|
||
edge e_cd, e_ci, e_di, e_dj = NULL, e_ij;
|
||
gimple_stmt_iterator gsi;
|
||
int lp_nr, dflags;
|
||
edge e_eh, e;
|
||
edge_iterator ei;
|
||
|
||
cond_bb = gimple_bb (icall_stmt);
|
||
gsi = gsi_for_stmt (icall_stmt);
|
||
|
||
tmp0 = make_temp_ssa_name (ptr_type_node, NULL, "PROF");
|
||
tmp1 = make_temp_ssa_name (ptr_type_node, NULL, "PROF");
|
||
tmp = unshare_expr (gimple_call_fn (icall_stmt));
|
||
load_stmt = gimple_build_assign (tmp0, tmp);
|
||
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
|
||
|
||
tmp = fold_convert (ptr_type_node, build_addr (direct_call->decl));
|
||
load_stmt = gimple_build_assign (tmp1, tmp);
|
||
gsi_insert_before (&gsi, load_stmt, GSI_SAME_STMT);
|
||
|
||
cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
|
||
|
||
if (TREE_CODE (gimple_vdef (icall_stmt)) == SSA_NAME)
|
||
{
|
||
unlink_stmt_vdef (icall_stmt);
|
||
release_ssa_name (gimple_vdef (icall_stmt));
|
||
}
|
||
gimple_set_vdef (icall_stmt, NULL_TREE);
|
||
gimple_set_vuse (icall_stmt, NULL_TREE);
|
||
update_stmt (icall_stmt);
|
||
dcall_stmt = as_a <gcall *> (gimple_copy (icall_stmt));
|
||
gimple_call_set_fndecl (dcall_stmt, direct_call->decl);
|
||
dflags = flags_from_decl_or_type (direct_call->decl);
|
||
if ((dflags & ECF_NORETURN) != 0
|
||
&& should_remove_lhs_p (gimple_call_lhs (dcall_stmt)))
|
||
gimple_call_set_lhs (dcall_stmt, NULL_TREE);
|
||
gsi_insert_before (&gsi, dcall_stmt, GSI_SAME_STMT);
|
||
|
||
/* Fix CFG. */
|
||
/* Edge e_cd connects cond_bb to dcall_bb, etc; note the first letters. */
|
||
e_cd = split_block (cond_bb, cond_stmt);
|
||
dcall_bb = e_cd->dest;
|
||
dcall_bb->count = cond_bb->count.apply_probability (prob);
|
||
|
||
e_di = split_block (dcall_bb, dcall_stmt);
|
||
icall_bb = e_di->dest;
|
||
icall_bb->count = cond_bb->count - dcall_bb->count;
|
||
|
||
/* Do not disturb existing EH edges from the indirect call. */
|
||
if (!stmt_ends_bb_p (icall_stmt))
|
||
e_ij = split_block (icall_bb, icall_stmt);
|
||
else
|
||
{
|
||
e_ij = find_fallthru_edge (icall_bb->succs);
|
||
/* The indirect call might be noreturn. */
|
||
if (e_ij != NULL)
|
||
{
|
||
e_ij->probability = profile_probability::always ();
|
||
e_ij = single_pred_edge (split_edge (e_ij));
|
||
}
|
||
}
|
||
if (e_ij != NULL)
|
||
{
|
||
join_bb = e_ij->dest;
|
||
join_bb->count = cond_bb->count;
|
||
}
|
||
|
||
e_cd->flags = (e_cd->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
|
||
e_cd->probability = prob;
|
||
|
||
e_ci = make_edge (cond_bb, icall_bb, EDGE_FALSE_VALUE);
|
||
e_ci->probability = prob.invert ();
|
||
|
||
remove_edge (e_di);
|
||
|
||
if (e_ij != NULL)
|
||
{
|
||
if ((dflags & ECF_NORETURN) == 0)
|
||
{
|
||
e_dj = make_edge (dcall_bb, join_bb, EDGE_FALLTHRU);
|
||
e_dj->probability = profile_probability::always ();
|
||
}
|
||
e_ij->probability = profile_probability::always ();
|
||
}
|
||
|
||
/* Insert PHI node for the call result if necessary. */
|
||
if (gimple_call_lhs (icall_stmt)
|
||
&& TREE_CODE (gimple_call_lhs (icall_stmt)) == SSA_NAME
|
||
&& (dflags & ECF_NORETURN) == 0)
|
||
{
|
||
tree result = gimple_call_lhs (icall_stmt);
|
||
gphi *phi = create_phi_node (result, join_bb);
|
||
gimple_call_set_lhs (icall_stmt,
|
||
duplicate_ssa_name (result, icall_stmt));
|
||
add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
|
||
gimple_call_set_lhs (dcall_stmt,
|
||
duplicate_ssa_name (result, dcall_stmt));
|
||
add_phi_arg (phi, gimple_call_lhs (dcall_stmt), e_dj, UNKNOWN_LOCATION);
|
||
}
|
||
|
||
/* Build an EH edge for the direct call if necessary. */
|
||
lp_nr = lookup_stmt_eh_lp (icall_stmt);
|
||
if (lp_nr > 0 && stmt_could_throw_p (cfun, dcall_stmt))
|
||
{
|
||
add_stmt_to_eh_lp (dcall_stmt, lp_nr);
|
||
}
|
||
|
||
FOR_EACH_EDGE (e_eh, ei, icall_bb->succs)
|
||
if (e_eh->flags & (EDGE_EH | EDGE_ABNORMAL))
|
||
{
|
||
e = make_edge (dcall_bb, e_eh->dest, e_eh->flags);
|
||
e->probability = e_eh->probability;
|
||
for (gphi_iterator psi = gsi_start_phis (e_eh->dest);
|
||
!gsi_end_p (psi); gsi_next (&psi))
|
||
{
|
||
gphi *phi = psi.phi ();
|
||
SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, e),
|
||
PHI_ARG_DEF_FROM_EDGE (phi, e_eh));
|
||
}
|
||
}
|
||
if (!stmt_could_throw_p (cfun, dcall_stmt))
|
||
gimple_purge_dead_eh_edges (dcall_bb);
|
||
return dcall_stmt;
|
||
}
|
||
|
||
/* Dump info about indirect call profile. */
|
||
|
||
static void
|
||
dump_ic_profile (gimple_stmt_iterator *gsi)
|
||
{
|
||
gcall *stmt;
|
||
histogram_value histogram;
|
||
gcov_type val, count, all;
|
||
struct cgraph_node *direct_call;
|
||
|
||
stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
|
||
if (!stmt)
|
||
return;
|
||
|
||
if (gimple_call_fndecl (stmt) != NULL_TREE)
|
||
return;
|
||
|
||
if (gimple_call_internal_p (stmt))
|
||
return;
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_INDIR_CALL);
|
||
if (!histogram)
|
||
return;
|
||
|
||
count = 0;
|
||
all = histogram->hvalue.counters[0];
|
||
|
||
for (unsigned j = 0; j < GCOV_TOPN_MAXIMUM_TRACKED_VALUES; j++)
|
||
{
|
||
if (!get_nth_most_common_value (NULL, "indirect call", histogram, &val,
|
||
&count, &all, j))
|
||
return;
|
||
if (!count)
|
||
continue;
|
||
|
||
direct_call = find_func_by_profile_id ((int) val);
|
||
|
||
if (direct_call == NULL)
|
||
dump_printf_loc (
|
||
MSG_MISSED_OPTIMIZATION, stmt,
|
||
"Indirect call -> direct call from other "
|
||
"module %T=> %i (will resolve by ipa-profile only with LTO)\n",
|
||
gimple_call_fn (stmt), (int) val);
|
||
else
|
||
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
||
"Indirect call -> direct call "
|
||
"%T => %T (will resolve by ipa-profile)\n",
|
||
gimple_call_fn (stmt), direct_call->decl);
|
||
dump_printf_loc (MSG_NOTE, stmt,
|
||
"hist->count %" PRId64 " hist->all %" PRId64 "\n",
|
||
count, all);
|
||
}
|
||
}
|
||
|
||
/* Return true if the stringop CALL shall be profiled. SIZE_ARG be
|
||
set to the argument index for the size of the string operation. */
|
||
|
||
static bool
|
||
interesting_stringop_to_profile_p (gcall *call, int *size_arg)
|
||
{
|
||
enum built_in_function fcode;
|
||
|
||
fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (call));
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_MEMCPY:
|
||
case BUILT_IN_MEMPCPY:
|
||
case BUILT_IN_MEMMOVE:
|
||
*size_arg = 2;
|
||
return validate_gimple_arglist (call, POINTER_TYPE, POINTER_TYPE,
|
||
INTEGER_TYPE, VOID_TYPE);
|
||
case BUILT_IN_MEMSET:
|
||
*size_arg = 2;
|
||
return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
|
||
INTEGER_TYPE, VOID_TYPE);
|
||
case BUILT_IN_BZERO:
|
||
*size_arg = 1;
|
||
return validate_gimple_arglist (call, POINTER_TYPE, INTEGER_TYPE,
|
||
VOID_TYPE);
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Convert stringop (..., vcall_size)
|
||
into
|
||
if (vcall_size == icall_size)
|
||
stringop (..., icall_size);
|
||
else
|
||
stringop (..., vcall_size);
|
||
assuming we'll propagate a true constant into ICALL_SIZE later. */
|
||
|
||
static void
|
||
gimple_stringop_fixed_value (gcall *vcall_stmt, tree icall_size, profile_probability prob,
|
||
gcov_type count, gcov_type all)
|
||
{
|
||
gassign *tmp_stmt;
|
||
gcond *cond_stmt;
|
||
gcall *icall_stmt;
|
||
tree tmp0, tmp1, vcall_size, optype;
|
||
basic_block cond_bb, icall_bb, vcall_bb, join_bb;
|
||
edge e_ci, e_cv, e_iv, e_ij, e_vj;
|
||
gimple_stmt_iterator gsi;
|
||
int size_arg;
|
||
|
||
if (!interesting_stringop_to_profile_p (vcall_stmt, &size_arg))
|
||
gcc_unreachable ();
|
||
|
||
cond_bb = gimple_bb (vcall_stmt);
|
||
gsi = gsi_for_stmt (vcall_stmt);
|
||
|
||
vcall_size = gimple_call_arg (vcall_stmt, size_arg);
|
||
optype = TREE_TYPE (vcall_size);
|
||
|
||
tmp0 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
tmp1 = make_temp_ssa_name (optype, NULL, "PROF");
|
||
tmp_stmt = gimple_build_assign (tmp0, fold_convert (optype, icall_size));
|
||
gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
|
||
|
||
tmp_stmt = gimple_build_assign (tmp1, vcall_size);
|
||
gsi_insert_before (&gsi, tmp_stmt, GSI_SAME_STMT);
|
||
|
||
cond_stmt = gimple_build_cond (EQ_EXPR, tmp1, tmp0, NULL_TREE, NULL_TREE);
|
||
gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
|
||
|
||
if (TREE_CODE (gimple_vdef (vcall_stmt)) == SSA_NAME)
|
||
{
|
||
unlink_stmt_vdef (vcall_stmt);
|
||
release_ssa_name (gimple_vdef (vcall_stmt));
|
||
}
|
||
gimple_set_vdef (vcall_stmt, NULL);
|
||
gimple_set_vuse (vcall_stmt, NULL);
|
||
update_stmt (vcall_stmt);
|
||
icall_stmt = as_a <gcall *> (gimple_copy (vcall_stmt));
|
||
gimple_call_set_arg (icall_stmt, size_arg,
|
||
fold_convert (optype, icall_size));
|
||
gsi_insert_before (&gsi, icall_stmt, GSI_SAME_STMT);
|
||
|
||
/* Fix CFG. */
|
||
/* Edge e_ci connects cond_bb to icall_bb, etc. */
|
||
e_ci = split_block (cond_bb, cond_stmt);
|
||
icall_bb = e_ci->dest;
|
||
icall_bb->count = profile_count::from_gcov_type (count);
|
||
|
||
e_iv = split_block (icall_bb, icall_stmt);
|
||
vcall_bb = e_iv->dest;
|
||
vcall_bb->count = profile_count::from_gcov_type (all - count);
|
||
|
||
e_vj = split_block (vcall_bb, vcall_stmt);
|
||
join_bb = e_vj->dest;
|
||
join_bb->count = profile_count::from_gcov_type (all);
|
||
|
||
e_ci->flags = (e_ci->flags & ~EDGE_FALLTHRU) | EDGE_TRUE_VALUE;
|
||
e_ci->probability = prob;
|
||
|
||
e_cv = make_edge (cond_bb, vcall_bb, EDGE_FALSE_VALUE);
|
||
e_cv->probability = prob.invert ();
|
||
|
||
remove_edge (e_iv);
|
||
|
||
e_ij = make_edge (icall_bb, join_bb, EDGE_FALLTHRU);
|
||
e_ij->probability = profile_probability::always ();
|
||
|
||
e_vj->probability = profile_probability::always ();
|
||
|
||
/* Insert PHI node for the call result if necessary. */
|
||
if (gimple_call_lhs (vcall_stmt)
|
||
&& TREE_CODE (gimple_call_lhs (vcall_stmt)) == SSA_NAME)
|
||
{
|
||
tree result = gimple_call_lhs (vcall_stmt);
|
||
gphi *phi = create_phi_node (result, join_bb);
|
||
gimple_call_set_lhs (vcall_stmt,
|
||
duplicate_ssa_name (result, vcall_stmt));
|
||
add_phi_arg (phi, gimple_call_lhs (vcall_stmt), e_vj, UNKNOWN_LOCATION);
|
||
gimple_call_set_lhs (icall_stmt,
|
||
duplicate_ssa_name (result, icall_stmt));
|
||
add_phi_arg (phi, gimple_call_lhs (icall_stmt), e_ij, UNKNOWN_LOCATION);
|
||
}
|
||
|
||
/* Because these are all string op builtins, they're all nothrow. */
|
||
gcc_assert (!stmt_could_throw_p (cfun, vcall_stmt));
|
||
gcc_assert (!stmt_could_throw_p (cfun, icall_stmt));
|
||
}
|
||
|
||
/* Find values inside STMT for that we want to measure histograms for
|
||
division/modulo optimization. */
|
||
|
||
static bool
|
||
gimple_stringops_transform (gimple_stmt_iterator *gsi)
|
||
{
|
||
gcall *stmt;
|
||
tree blck_size;
|
||
enum built_in_function fcode;
|
||
histogram_value histogram;
|
||
gcov_type count, all, val;
|
||
tree dest, src;
|
||
unsigned int dest_align, src_align;
|
||
profile_probability prob;
|
||
tree tree_val;
|
||
int size_arg;
|
||
|
||
stmt = dyn_cast <gcall *> (gsi_stmt (*gsi));
|
||
if (!stmt)
|
||
return false;
|
||
|
||
if (!gimple_call_builtin_p (gsi_stmt (*gsi), BUILT_IN_NORMAL))
|
||
return false;
|
||
|
||
if (!interesting_stringop_to_profile_p (stmt, &size_arg))
|
||
return false;
|
||
|
||
blck_size = gimple_call_arg (stmt, size_arg);
|
||
if (TREE_CODE (blck_size) == INTEGER_CST)
|
||
return false;
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt,
|
||
HIST_TYPE_TOPN_VALUES);
|
||
if (!histogram)
|
||
return false;
|
||
|
||
if (!get_nth_most_common_value (stmt, "stringops", histogram, &val, &count,
|
||
&all))
|
||
return false;
|
||
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
|
||
/* We require that count is at least half of all. */
|
||
if (2 * count < all || optimize_bb_for_size_p (gimple_bb (stmt)))
|
||
return false;
|
||
if (check_counter (stmt, "value", &count, &all, gimple_bb (stmt)->count))
|
||
return false;
|
||
if (all > 0)
|
||
prob = profile_probability::probability_in_gcov_type (count, all);
|
||
else
|
||
prob = profile_probability::never ();
|
||
|
||
dest = gimple_call_arg (stmt, 0);
|
||
dest_align = get_pointer_alignment (dest);
|
||
fcode = DECL_FUNCTION_CODE (gimple_call_fndecl (stmt));
|
||
switch (fcode)
|
||
{
|
||
case BUILT_IN_MEMCPY:
|
||
case BUILT_IN_MEMPCPY:
|
||
case BUILT_IN_MEMMOVE:
|
||
src = gimple_call_arg (stmt, 1);
|
||
src_align = get_pointer_alignment (src);
|
||
if (!can_move_by_pieces (val, MIN (dest_align, src_align)))
|
||
return false;
|
||
break;
|
||
case BUILT_IN_MEMSET:
|
||
if (!can_store_by_pieces (val, builtin_memset_read_str,
|
||
gimple_call_arg (stmt, 1),
|
||
dest_align, true))
|
||
return false;
|
||
break;
|
||
case BUILT_IN_BZERO:
|
||
if (!can_store_by_pieces (val, builtin_memset_read_str,
|
||
integer_zero_node,
|
||
dest_align, true))
|
||
return false;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (sizeof (gcov_type) == sizeof (HOST_WIDE_INT))
|
||
tree_val = build_int_cst (get_gcov_type (), val);
|
||
else
|
||
{
|
||
HOST_WIDE_INT a[2];
|
||
a[0] = (unsigned HOST_WIDE_INT) val;
|
||
a[1] = val >> (HOST_BITS_PER_WIDE_INT - 1) >> 1;
|
||
|
||
tree_val = wide_int_to_tree (get_gcov_type (), wide_int::from_array (a, 2,
|
||
TYPE_PRECISION (get_gcov_type ()), false));
|
||
}
|
||
|
||
if (dump_enabled_p ())
|
||
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, stmt,
|
||
"Transformation done: single value %i stringop for %s\n",
|
||
(int)val, built_in_names[(int)fcode]);
|
||
|
||
gimple_stringop_fixed_value (stmt, tree_val, prob, count, all);
|
||
|
||
return true;
|
||
}
|
||
|
||
void
|
||
stringop_block_profile (gimple *stmt, unsigned int *expected_align,
|
||
HOST_WIDE_INT *expected_size)
|
||
{
|
||
histogram_value histogram;
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_AVERAGE);
|
||
|
||
if (!histogram)
|
||
*expected_size = -1;
|
||
else if (!histogram->hvalue.counters[1])
|
||
{
|
||
*expected_size = -1;
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
}
|
||
else
|
||
{
|
||
gcov_type size;
|
||
size = ((histogram->hvalue.counters[0]
|
||
+ histogram->hvalue.counters[1] / 2)
|
||
/ histogram->hvalue.counters[1]);
|
||
/* Even if we can hold bigger value in SIZE, INT_MAX
|
||
is safe "infinity" for code generation strategies. */
|
||
if (size > INT_MAX)
|
||
size = INT_MAX;
|
||
*expected_size = size;
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
}
|
||
|
||
histogram = gimple_histogram_value_of_type (cfun, stmt, HIST_TYPE_IOR);
|
||
|
||
if (!histogram)
|
||
*expected_align = 0;
|
||
else if (!histogram->hvalue.counters[0])
|
||
{
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
*expected_align = 0;
|
||
}
|
||
else
|
||
{
|
||
gcov_type count;
|
||
unsigned int alignment;
|
||
|
||
count = histogram->hvalue.counters[0];
|
||
alignment = 1;
|
||
while (!(count & alignment)
|
||
&& (alignment <= UINT_MAX / 2 / BITS_PER_UNIT))
|
||
alignment <<= 1;
|
||
*expected_align = alignment * BITS_PER_UNIT;
|
||
gimple_remove_histogram_value (cfun, stmt, histogram);
|
||
}
|
||
}
|
||
|
||
|
||
/* Find values inside STMT for that we want to measure histograms for
|
||
division/modulo optimization. */
|
||
|
||
static void
|
||
gimple_divmod_values_to_profile (gimple *stmt, histogram_values *values)
|
||
{
|
||
tree lhs, divisor, op0, type;
|
||
histogram_value hist;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_ASSIGN)
|
||
return;
|
||
|
||
lhs = gimple_assign_lhs (stmt);
|
||
type = TREE_TYPE (lhs);
|
||
if (!INTEGRAL_TYPE_P (type))
|
||
return;
|
||
|
||
switch (gimple_assign_rhs_code (stmt))
|
||
{
|
||
case TRUNC_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
divisor = gimple_assign_rhs2 (stmt);
|
||
op0 = gimple_assign_rhs1 (stmt);
|
||
|
||
if (TREE_CODE (divisor) == SSA_NAME)
|
||
/* Check for the case where the divisor is the same value most
|
||
of the time. */
|
||
values->safe_push (gimple_alloc_histogram_value (cfun,
|
||
HIST_TYPE_TOPN_VALUES,
|
||
stmt, divisor));
|
||
|
||
/* For mod, check whether it is not often a noop (or replaceable by
|
||
a few subtractions). */
|
||
if (gimple_assign_rhs_code (stmt) == TRUNC_MOD_EXPR
|
||
&& TYPE_UNSIGNED (type)
|
||
&& TREE_CODE (divisor) == SSA_NAME)
|
||
{
|
||
tree val;
|
||
/* Check for a special case where the divisor is power of 2. */
|
||
values->safe_push (gimple_alloc_histogram_value (cfun,
|
||
HIST_TYPE_POW2,
|
||
stmt, divisor));
|
||
val = build2 (TRUNC_DIV_EXPR, type, op0, divisor);
|
||
hist = gimple_alloc_histogram_value (cfun, HIST_TYPE_INTERVAL,
|
||
stmt, val);
|
||
hist->hdata.intvl.int_start = 0;
|
||
hist->hdata.intvl.steps = 2;
|
||
values->safe_push (hist);
|
||
}
|
||
return;
|
||
|
||
default:
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* Find calls inside STMT for that we want to measure histograms for
|
||
indirect/virtual call optimization. */
|
||
|
||
static void
|
||
gimple_indirect_call_to_profile (gimple *stmt, histogram_values *values)
|
||
{
|
||
tree callee;
|
||
|
||
if (gimple_code (stmt) != GIMPLE_CALL
|
||
|| gimple_call_internal_p (stmt)
|
||
|| gimple_call_fndecl (stmt) != NULL_TREE)
|
||
return;
|
||
|
||
callee = gimple_call_fn (stmt);
|
||
histogram_value v = gimple_alloc_histogram_value (cfun, HIST_TYPE_INDIR_CALL,
|
||
stmt, callee);
|
||
values->safe_push (v);
|
||
|
||
return;
|
||
}
|
||
|
||
/* Find values inside STMT for that we want to measure histograms for
|
||
string operations. */
|
||
|
||
static void
|
||
gimple_stringops_values_to_profile (gimple *gs, histogram_values *values)
|
||
{
|
||
gcall *stmt;
|
||
tree blck_size;
|
||
tree dest;
|
||
int size_arg;
|
||
|
||
stmt = dyn_cast <gcall *> (gs);
|
||
if (!stmt)
|
||
return;
|
||
|
||
if (!gimple_call_builtin_p (gs, BUILT_IN_NORMAL))
|
||
return;
|
||
|
||
if (!interesting_stringop_to_profile_p (stmt, &size_arg))
|
||
return;
|
||
|
||
dest = gimple_call_arg (stmt, 0);
|
||
blck_size = gimple_call_arg (stmt, size_arg);
|
||
|
||
if (TREE_CODE (blck_size) != INTEGER_CST)
|
||
{
|
||
values->safe_push (gimple_alloc_histogram_value (cfun,
|
||
HIST_TYPE_TOPN_VALUES,
|
||
stmt, blck_size));
|
||
values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_AVERAGE,
|
||
stmt, blck_size));
|
||
}
|
||
|
||
if (TREE_CODE (blck_size) != INTEGER_CST)
|
||
values->safe_push (gimple_alloc_histogram_value (cfun, HIST_TYPE_IOR,
|
||
stmt, dest));
|
||
}
|
||
|
||
/* Find values inside STMT for that we want to measure histograms and adds
|
||
them to list VALUES. */
|
||
|
||
static void
|
||
gimple_values_to_profile (gimple *stmt, histogram_values *values)
|
||
{
|
||
gimple_divmod_values_to_profile (stmt, values);
|
||
gimple_stringops_values_to_profile (stmt, values);
|
||
gimple_indirect_call_to_profile (stmt, values);
|
||
}
|
||
|
||
void
|
||
gimple_find_values_to_profile (histogram_values *values)
|
||
{
|
||
basic_block bb;
|
||
gimple_stmt_iterator gsi;
|
||
unsigned i;
|
||
histogram_value hist = NULL;
|
||
values->create (0);
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
||
gimple_values_to_profile (gsi_stmt (gsi), values);
|
||
|
||
values->safe_push (gimple_alloc_histogram_value (cfun,
|
||
HIST_TYPE_TIME_PROFILE));
|
||
|
||
FOR_EACH_VEC_ELT (*values, i, hist)
|
||
{
|
||
switch (hist->type)
|
||
{
|
||
case HIST_TYPE_INTERVAL:
|
||
hist->n_counters = hist->hdata.intvl.steps + 2;
|
||
break;
|
||
|
||
case HIST_TYPE_POW2:
|
||
hist->n_counters = 2;
|
||
break;
|
||
|
||
case HIST_TYPE_TOPN_VALUES:
|
||
case HIST_TYPE_INDIR_CALL:
|
||
hist->n_counters = GCOV_TOPN_MEM_COUNTERS;
|
||
break;
|
||
|
||
case HIST_TYPE_TIME_PROFILE:
|
||
hist->n_counters = 1;
|
||
break;
|
||
|
||
case HIST_TYPE_AVERAGE:
|
||
hist->n_counters = 2;
|
||
break;
|
||
|
||
case HIST_TYPE_IOR:
|
||
hist->n_counters = 1;
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
if (dump_file && hist->hvalue.stmt != NULL)
|
||
{
|
||
fprintf (dump_file, "Stmt ");
|
||
print_gimple_stmt (dump_file, hist->hvalue.stmt, 0, TDF_SLIM);
|
||
dump_histogram_value (dump_file, hist);
|
||
}
|
||
}
|
||
}
|