c75732496d
2011-09-23 Martin Jambor <mjambor@suse.cz> * ipa-prop.h (jump_func_type): Updated comments. (ipa_known_type_data): New type. (ipa_jump_func): Use it to describe known type jump functions. * ipa-prop.c (ipa_print_node_jump_functions_for_edge): Updated to reflect the new known type jump function contents. (compute_known_type_jump_func): Likewise. (combine_known_type_and_ancestor_jfs): Likewise. (try_make_edge_direct_virtual_call): Likewise. (ipa_write_jump_function): Likewise. (ipa_read_jump_function): Likewise. * ipa-cp.c (ipa_value_from_known_type_jfunc): New function. (ipa_value_from_jfunc): Use ipa_value_from_known_type_jfunc. (propagate_accross_jump_function): Likewise. From-SVN: r179117
2892 lines
84 KiB
C
2892 lines
84 KiB
C
/* Interprocedural analyses.
|
|
Copyright (C) 2005, 2007, 2008, 2009, 2010, 2011
|
|
Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tree.h"
|
|
#include "langhooks.h"
|
|
#include "ggc.h"
|
|
#include "target.h"
|
|
#include "cgraph.h"
|
|
#include "ipa-prop.h"
|
|
#include "tree-flow.h"
|
|
#include "tree-pass.h"
|
|
#include "tree-inline.h"
|
|
#include "gimple.h"
|
|
#include "flags.h"
|
|
#include "timevar.h"
|
|
#include "flags.h"
|
|
#include "diagnostic.h"
|
|
#include "tree-pretty-print.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "lto-streamer.h"
|
|
#include "data-streamer.h"
|
|
#include "tree-streamer.h"
|
|
|
|
|
|
/* Intermediate information about a parameter that is only useful during the
|
|
run of ipa_analyze_node and is not kept afterwards. */
|
|
|
|
struct param_analysis_info
|
|
{
|
|
bool modified;
|
|
bitmap visited_statements;
|
|
};
|
|
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_node_params_t, heap) *ipa_node_params_vector;
|
|
/* Vector where the parameter infos are actually stored. */
|
|
VEC (ipa_edge_args_t, gc) *ipa_edge_args_vector;
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
|
static struct cgraph_node_hook_list *node_removal_hook_holder;
|
|
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
|
static struct cgraph_2node_hook_list *node_duplication_hook_holder;
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
|
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
|
to INFO. */
|
|
|
|
int
|
|
ipa_get_param_decl_index (struct ipa_node_params *info, tree ptree)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
if (ipa_get_param (info, i) == ptree)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Populate the param_decl field in parameter descriptors of INFO that
|
|
corresponds to NODE. */
|
|
|
|
static void
|
|
ipa_populate_param_decls (struct cgraph_node *node,
|
|
struct ipa_node_params *info)
|
|
{
|
|
tree fndecl;
|
|
tree fnargs;
|
|
tree parm;
|
|
int param_num;
|
|
|
|
fndecl = node->decl;
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
|
param_num = 0;
|
|
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
|
|
{
|
|
VEC_index (ipa_param_descriptor_t,
|
|
info->descriptors, param_num)->decl = parm;
|
|
param_num++;
|
|
}
|
|
}
|
|
|
|
/* Return how many formal parameters FNDECL has. */
|
|
|
|
static inline int
|
|
count_formal_params (tree fndecl)
|
|
{
|
|
tree parm;
|
|
int count = 0;
|
|
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Initialize the ipa_node_params structure associated with NODE by counting
|
|
the function parameters, creating the descriptors and populating their
|
|
param_decls. */
|
|
|
|
void
|
|
ipa_initialize_node_params (struct cgraph_node *node)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
|
|
if (!info->descriptors)
|
|
{
|
|
int param_count;
|
|
|
|
param_count = count_formal_params (node->decl);
|
|
if (param_count)
|
|
{
|
|
VEC_safe_grow_cleared (ipa_param_descriptor_t, heap,
|
|
info->descriptors, param_count);
|
|
ipa_populate_param_decls (node, info);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Print the jump functions associated with call graph edge CS to file F. */
|
|
|
|
static void
|
|
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jump_func;
|
|
enum jump_func_type type;
|
|
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
|
type = jump_func->type;
|
|
|
|
fprintf (f, " param %d: ", i);
|
|
if (type == IPA_JF_UNKNOWN)
|
|
fprintf (f, "UNKNOWN\n");
|
|
else if (type == IPA_JF_KNOWN_TYPE)
|
|
{
|
|
fprintf (f, "KNOWN TYPE: base ");
|
|
print_generic_expr (f, jump_func->value.known_type.base_type, 0);
|
|
fprintf (f, ", offset "HOST_WIDE_INT_PRINT_DEC", component ",
|
|
jump_func->value.known_type.offset);
|
|
print_generic_expr (f, jump_func->value.known_type.component_type, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_CONST)
|
|
{
|
|
tree val = jump_func->value.constant;
|
|
fprintf (f, "CONST: ");
|
|
print_generic_expr (f, val, 0);
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
|
|
{
|
|
fprintf (f, " -> ");
|
|
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)),
|
|
0);
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_CONST_MEMBER_PTR)
|
|
{
|
|
fprintf (f, "CONST MEMBER PTR: ");
|
|
print_generic_expr (f, jump_func->value.member_cst.pfn, 0);
|
|
fprintf (f, ", ");
|
|
print_generic_expr (f, jump_func->value.member_cst.delta, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
fprintf (f, "PASS THROUGH: ");
|
|
fprintf (f, "%d, op %s ",
|
|
jump_func->value.pass_through.formal_id,
|
|
tree_code_name[(int)
|
|
jump_func->value.pass_through.operation]);
|
|
if (jump_func->value.pass_through.operation != NOP_EXPR)
|
|
print_generic_expr (f,
|
|
jump_func->value.pass_through.operand, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_ANCESTOR)
|
|
{
|
|
fprintf (f, "ANCESTOR: ");
|
|
fprintf (f, "%d, offset "HOST_WIDE_INT_PRINT_DEC", ",
|
|
jump_func->value.ancestor.formal_id,
|
|
jump_func->value.ancestor.offset);
|
|
print_generic_expr (f, jump_func->value.ancestor.type, 0);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Print the jump functions of all arguments on all call graph edges going from
|
|
NODE to file F. */
|
|
|
|
void
|
|
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
int i;
|
|
|
|
fprintf (f, " Jump functions of caller %s:\n", cgraph_node_name (node));
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
continue;
|
|
|
|
fprintf (f, " callsite %s/%i -> %s/%i : \n",
|
|
cgraph_node_name (node), node->uid,
|
|
cgraph_node_name (cs->callee), cs->callee->uid);
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
}
|
|
|
|
for (cs = node->indirect_calls, i = 0; cs; cs = cs->next_callee, i++)
|
|
{
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
continue;
|
|
|
|
if (cs->call_stmt)
|
|
{
|
|
fprintf (f, " indirect callsite %d for stmt ", i);
|
|
print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
|
|
}
|
|
else
|
|
fprintf (f, " indirect callsite %d :\n", i);
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
|
|
}
|
|
}
|
|
|
|
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
|
|
|
|
void
|
|
ipa_print_all_jump_functions (FILE *f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nJump functions:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
{
|
|
ipa_print_node_jump_functions (f, node);
|
|
}
|
|
}
|
|
|
|
/* Structure to be passed in between detect_type_change and
|
|
check_stmt_for_type_change. */
|
|
|
|
struct type_change_info
|
|
{
|
|
/* Set to true if dynamic type change has been detected. */
|
|
bool type_maybe_changed;
|
|
};
|
|
|
|
/* Return true if STMT can modify a virtual method table pointer.
|
|
|
|
This function makes special assumptions about both constructors and
|
|
destructors which are all the functions that are allowed to alter the VMT
|
|
pointers. It assumes that destructors begin with assignment into all VMT
|
|
pointers and that constructors essentially look in the following way:
|
|
|
|
1) The very first thing they do is that they call constructors of ancestor
|
|
sub-objects that have them.
|
|
|
|
2) Then VMT pointers of this and all its ancestors is set to new values
|
|
corresponding to the type corresponding to the constructor.
|
|
|
|
3) Only afterwards, other stuff such as constructor of member sub-objects
|
|
and the code written by the user is run. Only this may include calling
|
|
virtual functions, directly or indirectly.
|
|
|
|
There is no way to call a constructor of an ancestor sub-object in any
|
|
other way.
|
|
|
|
This means that we do not have to care whether constructors get the correct
|
|
type information because they will always change it (in fact, if we define
|
|
the type to be given by the VMT pointer, it is undefined).
|
|
|
|
The most important fact to derive from the above is that if, for some
|
|
statement in the section 3, we try to detect whether the dynamic type has
|
|
changed, we can safely ignore all calls as we examine the function body
|
|
backwards until we reach statements in section 2 because these calls cannot
|
|
be ancestor constructors or destructors (if the input is not bogus) and so
|
|
do not change the dynamic type (this holds true only for automatically
|
|
allocated objects but at the moment we devirtualize only these). We then
|
|
must detect that statements in section 2 change the dynamic type and can try
|
|
to derive the new type. That is enough and we can stop, we will never see
|
|
the calls into constructors of sub-objects in this code. Therefore we can
|
|
safely ignore all call statements that we traverse.
|
|
*/
|
|
|
|
static bool
|
|
stmt_may_be_vtbl_ptr_store (gimple stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
return false;
|
|
else if (is_gimple_assign (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
if (flag_strict_aliasing
|
|
&& !POINTER_TYPE_P (TREE_TYPE (lhs)))
|
|
return false;
|
|
|
|
if (TREE_CODE (lhs) == COMPONENT_REF
|
|
&& !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
|
|
return false;
|
|
/* In the future we might want to use get_base_ref_and_offset to find
|
|
if there is a field corresponding to the offset and if so, proceed
|
|
almost like if it was a component ref. */
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs and a helper function for
|
|
detect_type_change to check whether a particular statement may modify
|
|
the virtual table pointer, and if possible also determine the new type of
|
|
the (sub-)object. It stores its result into DATA, which points to a
|
|
type_change_info structure. */
|
|
|
|
static bool
|
|
check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (vdef);
|
|
struct type_change_info *tci = (struct type_change_info *) data;
|
|
|
|
if (stmt_may_be_vtbl_ptr_store (stmt))
|
|
{
|
|
tci->type_maybe_changed = true;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Detect whether the dynamic type of ARG has changed (before callsite CALL) by
|
|
looking for assignments to its virtual table pointer. If it is, return true
|
|
and fill in the jump function JFUNC with relevant type information or set it
|
|
to unknown. ARG is the object itself (not a pointer to it, unless
|
|
dereferenced). BASE is the base of the memory access as returned by
|
|
get_ref_base_and_extent, as is the offset. */
|
|
|
|
static bool
|
|
detect_type_change (tree arg, tree base, gimple call,
|
|
struct ipa_jump_func *jfunc, HOST_WIDE_INT offset)
|
|
{
|
|
struct type_change_info tci;
|
|
ao_ref ao;
|
|
|
|
gcc_checking_assert (DECL_P (arg)
|
|
|| TREE_CODE (arg) == MEM_REF
|
|
|| handled_component_p (arg));
|
|
/* Const calls cannot call virtual methods through VMT and so type changes do
|
|
not matter. */
|
|
if (!flag_devirtualize || !gimple_vuse (call))
|
|
return false;
|
|
|
|
tci.type_maybe_changed = false;
|
|
|
|
ao.ref = arg;
|
|
ao.base = base;
|
|
ao.offset = offset;
|
|
ao.size = POINTER_SIZE;
|
|
ao.max_size = ao.size;
|
|
ao.ref_alias_set = -1;
|
|
ao.base_alias_set = -1;
|
|
|
|
walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
|
|
&tci, NULL);
|
|
if (!tci.type_maybe_changed)
|
|
return false;
|
|
|
|
jfunc->type = IPA_JF_UNKNOWN;
|
|
return true;
|
|
}
|
|
|
|
/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
|
|
SSA name (its dereference will become the base and the offset is assumed to
|
|
be zero). */
|
|
|
|
static bool
|
|
detect_type_change_ssa (tree arg, gimple call, struct ipa_jump_func *jfunc)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
|
|
if (!flag_devirtualize
|
|
|| !POINTER_TYPE_P (TREE_TYPE (arg))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) != RECORD_TYPE)
|
|
return false;
|
|
|
|
arg = build2 (MEM_REF, ptr_type_node, arg,
|
|
build_int_cst (ptr_type_node, 0));
|
|
|
|
return detect_type_change (arg, arg, call, jfunc, 0);
|
|
}
|
|
|
|
|
|
/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
|
|
of an assignment statement STMT, try to find out whether NAME can be
|
|
described by a (possibly polynomial) pass-through jump-function or an
|
|
ancestor jump function and if so, write the appropriate function into
|
|
JFUNC */
|
|
|
|
static void
|
|
compute_complex_assign_jump_func (struct ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gimple call, gimple stmt, tree name)
|
|
{
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
tree op1, op2, base, ssa;
|
|
int index;
|
|
|
|
op1 = gimple_assign_rhs1 (stmt);
|
|
op2 = gimple_assign_rhs2 (stmt);
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (op1))
|
|
{
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
|
|
if (index < 0)
|
|
return;
|
|
|
|
if (op2)
|
|
{
|
|
if (!is_gimple_ip_invariant (op2)
|
|
|| (TREE_CODE_CLASS (gimple_expr_code (stmt)) != tcc_comparison
|
|
&& !useless_type_conversion_p (TREE_TYPE (name),
|
|
TREE_TYPE (op1))))
|
|
return;
|
|
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = gimple_assign_rhs_code (stmt);
|
|
jfunc->value.pass_through.operand = op2;
|
|
}
|
|
else if (gimple_assign_unary_nop_p (stmt)
|
|
&& !detect_type_change_ssa (op1, call, jfunc))
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (TREE_CODE (op1) != ADDR_EXPR)
|
|
return;
|
|
op1 = TREE_OPERAND (op1, 0);
|
|
if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
|
|
return;
|
|
base = get_ref_base_and_extent (op1, &offset, &size, &max_size);
|
|
if (TREE_CODE (base) != MEM_REF
|
|
/* If this is a varying address, punt. */
|
|
|| max_size == -1
|
|
|| max_size != size)
|
|
return;
|
|
offset += mem_ref_offset (base).low * BITS_PER_UNIT;
|
|
ssa = TREE_OPERAND (base, 0);
|
|
if (TREE_CODE (ssa) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (ssa)
|
|
|| offset < 0)
|
|
return;
|
|
|
|
/* Dynamic types are changed only in constructors and destructors and */
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
|
|
if (index >= 0
|
|
&& !detect_type_change (op1, base, call, jfunc, offset))
|
|
{
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
|
jfunc->value.ancestor.formal_id = index;
|
|
jfunc->value.ancestor.offset = offset;
|
|
jfunc->value.ancestor.type = TREE_TYPE (op1);
|
|
}
|
|
}
|
|
|
|
/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
|
|
it looks like:
|
|
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
|
|
|
The base of the MEM_REF must be a default definition SSA NAME of a
|
|
parameter. Return NULL_TREE if it looks otherwise. If case of success, the
|
|
whole MEM_REF expression is returned and the offset calculated from any
|
|
handled components and the MEM_REF itself is stored into *OFFSET. The whole
|
|
RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
|
|
|
|
static tree
|
|
get_ancestor_addr_info (gimple assign, tree *obj_p, HOST_WIDE_INT *offset)
|
|
{
|
|
HOST_WIDE_INT size, max_size;
|
|
tree expr, parm, obj;
|
|
|
|
if (!gimple_assign_single_p (assign))
|
|
return NULL_TREE;
|
|
expr = gimple_assign_rhs1 (assign);
|
|
|
|
if (TREE_CODE (expr) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
expr = TREE_OPERAND (expr, 0);
|
|
obj = expr;
|
|
expr = get_ref_base_and_extent (expr, offset, &size, &max_size);
|
|
|
|
if (TREE_CODE (expr) != MEM_REF
|
|
/* If this is a varying address, punt. */
|
|
|| max_size == -1
|
|
|| max_size != size
|
|
|| *offset < 0)
|
|
return NULL_TREE;
|
|
parm = TREE_OPERAND (expr, 0);
|
|
if (TREE_CODE (parm) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (parm)
|
|
|| TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
|
|
return NULL_TREE;
|
|
|
|
*offset += mem_ref_offset (expr).low * BITS_PER_UNIT;
|
|
*obj_p = obj;
|
|
return expr;
|
|
}
|
|
|
|
|
|
/* Given that an actual argument is an SSA_NAME that is a result of a phi
|
|
statement PHI, try to find out whether NAME is in fact a
|
|
multiple-inheritance typecast from a descendant into an ancestor of a formal
|
|
parameter and thus can be described by an ancestor jump function and if so,
|
|
write the appropriate function into JFUNC.
|
|
|
|
Essentially we want to match the following pattern:
|
|
|
|
if (obj_2(D) != 0B)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 3>:
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
|
|
|
<bb 4>:
|
|
# iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
|
|
D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
|
|
return D.1879_6; */
|
|
|
|
static void
|
|
compute_complex_ancestor_jump_func (struct ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gimple call, gimple phi)
|
|
{
|
|
HOST_WIDE_INT offset;
|
|
gimple assign, cond;
|
|
basic_block phi_bb, assign_bb, cond_bb;
|
|
tree tmp, parm, expr, obj;
|
|
int index, i;
|
|
|
|
if (gimple_phi_num_args (phi) != 2)
|
|
return;
|
|
|
|
if (integer_zerop (PHI_ARG_DEF (phi, 1)))
|
|
tmp = PHI_ARG_DEF (phi, 0);
|
|
else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
|
|
tmp = PHI_ARG_DEF (phi, 1);
|
|
else
|
|
return;
|
|
if (TREE_CODE (tmp) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (tmp)
|
|
|| !POINTER_TYPE_P (TREE_TYPE (tmp))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
|
|
return;
|
|
|
|
assign = SSA_NAME_DEF_STMT (tmp);
|
|
assign_bb = gimple_bb (assign);
|
|
if (!single_pred_p (assign_bb))
|
|
return;
|
|
expr = get_ancestor_addr_info (assign, &obj, &offset);
|
|
if (!expr)
|
|
return;
|
|
parm = TREE_OPERAND (expr, 0);
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
|
|
gcc_assert (index >= 0);
|
|
|
|
cond_bb = single_pred (assign_bb);
|
|
cond = last_stmt (cond_bb);
|
|
if (!cond
|
|
|| gimple_code (cond) != GIMPLE_COND
|
|
|| gimple_cond_code (cond) != NE_EXPR
|
|
|| gimple_cond_lhs (cond) != parm
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
|
return;
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
basic_block pred = EDGE_PRED (phi_bb, i)->src;
|
|
if (pred != assign_bb && pred != cond_bb)
|
|
return;
|
|
}
|
|
|
|
if (!detect_type_change (obj, expr, call, jfunc, offset))
|
|
{
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
|
jfunc->value.ancestor.formal_id = index;
|
|
jfunc->value.ancestor.offset = offset;
|
|
jfunc->value.ancestor.type = TREE_TYPE (obj);
|
|
}
|
|
}
|
|
|
|
/* Given OP which is passed as an actual argument to a called function,
|
|
determine if it is possible to construct a KNOWN_TYPE jump function for it
|
|
and if so, create one and store it to JFUNC. */
|
|
|
|
static void
|
|
compute_known_type_jump_func (tree op, struct ipa_jump_func *jfunc,
|
|
gimple call)
|
|
{
|
|
HOST_WIDE_INT offset, size, max_size;
|
|
tree base;
|
|
|
|
if (!flag_devirtualize
|
|
|| TREE_CODE (op) != ADDR_EXPR
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (op))) != RECORD_TYPE)
|
|
return;
|
|
|
|
op = TREE_OPERAND (op, 0);
|
|
base = get_ref_base_and_extent (op, &offset, &size, &max_size);
|
|
if (!DECL_P (base)
|
|
|| max_size == -1
|
|
|| max_size != size
|
|
|| TREE_CODE (TREE_TYPE (base)) != RECORD_TYPE
|
|
|| is_global_var (base))
|
|
return;
|
|
|
|
if (detect_type_change (op, base, call, jfunc, offset)
|
|
|| !TYPE_BINFO (TREE_TYPE (base)))
|
|
return;
|
|
|
|
jfunc->type = IPA_JF_KNOWN_TYPE;
|
|
jfunc->value.known_type.base_type = TREE_TYPE (base);
|
|
jfunc->value.known_type.offset = offset;
|
|
jfunc->value.known_type.component_type = TREE_TYPE (op);
|
|
}
|
|
|
|
|
|
/* Determine the jump functions of scalar arguments. Scalar means SSA names
|
|
and constants of a number of selected types. INFO is the ipa_node_params
|
|
structure associated with the caller, FUNCTIONS is a pointer to an array of
|
|
jump function structures associated with CALL which is the call statement
|
|
being examined.*/
|
|
|
|
static void
|
|
compute_scalar_jump_functions (struct ipa_node_params *info,
|
|
struct ipa_edge_args *args,
|
|
gimple call)
|
|
{
|
|
tree arg;
|
|
unsigned num = 0;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (is_gimple_ip_invariant (arg))
|
|
{
|
|
jfunc->type = IPA_JF_CONST;
|
|
jfunc->value.constant = arg;
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
|
|
|
|
if (index >= 0
|
|
&& !detect_type_change_ssa (arg, call, jfunc))
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (arg);
|
|
if (is_gimple_assign (stmt))
|
|
compute_complex_assign_jump_func (info, jfunc, call, stmt, arg);
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
|
compute_complex_ancestor_jump_func (info, jfunc, call, stmt);
|
|
}
|
|
}
|
|
else
|
|
compute_known_type_jump_func (arg, jfunc, call);
|
|
}
|
|
}
|
|
|
|
/* Inspect the given TYPE and return true iff it has the same structure (the
|
|
same number of fields of the same types) as a C++ member pointer. If
|
|
METHOD_PTR and DELTA are non-NULL, store the trees representing the
|
|
corresponding fields there. */
|
|
|
|
static bool
|
|
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
|
|
{
|
|
tree fld;
|
|
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return false;
|
|
|
|
fld = TYPE_FIELDS (type);
|
|
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE)
|
|
return false;
|
|
|
|
if (method_ptr)
|
|
*method_ptr = fld;
|
|
|
|
fld = DECL_CHAIN (fld);
|
|
if (!fld || INTEGRAL_TYPE_P (fld))
|
|
return false;
|
|
if (delta)
|
|
*delta = fld;
|
|
|
|
if (DECL_CHAIN (fld))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
|
boolean variable pointed to by DATA. */
|
|
|
|
static bool
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
|
void *data)
|
|
{
|
|
bool *b = (bool *) data;
|
|
*b = true;
|
|
return true;
|
|
}
|
|
|
|
/* Return true if the formal parameter PARM might have been modified in this
|
|
function before reaching the statement CALL. PARM_INFO is a pointer to a
|
|
structure containing intermediate information about PARM. */
|
|
|
|
static bool
|
|
is_parm_modified_before_call (struct param_analysis_info *parm_info,
|
|
gimple call, tree parm)
|
|
{
|
|
bool modified = false;
|
|
ao_ref refd;
|
|
|
|
if (parm_info->modified)
|
|
return true;
|
|
|
|
ao_ref_init (&refd, parm);
|
|
walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
|
|
&modified, &parm_info->visited_statements);
|
|
if (modified)
|
|
{
|
|
parm_info->modified = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Go through arguments of the CALL and for every one that looks like a member
|
|
pointer, check whether it can be safely declared pass-through and if so,
|
|
mark that to the corresponding item of jump FUNCTIONS. Return true iff
|
|
there are non-pass-through member pointers within the arguments. INFO
|
|
describes formal parameters of the caller. PARMS_INFO is a pointer to a
|
|
vector containing intermediate information about each formal parameter. */
|
|
|
|
static bool
|
|
compute_pass_through_member_ptrs (struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info,
|
|
struct ipa_edge_args *args,
|
|
gimple call)
|
|
{
|
|
bool undecided_members = false;
|
|
unsigned num;
|
|
tree arg;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (type_like_member_ptr_p (TREE_TYPE (arg), NULL, NULL))
|
|
{
|
|
if (TREE_CODE (arg) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, arg);
|
|
|
|
gcc_assert (index >=0);
|
|
if (!is_parm_modified_before_call (&parms_info[index], call, arg))
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args,
|
|
num);
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.formal_id = index;
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
else
|
|
undecided_members = true;
|
|
}
|
|
}
|
|
|
|
return undecided_members;
|
|
}
|
|
|
|
/* Simple function filling in a member pointer constant jump function (with PFN
|
|
and DELTA as the constant value) into JFUNC. */
|
|
|
|
static void
|
|
fill_member_ptr_cst_jump_function (struct ipa_jump_func *jfunc,
|
|
tree pfn, tree delta)
|
|
{
|
|
jfunc->type = IPA_JF_CONST_MEMBER_PTR;
|
|
jfunc->value.member_cst.pfn = pfn;
|
|
jfunc->value.member_cst.delta = delta;
|
|
}
|
|
|
|
/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
|
|
return the rhs of its defining statement. */
|
|
|
|
static inline tree
|
|
get_ssa_def_if_simple_copy (tree rhs)
|
|
{
|
|
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
|
|
{
|
|
gimple def_stmt = SSA_NAME_DEF_STMT (rhs);
|
|
|
|
if (gimple_assign_single_p (def_stmt))
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
|
else
|
|
break;
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
/* Traverse statements from CALL backwards, scanning whether the argument ARG
|
|
which is a member pointer is filled in with constant values. If it is, fill
|
|
the jump function JFUNC in appropriately. METHOD_FIELD and DELTA_FIELD are
|
|
fields of the record type of the member pointer. To give an example, we
|
|
look for a pattern looking like the following:
|
|
|
|
D.2515.__pfn ={v} printStuff;
|
|
D.2515.__delta ={v} 0;
|
|
i_1 = doprinting (D.2515); */
|
|
|
|
static void
|
|
determine_cst_member_ptr (gimple call, tree arg, tree method_field,
|
|
tree delta_field, struct ipa_jump_func *jfunc)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
tree method = NULL_TREE;
|
|
tree delta = NULL_TREE;
|
|
|
|
gsi = gsi_for_stmt (call);
|
|
|
|
gsi_prev (&gsi);
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
tree lhs, rhs, fld;
|
|
|
|
if (!stmt_may_clobber_ref_p (stmt, arg))
|
|
continue;
|
|
if (!gimple_assign_single_p (stmt))
|
|
return;
|
|
|
|
lhs = gimple_assign_lhs (stmt);
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (lhs) != COMPONENT_REF
|
|
|| TREE_OPERAND (lhs, 0) != arg)
|
|
return;
|
|
|
|
fld = TREE_OPERAND (lhs, 1);
|
|
if (!method && fld == method_field)
|
|
{
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
|
if (TREE_CODE (rhs) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (rhs, 0)) == FUNCTION_DECL
|
|
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (rhs, 0))) == METHOD_TYPE)
|
|
{
|
|
method = TREE_OPERAND (rhs, 0);
|
|
if (delta)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
|
|
if (!delta && fld == delta_field)
|
|
{
|
|
rhs = get_ssa_def_if_simple_copy (rhs);
|
|
if (TREE_CODE (rhs) == INTEGER_CST)
|
|
{
|
|
delta = rhs;
|
|
if (method)
|
|
{
|
|
fill_member_ptr_cst_jump_function (jfunc, rhs, delta);
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Go through the arguments of the CALL and for every member pointer within
|
|
tries determine whether it is a constant. If it is, create a corresponding
|
|
constant jump function in FUNCTIONS which is an array of jump functions
|
|
associated with the call. */
|
|
|
|
static void
|
|
compute_cst_member_ptr_arguments (struct ipa_edge_args *args,
|
|
gimple call)
|
|
{
|
|
unsigned num;
|
|
tree arg, method_field, delta_field;
|
|
|
|
for (num = 0; num < gimple_call_num_args (call); num++)
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, num);
|
|
arg = gimple_call_arg (call, num);
|
|
|
|
if (jfunc->type == IPA_JF_UNKNOWN
|
|
&& type_like_member_ptr_p (TREE_TYPE (arg), &method_field,
|
|
&delta_field))
|
|
determine_cst_member_ptr (call, arg, method_field, delta_field, jfunc);
|
|
}
|
|
}
|
|
|
|
/* Compute jump function for all arguments of callsite CS and insert the
|
|
information in the jump_functions array in the ipa_edge_args corresponding
|
|
to this callsite. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions_for_edge (struct param_analysis_info *parms_info,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (cs->caller);
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (cs);
|
|
gimple call = cs->call_stmt;
|
|
int arg_num = gimple_call_num_args (call);
|
|
|
|
if (arg_num == 0 || args->jump_functions)
|
|
return;
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, arg_num);
|
|
|
|
/* We will deal with constants and SSA scalars first: */
|
|
compute_scalar_jump_functions (info, args, call);
|
|
|
|
/* Let's check whether there are any potential member pointers and if so,
|
|
whether we can determine their functions as pass_through. */
|
|
if (!compute_pass_through_member_ptrs (info, parms_info, args, call))
|
|
return;
|
|
|
|
/* Finally, let's check whether we actually pass a new constant member
|
|
pointer here... */
|
|
compute_cst_member_ptr_arguments (args, call);
|
|
}
|
|
|
|
/* Compute jump functions for all edges - both direct and indirect - outgoing
|
|
from NODE. Also count the actual arguments in the process. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions (struct cgraph_node *node,
|
|
struct param_analysis_info *parms_info)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
struct cgraph_node *callee = cgraph_function_or_thunk_node (cs->callee,
|
|
NULL);
|
|
/* We do not need to bother analyzing calls to unknown
|
|
functions unless they may become known during lto/whopr. */
|
|
if (!callee->analyzed && !flag_lto)
|
|
continue;
|
|
ipa_compute_jump_functions_for_edge (parms_info, cs);
|
|
}
|
|
|
|
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
|
|
ipa_compute_jump_functions_for_edge (parms_info, cs);
|
|
}
|
|
|
|
/* If RHS looks like a rhs of a statement loading pfn from a member
|
|
pointer formal parameter, return the parameter, otherwise return
|
|
NULL. If USE_DELTA, then we look for a use of the delta field
|
|
rather than the pfn. */
|
|
|
|
static tree
|
|
ipa_get_member_ptr_load_param (tree rhs, bool use_delta)
|
|
{
|
|
tree rec, ref_field, ref_offset, fld, fld_offset, ptr_field, delta_field;
|
|
|
|
if (TREE_CODE (rhs) == COMPONENT_REF)
|
|
{
|
|
ref_field = TREE_OPERAND (rhs, 1);
|
|
rhs = TREE_OPERAND (rhs, 0);
|
|
}
|
|
else
|
|
ref_field = NULL_TREE;
|
|
if (TREE_CODE (rhs) != MEM_REF)
|
|
return NULL_TREE;
|
|
rec = TREE_OPERAND (rhs, 0);
|
|
if (TREE_CODE (rec) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
rec = TREE_OPERAND (rec, 0);
|
|
if (TREE_CODE (rec) != PARM_DECL
|
|
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
|
|
return NULL_TREE;
|
|
|
|
ref_offset = TREE_OPERAND (rhs, 1);
|
|
|
|
if (ref_field)
|
|
{
|
|
if (integer_nonzerop (ref_offset))
|
|
return NULL_TREE;
|
|
|
|
if (use_delta)
|
|
fld = delta_field;
|
|
else
|
|
fld = ptr_field;
|
|
|
|
return ref_field == fld ? rec : NULL_TREE;
|
|
}
|
|
|
|
if (use_delta)
|
|
fld_offset = byte_position (delta_field);
|
|
else
|
|
fld_offset = byte_position (ptr_field);
|
|
|
|
return tree_int_cst_equal (ref_offset, fld_offset) ? rec : NULL_TREE;
|
|
}
|
|
|
|
/* If STMT looks like a statement loading a value from a member pointer formal
|
|
parameter, this function returns that parameter. */
|
|
|
|
static tree
|
|
ipa_get_stmt_member_ptr_load_param (gimple stmt, bool use_delta)
|
|
{
|
|
tree rhs;
|
|
|
|
if (!gimple_assign_single_p (stmt))
|
|
return NULL_TREE;
|
|
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
return ipa_get_member_ptr_load_param (rhs, use_delta);
|
|
}
|
|
|
|
/* Returns true iff T is an SSA_NAME defined by a statement. */
|
|
|
|
static bool
|
|
ipa_is_ssa_with_stmt_def (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (t))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Find the indirect call graph edge corresponding to STMT and mark it as a
|
|
call to a parameter number PARAM_INDEX. NODE is the caller. Return the
|
|
indirect call graph edge. */
|
|
|
|
static struct cgraph_edge *
|
|
ipa_note_param_call (struct cgraph_node *node, int param_index, gimple stmt)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
cs = cgraph_edge (node, stmt);
|
|
cs->indirect_info->param_index = param_index;
|
|
cs->indirect_info->anc_offset = 0;
|
|
cs->indirect_info->polymorphic = 0;
|
|
return cs;
|
|
}
|
|
|
|
/* Analyze the CALL and examine uses of formal parameters of the caller NODE
|
|
(described by INFO). PARMS_INFO is a pointer to a vector containing
|
|
intermediate information about each formal parameter. Currently it checks
|
|
whether the call calls a pointer that is a formal parameter and if so, the
|
|
parameter is marked with the called flag and an indirect call graph edge
|
|
describing the call is created. This is very simple for ordinary pointers
|
|
represented in SSA but not-so-nice when it comes to member pointers. The
|
|
ugly part of this function does nothing more than trying to match the
|
|
pattern of such a call. An example of such a pattern is the gimple dump
|
|
below, the call is on the last line:
|
|
|
|
<bb 2>:
|
|
f$__delta_5 = f.__delta;
|
|
f$__pfn_24 = f.__pfn;
|
|
|
|
or
|
|
<bb 2>:
|
|
f$__delta_5 = MEM[(struct *)&f];
|
|
f$__pfn_24 = MEM[(struct *)&f + 4B];
|
|
|
|
and a few lines below:
|
|
|
|
<bb 5>
|
|
D.2496_3 = (int) f$__pfn_24;
|
|
D.2497_4 = D.2496_3 & 1;
|
|
if (D.2497_4 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 6>:
|
|
D.2500_7 = (unsigned int) f$__delta_5;
|
|
D.2501_8 = &S + D.2500_7;
|
|
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
|
|
D.2503_10 = *D.2502_9;
|
|
D.2504_12 = f$__pfn_24 + -1;
|
|
D.2505_13 = (unsigned int) D.2504_12;
|
|
D.2506_14 = D.2503_10 + D.2505_13;
|
|
D.2507_15 = *D.2506_14;
|
|
iftmp.11_16 = (String:: *) D.2507_15;
|
|
|
|
<bb 7>:
|
|
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
|
|
D.2500_19 = (unsigned int) f$__delta_5;
|
|
D.2508_20 = &S + D.2500_19;
|
|
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
|
|
|
|
Such patterns are results of simple calls to a member pointer:
|
|
|
|
int doprinting (int (MyString::* f)(int) const)
|
|
{
|
|
MyString S ("somestring");
|
|
|
|
return (S.*f)(4);
|
|
}
|
|
*/
|
|
|
|
static void
|
|
ipa_analyze_indirect_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info,
|
|
gimple call, tree target)
|
|
{
|
|
gimple def;
|
|
tree n1, n2;
|
|
gimple d1, d2;
|
|
tree rec, rec2, cond;
|
|
gimple branch;
|
|
int index;
|
|
basic_block bb, virt_bb, join;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (target))
|
|
{
|
|
tree var = SSA_NAME_VAR (target);
|
|
index = ipa_get_param_decl_index (info, var);
|
|
if (index >= 0)
|
|
ipa_note_param_call (node, index, call);
|
|
return;
|
|
}
|
|
|
|
/* Now we need to try to match the complex pattern of calling a member
|
|
pointer. */
|
|
|
|
if (!POINTER_TYPE_P (TREE_TYPE (target))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (target);
|
|
if (gimple_code (def) != GIMPLE_PHI)
|
|
return;
|
|
|
|
if (gimple_phi_num_args (def) != 2)
|
|
return;
|
|
|
|
/* First, we need to check whether one of these is a load from a member
|
|
pointer that is a parameter to this function. */
|
|
n1 = PHI_ARG_DEF (def, 0);
|
|
n2 = PHI_ARG_DEF (def, 1);
|
|
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
|
|
return;
|
|
d1 = SSA_NAME_DEF_STMT (n1);
|
|
d2 = SSA_NAME_DEF_STMT (n2);
|
|
|
|
join = gimple_bb (def);
|
|
if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false)))
|
|
{
|
|
if (ipa_get_stmt_member_ptr_load_param (d2, false))
|
|
return;
|
|
|
|
bb = EDGE_PRED (join, 0)->src;
|
|
virt_bb = gimple_bb (d2);
|
|
}
|
|
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false)))
|
|
{
|
|
bb = EDGE_PRED (join, 1)->src;
|
|
virt_bb = gimple_bb (d1);
|
|
}
|
|
else
|
|
return;
|
|
|
|
/* Second, we need to check that the basic blocks are laid out in the way
|
|
corresponding to the pattern. */
|
|
|
|
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|
|
|| single_pred (virt_bb) != bb
|
|
|| single_succ (virt_bb) != join)
|
|
return;
|
|
|
|
/* Third, let's see that the branching is done depending on the least
|
|
significant bit of the pfn. */
|
|
|
|
branch = last_stmt (bb);
|
|
if (!branch || gimple_code (branch) != GIMPLE_COND)
|
|
return;
|
|
|
|
if ((gimple_cond_code (branch) != NE_EXPR
|
|
&& gimple_cond_code (branch) != EQ_EXPR)
|
|
|| !integer_zerop (gimple_cond_rhs (branch)))
|
|
return;
|
|
|
|
cond = gimple_cond_lhs (branch);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
if (!is_gimple_assign (def)
|
|
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|
|
|| !integer_onep (gimple_assign_rhs2 (def)))
|
|
return;
|
|
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
|
|
if (is_gimple_assign (def)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
|
|
{
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
}
|
|
|
|
rec2 = ipa_get_stmt_member_ptr_load_param (def,
|
|
(TARGET_PTRMEMFUNC_VBIT_LOCATION
|
|
== ptrmemfunc_vbit_in_delta));
|
|
|
|
if (rec != rec2)
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, rec);
|
|
if (index >= 0 && !is_parm_modified_before_call (&parms_info[index],
|
|
call, rec))
|
|
ipa_note_param_call (node, index, call);
|
|
|
|
return;
|
|
}
|
|
|
|
/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
|
|
object referenced in the expression is a formal parameter of the caller
|
|
(described by INFO), create a call note for the statement. */
|
|
|
|
static void
|
|
ipa_analyze_virtual_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info, gimple call,
|
|
tree target)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
struct cgraph_indirect_call_info *ii;
|
|
struct ipa_jump_func jfunc;
|
|
tree obj = OBJ_TYPE_REF_OBJECT (target);
|
|
int index;
|
|
HOST_WIDE_INT anc_offset;
|
|
|
|
if (!flag_devirtualize)
|
|
return;
|
|
|
|
if (TREE_CODE (obj) != SSA_NAME)
|
|
return;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (obj))
|
|
{
|
|
if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
|
|
return;
|
|
|
|
anc_offset = 0;
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
|
|
gcc_assert (index >= 0);
|
|
if (detect_type_change_ssa (obj, call, &jfunc))
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
gimple stmt = SSA_NAME_DEF_STMT (obj);
|
|
tree expr;
|
|
|
|
expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
|
|
if (!expr)
|
|
return;
|
|
index = ipa_get_param_decl_index (info,
|
|
SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
|
|
gcc_assert (index >= 0);
|
|
if (detect_type_change (obj, expr, call, &jfunc, anc_offset))
|
|
return;
|
|
}
|
|
|
|
cs = ipa_note_param_call (node, index, call);
|
|
ii = cs->indirect_info;
|
|
ii->anc_offset = anc_offset;
|
|
ii->otr_token = tree_low_cst (OBJ_TYPE_REF_TOKEN (target), 1);
|
|
ii->otr_type = TREE_TYPE (TREE_TYPE (OBJ_TYPE_REF_OBJECT (target)));
|
|
ii->polymorphic = 1;
|
|
}
|
|
|
|
/* Analyze a call statement CALL whether and how it utilizes formal parameters
|
|
of the caller (described by INFO). PARMS_INFO is a pointer to a vector
|
|
containing intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_call_uses (struct cgraph_node *node,
|
|
struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info, gimple call)
|
|
{
|
|
tree target = gimple_call_fn (call);
|
|
|
|
if (!target)
|
|
return;
|
|
if (TREE_CODE (target) == SSA_NAME)
|
|
ipa_analyze_indirect_call_uses (node, info, parms_info, call, target);
|
|
else if (TREE_CODE (target) == OBJ_TYPE_REF)
|
|
ipa_analyze_virtual_call_uses (node, info, call, target);
|
|
}
|
|
|
|
|
|
/* Analyze the call statement STMT with respect to formal parameters (described
|
|
in INFO) of caller given by NODE. Currently it only checks whether formal
|
|
parameters are called. PARMS_INFO is a pointer to a vector containing
|
|
intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_stmt_uses (struct cgraph_node *node, struct ipa_node_params *info,
|
|
struct param_analysis_info *parms_info, gimple stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
ipa_analyze_call_uses (node, info, parms_info, stmt);
|
|
}
|
|
|
|
/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
|
|
If OP is a parameter declaration, mark it as used in the info structure
|
|
passed in DATA. */
|
|
|
|
static bool
|
|
visit_ref_for_mod_analysis (gimple stmt ATTRIBUTE_UNUSED,
|
|
tree op, void *data)
|
|
{
|
|
struct ipa_node_params *info = (struct ipa_node_params *) data;
|
|
|
|
op = get_base_address (op);
|
|
if (op
|
|
&& TREE_CODE (op) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, op);
|
|
gcc_assert (index >= 0);
|
|
ipa_set_param_used (info, index, true);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Scan the function body of NODE and inspect the uses of formal parameters.
|
|
Store the findings in various structures of the associated ipa_node_params
|
|
structure, such as parameter flags, notes etc. PARMS_INFO is a pointer to a
|
|
vector containing intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_params_uses (struct cgraph_node *node,
|
|
struct param_analysis_info *parms_info)
|
|
{
|
|
tree decl = node->decl;
|
|
basic_block bb;
|
|
struct function *func;
|
|
gimple_stmt_iterator gsi;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int i;
|
|
|
|
if (ipa_get_param_count (info) == 0 || info->uses_analysis_done)
|
|
return;
|
|
|
|
for (i = 0; i < ipa_get_param_count (info); i++)
|
|
{
|
|
tree parm = ipa_get_param (info, i);
|
|
/* For SSA regs see if parameter is used. For non-SSA we compute
|
|
the flag during modification analysis. */
|
|
if (is_gimple_reg (parm)
|
|
&& gimple_default_def (DECL_STRUCT_FUNCTION (node->decl), parm))
|
|
ipa_set_param_used (info, i, true);
|
|
}
|
|
|
|
func = DECL_STRUCT_FUNCTION (decl);
|
|
FOR_EACH_BB_FN (bb, func)
|
|
{
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
ipa_analyze_stmt_uses (node, info, parms_info, stmt);
|
|
walk_stmt_load_store_addr_ops (stmt, info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
for (gsi = gsi_start (phi_nodes (bb)); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
|
|
info->uses_analysis_done = 1;
|
|
}
|
|
|
|
/* Initialize the array describing properties of of formal parameters
|
|
of NODE, analyze their uses and compute jump functions associated
|
|
with actual arguments of calls from within NODE. */
|
|
|
|
void
|
|
ipa_analyze_node (struct cgraph_node *node)
|
|
{
|
|
struct ipa_node_params *info;
|
|
struct param_analysis_info *parms_info;
|
|
int i, param_count;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
info = IPA_NODE_REF (node);
|
|
push_cfun (DECL_STRUCT_FUNCTION (node->decl));
|
|
current_function_decl = node->decl;
|
|
ipa_initialize_node_params (node);
|
|
|
|
param_count = ipa_get_param_count (info);
|
|
parms_info = XALLOCAVEC (struct param_analysis_info, param_count);
|
|
memset (parms_info, 0, sizeof (struct param_analysis_info) * param_count);
|
|
|
|
ipa_analyze_params_uses (node, parms_info);
|
|
ipa_compute_jump_functions (node, parms_info);
|
|
|
|
for (i = 0; i < param_count; i++)
|
|
if (parms_info[i].visited_statements)
|
|
BITMAP_FREE (parms_info[i].visited_statements);
|
|
|
|
current_function_decl = NULL;
|
|
pop_cfun ();
|
|
}
|
|
|
|
|
|
/* Update the jump function DST when the call graph edge corresponding to SRC is
|
|
is being inlined, knowing that DST is of type ancestor and src of known
|
|
type. */
|
|
|
|
static void
|
|
combine_known_type_and_ancestor_jfs (struct ipa_jump_func *src,
|
|
struct ipa_jump_func *dst)
|
|
{
|
|
HOST_WIDE_INT combined_offset;
|
|
tree combined_type;
|
|
|
|
combined_offset = src->value.known_type.offset + dst->value.ancestor.offset;
|
|
combined_type = dst->value.ancestor.type;
|
|
|
|
dst->type = IPA_JF_KNOWN_TYPE;
|
|
dst->value.known_type.base_type = src->value.known_type.base_type;
|
|
dst->value.known_type.offset = combined_offset;
|
|
dst->value.known_type.component_type = combined_type;
|
|
}
|
|
|
|
/* Update the jump functions associated with call graph edge E when the call
|
|
graph edge CS is being inlined, assuming that E->caller is already (possibly
|
|
indirectly) inlined into CS->callee and that E has not been inlined. */
|
|
|
|
static void
|
|
update_jump_functions_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_edge *e)
|
|
{
|
|
struct ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = ipa_get_cs_argument_count (args);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
|
|
|
|
if (dst->type == IPA_JF_ANCESTOR)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
|
|
/* Variable number of arguments can cause havoc if we try to access
|
|
one that does not exist in the inlined edge. So make sure we
|
|
don't. */
|
|
if (dst->value.ancestor.formal_id >= ipa_get_cs_argument_count (top))
|
|
{
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
continue;
|
|
}
|
|
|
|
src = ipa_get_ith_jump_func (top, dst->value.ancestor.formal_id);
|
|
if (src->type == IPA_JF_KNOWN_TYPE)
|
|
combine_known_type_and_ancestor_jfs (src, dst);
|
|
else if (src->type == IPA_JF_PASS_THROUGH
|
|
&& src->value.pass_through.operation == NOP_EXPR)
|
|
dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
|
|
else if (src->type == IPA_JF_ANCESTOR)
|
|
{
|
|
dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
|
|
dst->value.ancestor.offset += src->value.ancestor.offset;
|
|
}
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
else if (dst->type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
/* We must check range due to calls with variable number of arguments
|
|
and we cannot combine jump functions with operations. */
|
|
if (dst->value.pass_through.operation == NOP_EXPR
|
|
&& (dst->value.pass_through.formal_id
|
|
< ipa_get_cs_argument_count (top)))
|
|
{
|
|
src = ipa_get_ith_jump_func (top,
|
|
dst->value.pass_through.formal_id);
|
|
*dst = *src;
|
|
}
|
|
else
|
|
dst->type = IPA_JF_UNKNOWN;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If TARGET is an addr_expr of a function declaration, make it the destination
|
|
of an indirect edge IE and return the edge. Otherwise, return NULL. */
|
|
|
|
struct cgraph_edge *
|
|
ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target)
|
|
{
|
|
struct cgraph_node *callee;
|
|
|
|
if (TREE_CODE (target) == ADDR_EXPR)
|
|
target = TREE_OPERAND (target, 0);
|
|
if (TREE_CODE (target) != FUNCTION_DECL)
|
|
return NULL;
|
|
callee = cgraph_get_node (target);
|
|
if (!callee)
|
|
return NULL;
|
|
ipa_check_create_node_params ();
|
|
|
|
/* We can not make edges to inline clones. It is bug that someone removed
|
|
the cgraph node too early. */
|
|
gcc_assert (!callee->global.inlined_to);
|
|
|
|
cgraph_make_edge_direct (ie, callee);
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "ipa-prop: Discovered %s call to a known target "
|
|
"(%s/%i -> %s/%i), for stmt ",
|
|
ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
|
|
cgraph_node_name (ie->caller), ie->caller->uid,
|
|
cgraph_node_name (ie->callee), ie->callee->uid);
|
|
if (ie->call_stmt)
|
|
print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
|
|
else
|
|
fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
|
|
}
|
|
callee = cgraph_function_or_thunk_node (callee, NULL);
|
|
|
|
return ie;
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a simple
|
|
call or a call of a member function pointer and where the destination is a
|
|
pointer formal parameter described by jump function JFUNC. If it can be
|
|
determined, return the newly direct edge, otherwise return NULL. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
tree target;
|
|
|
|
if (jfunc->type == IPA_JF_CONST)
|
|
target = jfunc->value.constant;
|
|
else if (jfunc->type == IPA_JF_CONST_MEMBER_PTR)
|
|
target = jfunc->value.member_cst.pfn;
|
|
else
|
|
return NULL;
|
|
|
|
return ipa_make_edge_direct_to_target (ie, target);
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a
|
|
virtual call based on a formal parameter which is described by jump
|
|
function JFUNC and if it can be determined, make it direct and return the
|
|
direct edge. Otherwise, return NULL. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
tree binfo, target;
|
|
|
|
if (jfunc->type != IPA_JF_KNOWN_TYPE)
|
|
return NULL;
|
|
|
|
binfo = TYPE_BINFO (jfunc->value.known_type.base_type);
|
|
gcc_checking_assert (binfo);
|
|
binfo = get_binfo_at_offset (binfo, jfunc->value.known_type.offset
|
|
+ ie->indirect_info->anc_offset,
|
|
ie->indirect_info->otr_type);
|
|
if (binfo)
|
|
target = gimple_get_virt_method_for_binfo (ie->indirect_info->otr_token,
|
|
binfo);
|
|
else
|
|
return NULL;
|
|
|
|
if (target)
|
|
return ipa_make_edge_direct_to_target (ie, target);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the param called notes associated with NODE when CS is being inlined,
|
|
assuming NODE is (potentially indirectly) inlined into CS->callee.
|
|
Moreover, if the callee is discovered to be constant, create a new cgraph
|
|
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
|
|
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
|
|
|
|
static bool
|
|
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct ipa_edge_args *top;
|
|
struct cgraph_edge *ie, *next_ie, *new_direct_edge;
|
|
bool res = false;
|
|
|
|
ipa_check_create_edge_args ();
|
|
top = IPA_EDGE_REF (cs);
|
|
|
|
for (ie = node->indirect_calls; ie; ie = next_ie)
|
|
{
|
|
struct cgraph_indirect_call_info *ici = ie->indirect_info;
|
|
struct ipa_jump_func *jfunc;
|
|
|
|
next_ie = ie->next_callee;
|
|
|
|
if (ici->param_index == -1)
|
|
continue;
|
|
|
|
/* We must check range due to calls with variable number of arguments: */
|
|
if (ici->param_index >= ipa_get_cs_argument_count (top))
|
|
{
|
|
ici->param_index = -1;
|
|
continue;
|
|
}
|
|
|
|
jfunc = ipa_get_ith_jump_func (top, ici->param_index);
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
|
&& jfunc->value.pass_through.operation == NOP_EXPR)
|
|
ici->param_index = jfunc->value.pass_through.formal_id;
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
|
{
|
|
ici->param_index = jfunc->value.ancestor.formal_id;
|
|
ici->anc_offset += jfunc->value.ancestor.offset;
|
|
}
|
|
else
|
|
/* Either we can find a destination for this edge now or never. */
|
|
ici->param_index = -1;
|
|
|
|
if (!flag_indirect_inlining)
|
|
continue;
|
|
|
|
if (ici->polymorphic)
|
|
new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc);
|
|
else
|
|
new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc);
|
|
|
|
if (new_direct_edge)
|
|
{
|
|
new_direct_edge->indirect_inlining_edge = 1;
|
|
if (new_edges)
|
|
{
|
|
VEC_safe_push (cgraph_edge_p, heap, *new_edges,
|
|
new_direct_edge);
|
|
top = IPA_EDGE_REF (cs);
|
|
res = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Recursively traverse subtree of NODE (including node) made of inlined
|
|
cgraph_edges when CS has been inlined and invoke
|
|
update_indirect_edges_after_inlining on all nodes and
|
|
update_jump_functions_after_inlining on all non-inlined edges that lead out
|
|
of this subtree. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
|
|
created. */
|
|
|
|
static bool
|
|
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool res;
|
|
|
|
res = update_indirect_edges_after_inlining (cs, node, new_edges);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
|
|
else
|
|
update_jump_functions_after_inlining (cs, e);
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
update_jump_functions_after_inlining (cs, e);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Update jump functions and call note functions on inlining the call site CS.
|
|
CS is expected to lead to a node already cloned by
|
|
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
|
|
created. */
|
|
|
|
bool
|
|
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
|
|
VEC (cgraph_edge_p, heap) **new_edges)
|
|
{
|
|
bool changed;
|
|
/* Do nothing if the preparation phase has not been carried out yet
|
|
(i.e. during early inlining). */
|
|
if (!ipa_node_params_vector)
|
|
return false;
|
|
gcc_assert (ipa_edge_args_vector);
|
|
|
|
changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
|
|
|
|
/* We do not keep jump functions of inlined edges up to date. Better to free
|
|
them so we do not access them accidentally. */
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
|
return changed;
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the argument info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_edge_args_substructures (struct ipa_edge_args *args)
|
|
{
|
|
if (args->jump_functions)
|
|
ggc_free (args->jump_functions);
|
|
|
|
memset (args, 0, sizeof (*args));
|
|
}
|
|
|
|
/* Free all ipa_edge structures. */
|
|
|
|
void
|
|
ipa_free_all_edge_args (void)
|
|
{
|
|
int i;
|
|
struct ipa_edge_args *args;
|
|
|
|
FOR_EACH_VEC_ELT (ipa_edge_args_t, ipa_edge_args_vector, i, args)
|
|
ipa_free_edge_args_substructures (args);
|
|
|
|
VEC_free (ipa_edge_args_t, gc, ipa_edge_args_vector);
|
|
ipa_edge_args_vector = NULL;
|
|
}
|
|
|
|
/* Frees all dynamically allocated structures that the param info points
|
|
to. */
|
|
|
|
void
|
|
ipa_free_node_params_substructures (struct ipa_node_params *info)
|
|
{
|
|
VEC_free (ipa_param_descriptor_t, heap, info->descriptors);
|
|
free (info->lattices);
|
|
/* Lattice values and their sources are deallocated with their alocation
|
|
pool. */
|
|
VEC_free (tree, heap, info->known_vals);
|
|
memset (info, 0, sizeof (*info));
|
|
}
|
|
|
|
/* Free all ipa_node_params structures. */
|
|
|
|
void
|
|
ipa_free_all_node_params (void)
|
|
{
|
|
int i;
|
|
struct ipa_node_params *info;
|
|
|
|
FOR_EACH_VEC_ELT (ipa_node_params_t, ipa_node_params_vector, i, info)
|
|
ipa_free_node_params_substructures (info);
|
|
|
|
VEC_free (ipa_node_params_t, heap, ipa_node_params_vector);
|
|
ipa_node_params_vector = NULL;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when an edge is removed. */
|
|
|
|
static void
|
|
ipa_edge_removal_hook (struct cgraph_edge *cs, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
|
if (VEC_length (ipa_edge_args_t, ipa_edge_args_vector)
|
|
<= (unsigned)cs->uid)
|
|
return;
|
|
ipa_free_edge_args_substructures (IPA_EDGE_REF (cs));
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is removed. */
|
|
|
|
static void
|
|
ipa_node_removal_hook (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
/* During IPA-CP updating we can be called on not-yet analyze clones. */
|
|
if (VEC_length (ipa_node_params_t, ipa_node_params_vector)
|
|
<= (unsigned)node->uid)
|
|
return;
|
|
ipa_free_node_params_substructures (IPA_NODE_REF (node));
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_edge_duplication_hook (struct cgraph_edge *src, struct cgraph_edge *dst,
|
|
__attribute__((unused)) void *data)
|
|
{
|
|
struct ipa_edge_args *old_args, *new_args;
|
|
|
|
ipa_check_create_edge_args ();
|
|
|
|
old_args = IPA_EDGE_REF (src);
|
|
new_args = IPA_EDGE_REF (dst);
|
|
|
|
new_args->jump_functions = VEC_copy (ipa_jump_func_t, gc,
|
|
old_args->jump_functions);
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when a node is duplicated. */
|
|
|
|
static void
|
|
ipa_node_duplication_hook (struct cgraph_node *src, struct cgraph_node *dst,
|
|
ATTRIBUTE_UNUSED void *data)
|
|
{
|
|
struct ipa_node_params *old_info, *new_info;
|
|
|
|
ipa_check_create_node_params ();
|
|
old_info = IPA_NODE_REF (src);
|
|
new_info = IPA_NODE_REF (dst);
|
|
|
|
new_info->descriptors = VEC_copy (ipa_param_descriptor_t, heap,
|
|
old_info->descriptors);
|
|
new_info->lattices = NULL;
|
|
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
|
|
|
|
new_info->uses_analysis_done = old_info->uses_analysis_done;
|
|
new_info->node_enqueued = old_info->node_enqueued;
|
|
}
|
|
|
|
|
|
/* Analyze newly added function into callgraph. */
|
|
|
|
static void
|
|
ipa_add_new_function (struct cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
ipa_analyze_node (node);
|
|
}
|
|
|
|
/* Register our cgraph hooks if they are not already there. */
|
|
|
|
void
|
|
ipa_register_cgraph_hooks (void)
|
|
{
|
|
if (!edge_removal_hook_holder)
|
|
edge_removal_hook_holder =
|
|
cgraph_add_edge_removal_hook (&ipa_edge_removal_hook, NULL);
|
|
if (!node_removal_hook_holder)
|
|
node_removal_hook_holder =
|
|
cgraph_add_node_removal_hook (&ipa_node_removal_hook, NULL);
|
|
if (!edge_duplication_hook_holder)
|
|
edge_duplication_hook_holder =
|
|
cgraph_add_edge_duplication_hook (&ipa_edge_duplication_hook, NULL);
|
|
if (!node_duplication_hook_holder)
|
|
node_duplication_hook_holder =
|
|
cgraph_add_node_duplication_hook (&ipa_node_duplication_hook, NULL);
|
|
function_insertion_hook_holder =
|
|
cgraph_add_function_insertion_hook (&ipa_add_new_function, NULL);
|
|
}
|
|
|
|
/* Unregister our cgraph hooks if they are not already there. */
|
|
|
|
static void
|
|
ipa_unregister_cgraph_hooks (void)
|
|
{
|
|
cgraph_remove_edge_removal_hook (edge_removal_hook_holder);
|
|
edge_removal_hook_holder = NULL;
|
|
cgraph_remove_node_removal_hook (node_removal_hook_holder);
|
|
node_removal_hook_holder = NULL;
|
|
cgraph_remove_edge_duplication_hook (edge_duplication_hook_holder);
|
|
edge_duplication_hook_holder = NULL;
|
|
cgraph_remove_node_duplication_hook (node_duplication_hook_holder);
|
|
node_duplication_hook_holder = NULL;
|
|
cgraph_remove_function_insertion_hook (function_insertion_hook_holder);
|
|
function_insertion_hook_holder = NULL;
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after ipa-cp. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_ipa_cp (void)
|
|
{
|
|
if (!optimize)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
free_alloc_pool (ipcp_sources_pool);
|
|
free_alloc_pool (ipcp_values_pool);
|
|
ipa_unregister_cgraph_hooks ();
|
|
}
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after indirect inlining. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_iinln (void)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
if (ipcp_sources_pool)
|
|
free_alloc_pool (ipcp_sources_pool);
|
|
if (ipcp_values_pool)
|
|
free_alloc_pool (ipcp_values_pool);
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_node_params (FILE * f, struct cgraph_node *node)
|
|
{
|
|
int i, count;
|
|
tree temp;
|
|
struct ipa_node_params *info;
|
|
|
|
if (!node->analyzed)
|
|
return;
|
|
info = IPA_NODE_REF (node);
|
|
fprintf (f, " function %s parameter descriptors:\n",
|
|
cgraph_node_name (node));
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
temp = ipa_get_param (info, i);
|
|
if (TREE_CODE (temp) == PARM_DECL)
|
|
fprintf (f, " param %d : %s", i,
|
|
(DECL_NAME (temp)
|
|
? (*lang_hooks.decl_printable_name) (temp, 2)
|
|
: "(unnamed)"));
|
|
if (ipa_is_param_used (info, i))
|
|
fprintf (f, " used");
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_all_params (FILE * f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nFunction parameters:\n");
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
ipa_print_node_params (f, node);
|
|
}
|
|
|
|
/* Return a heap allocated vector containing formal parameters of FNDECL. */
|
|
|
|
VEC(tree, heap) *
|
|
ipa_get_vector_of_formal_parms (tree fndecl)
|
|
{
|
|
VEC(tree, heap) *args;
|
|
int count;
|
|
tree parm;
|
|
|
|
count = count_formal_params (fndecl);
|
|
args = VEC_alloc (tree, heap, count);
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
|
|
VEC_quick_push (tree, args, parm);
|
|
|
|
return args;
|
|
}
|
|
|
|
/* Return a heap allocated vector containing types of formal parameters of
|
|
function type FNTYPE. */
|
|
|
|
static inline VEC(tree, heap) *
|
|
get_vector_of_formal_parm_types (tree fntype)
|
|
{
|
|
VEC(tree, heap) *types;
|
|
int count = 0;
|
|
tree t;
|
|
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
|
count++;
|
|
|
|
types = VEC_alloc (tree, heap, count);
|
|
for (t = TYPE_ARG_TYPES (fntype); t; t = TREE_CHAIN (t))
|
|
VEC_quick_push (tree, types, TREE_VALUE (t));
|
|
|
|
return types;
|
|
}
|
|
|
|
/* Modify the function declaration FNDECL and its type according to the plan in
|
|
ADJUSTMENTS. It also sets base fields of individual adjustments structures
|
|
to reflect the actual parameters being modified which are determined by the
|
|
base_index field. */
|
|
|
|
void
|
|
ipa_modify_formal_parameters (tree fndecl, ipa_parm_adjustment_vec adjustments,
|
|
const char *synth_parm_prefix)
|
|
{
|
|
VEC(tree, heap) *oparms, *otypes;
|
|
tree orig_type, new_type = NULL;
|
|
tree old_arg_types, t, new_arg_types = NULL;
|
|
tree parm, *link = &DECL_ARGUMENTS (fndecl);
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
tree new_reversed = NULL;
|
|
bool care_for_types, last_parm_void;
|
|
|
|
if (!synth_parm_prefix)
|
|
synth_parm_prefix = "SYNTH";
|
|
|
|
oparms = ipa_get_vector_of_formal_parms (fndecl);
|
|
orig_type = TREE_TYPE (fndecl);
|
|
old_arg_types = TYPE_ARG_TYPES (orig_type);
|
|
|
|
/* The following test is an ugly hack, some functions simply don't have any
|
|
arguments in their type. This is probably a bug but well... */
|
|
care_for_types = (old_arg_types != NULL_TREE);
|
|
if (care_for_types)
|
|
{
|
|
last_parm_void = (TREE_VALUE (tree_last (old_arg_types))
|
|
== void_type_node);
|
|
otypes = get_vector_of_formal_parm_types (orig_type);
|
|
if (last_parm_void)
|
|
gcc_assert (VEC_length (tree, oparms) + 1 == VEC_length (tree, otypes));
|
|
else
|
|
gcc_assert (VEC_length (tree, oparms) == VEC_length (tree, otypes));
|
|
}
|
|
else
|
|
{
|
|
last_parm_void = false;
|
|
otypes = NULL;
|
|
}
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
gcc_assert (link);
|
|
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
parm = VEC_index (tree, oparms, adj->base_index);
|
|
adj->base = parm;
|
|
|
|
if (adj->copy_param)
|
|
{
|
|
if (care_for_types)
|
|
new_arg_types = tree_cons (NULL_TREE, VEC_index (tree, otypes,
|
|
adj->base_index),
|
|
new_arg_types);
|
|
*link = parm;
|
|
link = &DECL_CHAIN (parm);
|
|
}
|
|
else if (!adj->remove_param)
|
|
{
|
|
tree new_parm;
|
|
tree ptype;
|
|
|
|
if (adj->by_ref)
|
|
ptype = build_pointer_type (adj->type);
|
|
else
|
|
ptype = adj->type;
|
|
|
|
if (care_for_types)
|
|
new_arg_types = tree_cons (NULL_TREE, ptype, new_arg_types);
|
|
|
|
new_parm = build_decl (UNKNOWN_LOCATION, PARM_DECL, NULL_TREE,
|
|
ptype);
|
|
DECL_NAME (new_parm) = create_tmp_var_name (synth_parm_prefix);
|
|
|
|
DECL_ARTIFICIAL (new_parm) = 1;
|
|
DECL_ARG_TYPE (new_parm) = ptype;
|
|
DECL_CONTEXT (new_parm) = fndecl;
|
|
TREE_USED (new_parm) = 1;
|
|
DECL_IGNORED_P (new_parm) = 1;
|
|
layout_decl (new_parm, 0);
|
|
|
|
add_referenced_var (new_parm);
|
|
mark_sym_for_renaming (new_parm);
|
|
adj->base = parm;
|
|
adj->reduction = new_parm;
|
|
|
|
*link = new_parm;
|
|
|
|
link = &DECL_CHAIN (new_parm);
|
|
}
|
|
}
|
|
|
|
*link = NULL_TREE;
|
|
|
|
if (care_for_types)
|
|
{
|
|
new_reversed = nreverse (new_arg_types);
|
|
if (last_parm_void)
|
|
{
|
|
if (new_reversed)
|
|
TREE_CHAIN (new_arg_types) = void_list_node;
|
|
else
|
|
new_reversed = void_list_node;
|
|
}
|
|
}
|
|
|
|
/* Use copy_node to preserve as much as possible from original type
|
|
(debug info, attribute lists etc.)
|
|
Exception is METHOD_TYPEs must have THIS argument.
|
|
When we are asked to remove it, we need to build new FUNCTION_TYPE
|
|
instead. */
|
|
if (TREE_CODE (orig_type) != METHOD_TYPE
|
|
|| (VEC_index (ipa_parm_adjustment_t, adjustments, 0)->copy_param
|
|
&& VEC_index (ipa_parm_adjustment_t, adjustments, 0)->base_index == 0))
|
|
{
|
|
new_type = build_distinct_type_copy (orig_type);
|
|
TYPE_ARG_TYPES (new_type) = new_reversed;
|
|
}
|
|
else
|
|
{
|
|
new_type
|
|
= build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
|
|
new_reversed));
|
|
TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
|
|
DECL_VINDEX (fndecl) = NULL_TREE;
|
|
}
|
|
|
|
/* When signature changes, we need to clear builtin info. */
|
|
if (DECL_BUILT_IN (fndecl))
|
|
{
|
|
DECL_BUILT_IN_CLASS (fndecl) = NOT_BUILT_IN;
|
|
DECL_FUNCTION_CODE (fndecl) = (enum built_in_function) 0;
|
|
}
|
|
|
|
/* This is a new type, not a copy of an old type. Need to reassociate
|
|
variants. We can handle everything except the main variant lazily. */
|
|
t = TYPE_MAIN_VARIANT (orig_type);
|
|
if (orig_type != t)
|
|
{
|
|
TYPE_MAIN_VARIANT (new_type) = t;
|
|
TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
|
|
TYPE_NEXT_VARIANT (t) = new_type;
|
|
}
|
|
else
|
|
{
|
|
TYPE_MAIN_VARIANT (new_type) = new_type;
|
|
TYPE_NEXT_VARIANT (new_type) = NULL;
|
|
}
|
|
|
|
TREE_TYPE (fndecl) = new_type;
|
|
DECL_VIRTUAL_P (fndecl) = 0;
|
|
if (otypes)
|
|
VEC_free (tree, heap, otypes);
|
|
VEC_free (tree, heap, oparms);
|
|
}
|
|
|
|
/* Modify actual arguments of a function call CS as indicated in ADJUSTMENTS.
|
|
If this is a directly recursive call, CS must be NULL. Otherwise it must
|
|
contain the corresponding call graph edge. */
|
|
|
|
void
|
|
ipa_modify_call_arguments (struct cgraph_edge *cs, gimple stmt,
|
|
ipa_parm_adjustment_vec adjustments)
|
|
{
|
|
VEC(tree, heap) *vargs;
|
|
VEC(tree, gc) **debug_args = NULL;
|
|
gimple new_stmt;
|
|
gimple_stmt_iterator gsi;
|
|
tree callee_decl;
|
|
int i, len;
|
|
|
|
len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
vargs = VEC_alloc (tree, heap, len);
|
|
callee_decl = !cs ? gimple_call_fndecl (stmt) : cs->callee->decl;
|
|
|
|
gsi = gsi_for_stmt (stmt);
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (adj->copy_param)
|
|
{
|
|
tree arg = gimple_call_arg (stmt, adj->base_index);
|
|
|
|
VEC_quick_push (tree, vargs, arg);
|
|
}
|
|
else if (!adj->remove_param)
|
|
{
|
|
tree expr, base, off;
|
|
location_t loc;
|
|
|
|
/* We create a new parameter out of the value of the old one, we can
|
|
do the following kind of transformations:
|
|
|
|
- A scalar passed by reference is converted to a scalar passed by
|
|
value. (adj->by_ref is false and the type of the original
|
|
actual argument is a pointer to a scalar).
|
|
|
|
- A part of an aggregate is passed instead of the whole aggregate.
|
|
The part can be passed either by value or by reference, this is
|
|
determined by value of adj->by_ref. Moreover, the code below
|
|
handles both situations when the original aggregate is passed by
|
|
value (its type is not a pointer) and when it is passed by
|
|
reference (it is a pointer to an aggregate).
|
|
|
|
When the new argument is passed by reference (adj->by_ref is true)
|
|
it must be a part of an aggregate and therefore we form it by
|
|
simply taking the address of a reference inside the original
|
|
aggregate. */
|
|
|
|
gcc_checking_assert (adj->offset % BITS_PER_UNIT == 0);
|
|
base = gimple_call_arg (stmt, adj->base_index);
|
|
loc = EXPR_LOCATION (base);
|
|
|
|
if (TREE_CODE (base) != ADDR_EXPR
|
|
&& POINTER_TYPE_P (TREE_TYPE (base)))
|
|
off = build_int_cst (adj->alias_ptr_type,
|
|
adj->offset / BITS_PER_UNIT);
|
|
else
|
|
{
|
|
HOST_WIDE_INT base_offset;
|
|
tree prev_base;
|
|
|
|
if (TREE_CODE (base) == ADDR_EXPR)
|
|
base = TREE_OPERAND (base, 0);
|
|
prev_base = base;
|
|
base = get_addr_base_and_unit_offset (base, &base_offset);
|
|
/* Aggregate arguments can have non-invariant addresses. */
|
|
if (!base)
|
|
{
|
|
base = build_fold_addr_expr (prev_base);
|
|
off = build_int_cst (adj->alias_ptr_type,
|
|
adj->offset / BITS_PER_UNIT);
|
|
}
|
|
else if (TREE_CODE (base) == MEM_REF)
|
|
{
|
|
off = build_int_cst (adj->alias_ptr_type,
|
|
base_offset
|
|
+ adj->offset / BITS_PER_UNIT);
|
|
off = int_const_binop (PLUS_EXPR, TREE_OPERAND (base, 1),
|
|
off);
|
|
base = TREE_OPERAND (base, 0);
|
|
}
|
|
else
|
|
{
|
|
off = build_int_cst (adj->alias_ptr_type,
|
|
base_offset
|
|
+ adj->offset / BITS_PER_UNIT);
|
|
base = build_fold_addr_expr (base);
|
|
}
|
|
}
|
|
|
|
expr = fold_build2_loc (loc, MEM_REF, adj->type, base, off);
|
|
if (adj->by_ref)
|
|
expr = build_fold_addr_expr (expr);
|
|
|
|
expr = force_gimple_operand_gsi (&gsi, expr,
|
|
adj->by_ref
|
|
|| is_gimple_reg_type (adj->type),
|
|
NULL, true, GSI_SAME_STMT);
|
|
VEC_quick_push (tree, vargs, expr);
|
|
}
|
|
if (!adj->copy_param && MAY_HAVE_DEBUG_STMTS)
|
|
{
|
|
unsigned int ix;
|
|
tree ddecl = NULL_TREE, origin = DECL_ORIGIN (adj->base), arg;
|
|
gimple def_temp;
|
|
|
|
arg = gimple_call_arg (stmt, adj->base_index);
|
|
if (!useless_type_conversion_p (TREE_TYPE (origin), TREE_TYPE (arg)))
|
|
{
|
|
if (!fold_convertible_p (TREE_TYPE (origin), arg))
|
|
continue;
|
|
arg = fold_convert_loc (gimple_location (stmt),
|
|
TREE_TYPE (origin), arg);
|
|
}
|
|
if (debug_args == NULL)
|
|
debug_args = decl_debug_args_insert (callee_decl);
|
|
for (ix = 0; VEC_iterate (tree, *debug_args, ix, ddecl); ix += 2)
|
|
if (ddecl == origin)
|
|
{
|
|
ddecl = VEC_index (tree, *debug_args, ix + 1);
|
|
break;
|
|
}
|
|
if (ddecl == NULL)
|
|
{
|
|
ddecl = make_node (DEBUG_EXPR_DECL);
|
|
DECL_ARTIFICIAL (ddecl) = 1;
|
|
TREE_TYPE (ddecl) = TREE_TYPE (origin);
|
|
DECL_MODE (ddecl) = DECL_MODE (origin);
|
|
|
|
VEC_safe_push (tree, gc, *debug_args, origin);
|
|
VEC_safe_push (tree, gc, *debug_args, ddecl);
|
|
}
|
|
def_temp = gimple_build_debug_bind (ddecl, unshare_expr (arg),
|
|
stmt);
|
|
gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "replacing stmt:");
|
|
print_gimple_stmt (dump_file, gsi_stmt (gsi), 0, 0);
|
|
}
|
|
|
|
new_stmt = gimple_build_call_vec (callee_decl, vargs);
|
|
VEC_free (tree, heap, vargs);
|
|
if (gimple_call_lhs (stmt))
|
|
gimple_call_set_lhs (new_stmt, gimple_call_lhs (stmt));
|
|
|
|
gimple_set_block (new_stmt, gimple_block (stmt));
|
|
if (gimple_has_location (stmt))
|
|
gimple_set_location (new_stmt, gimple_location (stmt));
|
|
gimple_call_copy_flags (new_stmt, stmt);
|
|
gimple_call_set_chain (new_stmt, gimple_call_chain (stmt));
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "with stmt:");
|
|
print_gimple_stmt (dump_file, new_stmt, 0, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
gsi_replace (&gsi, new_stmt, true);
|
|
if (cs)
|
|
cgraph_set_call_stmt (cs, new_stmt);
|
|
update_ssa (TODO_update_ssa);
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
}
|
|
|
|
/* Return true iff BASE_INDEX is in ADJUSTMENTS more than once. */
|
|
|
|
static bool
|
|
index_in_adjustments_multiple_times_p (int base_index,
|
|
ipa_parm_adjustment_vec adjustments)
|
|
{
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
bool one = false;
|
|
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (adj->base_index == base_index)
|
|
{
|
|
if (one)
|
|
return true;
|
|
else
|
|
one = true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return adjustments that should have the same effect on function parameters
|
|
and call arguments as if they were first changed according to adjustments in
|
|
INNER and then by adjustments in OUTER. */
|
|
|
|
ipa_parm_adjustment_vec
|
|
ipa_combine_adjustments (ipa_parm_adjustment_vec inner,
|
|
ipa_parm_adjustment_vec outer)
|
|
{
|
|
int i, outlen = VEC_length (ipa_parm_adjustment_t, outer);
|
|
int inlen = VEC_length (ipa_parm_adjustment_t, inner);
|
|
int removals = 0;
|
|
ipa_parm_adjustment_vec adjustments, tmp;
|
|
|
|
tmp = VEC_alloc (ipa_parm_adjustment_t, heap, inlen);
|
|
for (i = 0; i < inlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *n;
|
|
n = VEC_index (ipa_parm_adjustment_t, inner, i);
|
|
|
|
if (n->remove_param)
|
|
removals++;
|
|
else
|
|
VEC_quick_push (ipa_parm_adjustment_t, tmp, n);
|
|
}
|
|
|
|
adjustments = VEC_alloc (ipa_parm_adjustment_t, heap, outlen + removals);
|
|
for (i = 0; i < outlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *r;
|
|
struct ipa_parm_adjustment *out = VEC_index (ipa_parm_adjustment_t,
|
|
outer, i);
|
|
struct ipa_parm_adjustment *in = VEC_index (ipa_parm_adjustment_t, tmp,
|
|
out->base_index);
|
|
|
|
gcc_assert (!in->remove_param);
|
|
if (out->remove_param)
|
|
{
|
|
if (!index_in_adjustments_multiple_times_p (in->base_index, tmp))
|
|
{
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
|
memset (r, 0, sizeof (*r));
|
|
r->remove_param = true;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
r = VEC_quick_push (ipa_parm_adjustment_t, adjustments, NULL);
|
|
memset (r, 0, sizeof (*r));
|
|
r->base_index = in->base_index;
|
|
r->type = out->type;
|
|
|
|
/* FIXME: Create nonlocal value too. */
|
|
|
|
if (in->copy_param && out->copy_param)
|
|
r->copy_param = true;
|
|
else if (in->copy_param)
|
|
r->offset = out->offset;
|
|
else if (out->copy_param)
|
|
r->offset = in->offset;
|
|
else
|
|
r->offset = in->offset + out->offset;
|
|
}
|
|
|
|
for (i = 0; i < inlen; i++)
|
|
{
|
|
struct ipa_parm_adjustment *n = VEC_index (ipa_parm_adjustment_t,
|
|
inner, i);
|
|
|
|
if (n->remove_param)
|
|
VEC_quick_push (ipa_parm_adjustment_t, adjustments, n);
|
|
}
|
|
|
|
VEC_free (ipa_parm_adjustment_t, heap, tmp);
|
|
return adjustments;
|
|
}
|
|
|
|
/* Dump the adjustments in the vector ADJUSTMENTS to dump_file in a human
|
|
friendly way, assuming they are meant to be applied to FNDECL. */
|
|
|
|
void
|
|
ipa_dump_param_adjustments (FILE *file, ipa_parm_adjustment_vec adjustments,
|
|
tree fndecl)
|
|
{
|
|
int i, len = VEC_length (ipa_parm_adjustment_t, adjustments);
|
|
bool first = true;
|
|
VEC(tree, heap) *parms = ipa_get_vector_of_formal_parms (fndecl);
|
|
|
|
fprintf (file, "IPA param adjustments: ");
|
|
for (i = 0; i < len; i++)
|
|
{
|
|
struct ipa_parm_adjustment *adj;
|
|
adj = VEC_index (ipa_parm_adjustment_t, adjustments, i);
|
|
|
|
if (!first)
|
|
fprintf (file, " ");
|
|
else
|
|
first = false;
|
|
|
|
fprintf (file, "%i. base_index: %i - ", i, adj->base_index);
|
|
print_generic_expr (file, VEC_index (tree, parms, adj->base_index), 0);
|
|
if (adj->base)
|
|
{
|
|
fprintf (file, ", base: ");
|
|
print_generic_expr (file, adj->base, 0);
|
|
}
|
|
if (adj->reduction)
|
|
{
|
|
fprintf (file, ", reduction: ");
|
|
print_generic_expr (file, adj->reduction, 0);
|
|
}
|
|
if (adj->new_ssa_base)
|
|
{
|
|
fprintf (file, ", new_ssa_base: ");
|
|
print_generic_expr (file, adj->new_ssa_base, 0);
|
|
}
|
|
|
|
if (adj->copy_param)
|
|
fprintf (file, ", copy_param");
|
|
else if (adj->remove_param)
|
|
fprintf (file, ", remove_param");
|
|
else
|
|
fprintf (file, ", offset %li", (long) adj->offset);
|
|
if (adj->by_ref)
|
|
fprintf (file, ", by_ref");
|
|
print_node_brief (file, ", type: ", adj->type, 0);
|
|
fprintf (file, "\n");
|
|
}
|
|
VEC_free (tree, heap, parms);
|
|
}
|
|
|
|
/* Stream out jump function JUMP_FUNC to OB. */
|
|
|
|
static void
|
|
ipa_write_jump_function (struct output_block *ob,
|
|
struct ipa_jump_func *jump_func)
|
|
{
|
|
streamer_write_uhwi (ob, jump_func->type);
|
|
|
|
switch (jump_func->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_KNOWN_TYPE:
|
|
streamer_write_uhwi (ob, jump_func->value.known_type.offset);
|
|
stream_write_tree (ob, jump_func->value.known_type.base_type, true);
|
|
stream_write_tree (ob, jump_func->value.known_type.component_type, true);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
stream_write_tree (ob, jump_func->value.constant, true);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
stream_write_tree (ob, jump_func->value.pass_through.operand, true);
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
|
|
stream_write_tree (ob, jump_func->value.ancestor.type, true);
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
|
|
break;
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
|
stream_write_tree (ob, jump_func->value.member_cst.pfn, true);
|
|
stream_write_tree (ob, jump_func->value.member_cst.delta, false);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Read in jump function JUMP_FUNC from IB. */
|
|
|
|
static void
|
|
ipa_read_jump_function (struct lto_input_block *ib,
|
|
struct ipa_jump_func *jump_func,
|
|
struct data_in *data_in)
|
|
{
|
|
jump_func->type = (enum jump_func_type) streamer_read_uhwi (ib);
|
|
|
|
switch (jump_func->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_KNOWN_TYPE:
|
|
jump_func->value.known_type.offset = streamer_read_uhwi (ib);
|
|
jump_func->value.known_type.base_type = stream_read_tree (ib, data_in);
|
|
jump_func->value.known_type.component_type = stream_read_tree (ib,
|
|
data_in);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
jump_func->value.constant = stream_read_tree (ib, data_in);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
jump_func->value.pass_through.operand = stream_read_tree (ib, data_in);
|
|
jump_func->value.pass_through.formal_id = streamer_read_uhwi (ib);
|
|
jump_func->value.pass_through.operation
|
|
= (enum tree_code) streamer_read_uhwi (ib);
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
jump_func->value.ancestor.offset = streamer_read_uhwi (ib);
|
|
jump_func->value.ancestor.type = stream_read_tree (ib, data_in);
|
|
jump_func->value.ancestor.formal_id = streamer_read_uhwi (ib);
|
|
break;
|
|
case IPA_JF_CONST_MEMBER_PTR:
|
|
jump_func->value.member_cst.pfn = stream_read_tree (ib, data_in);
|
|
jump_func->value.member_cst.delta = stream_read_tree (ib, data_in);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining to OB. */
|
|
|
|
static void
|
|
ipa_write_indirect_edge_info (struct output_block *ob,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
streamer_write_hwi (ob, ii->param_index);
|
|
streamer_write_hwi (ob, ii->anc_offset);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, ii->polymorphic, 1);
|
|
streamer_write_bitpack (&bp);
|
|
|
|
if (ii->polymorphic)
|
|
{
|
|
streamer_write_hwi (ob, ii->otr_token);
|
|
stream_write_tree (ob, ii->otr_type, true);
|
|
}
|
|
}
|
|
|
|
/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining from IB. */
|
|
|
|
static void
|
|
ipa_read_indirect_edge_info (struct lto_input_block *ib,
|
|
struct data_in *data_in ATTRIBUTE_UNUSED,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
struct cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
ii->param_index = (int) streamer_read_hwi (ib);
|
|
ii->anc_offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
|
bp = streamer_read_bitpack (ib);
|
|
ii->polymorphic = bp_unpack_value (&bp, 1);
|
|
if (ii->polymorphic)
|
|
{
|
|
ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
|
ii->otr_type = stream_read_tree (ib, data_in);
|
|
}
|
|
}
|
|
|
|
/* Stream out NODE info to OB. */
|
|
|
|
static void
|
|
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
|
|
{
|
|
int node_ref;
|
|
lto_cgraph_encoder_t encoder;
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int j;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
|
|
encoder = ob->decl_state->cgraph_node_encoder;
|
|
node_ref = lto_cgraph_encoder_encode (encoder, node);
|
|
streamer_write_uhwi (ob, node_ref);
|
|
|
|
bp = bitpack_create (ob->main_stream);
|
|
gcc_assert (info->uses_analysis_done
|
|
|| ipa_get_param_count (info) == 0);
|
|
gcc_assert (!info->node_enqueued);
|
|
gcc_assert (!info->ipcp_orig_node);
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
|
|
streamer_write_bitpack (&bp);
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
|
|
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
|
|
streamer_write_uhwi (ob, ipa_get_cs_argument_count (args));
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
|
ipa_write_indirect_edge_info (ob, e);
|
|
}
|
|
}
|
|
|
|
/* Stream in NODE info from IB. */
|
|
|
|
static void
|
|
ipa_read_node_info (struct lto_input_block *ib, struct cgraph_node *node,
|
|
struct data_in *data_in)
|
|
{
|
|
struct ipa_node_params *info = IPA_NODE_REF (node);
|
|
int k;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
|
|
ipa_initialize_node_params (node);
|
|
|
|
bp = streamer_read_bitpack (ib);
|
|
if (ipa_get_param_count (info) != 0)
|
|
info->uses_analysis_done = true;
|
|
info->node_enqueued = false;
|
|
for (k = 0; k < ipa_get_param_count (info); k++)
|
|
ipa_set_param_used (info, k, bp_unpack_value (&bp, 1));
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = streamer_read_uhwi (ib);
|
|
|
|
if (!count)
|
|
continue;
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions, count);
|
|
|
|
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), data_in);
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
struct ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
int count = streamer_read_uhwi (ib);
|
|
|
|
if (count)
|
|
{
|
|
VEC_safe_grow_cleared (ipa_jump_func_t, gc, args->jump_functions,
|
|
count);
|
|
for (k = 0; k < ipa_get_cs_argument_count (args); k++)
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k),
|
|
data_in);
|
|
}
|
|
ipa_read_indirect_edge_info (ib, data_in, e);
|
|
}
|
|
}
|
|
|
|
/* Write jump functions for nodes in SET. */
|
|
|
|
void
|
|
ipa_prop_write_jump_functions (cgraph_node_set set)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct output_block *ob;
|
|
unsigned int count = 0;
|
|
cgraph_node_set_iterator csi;
|
|
|
|
if (!ipa_node_params_vector)
|
|
return;
|
|
|
|
ob = create_output_block (LTO_section_jump_functions);
|
|
ob->cgraph_node = NULL;
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
|
{
|
|
node = csi_node (csi);
|
|
if (cgraph_function_with_gimple_body_p (node)
|
|
&& IPA_NODE_REF (node) != NULL)
|
|
count++;
|
|
}
|
|
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
/* Process all of the functions. */
|
|
for (csi = csi_start (set); !csi_end_p (csi); csi_next (&csi))
|
|
{
|
|
node = csi_node (csi);
|
|
if (cgraph_function_with_gimple_body_p (node)
|
|
&& IPA_NODE_REF (node) != NULL)
|
|
ipa_write_node_info (ob, node);
|
|
}
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
|
produce_asm (ob, NULL);
|
|
destroy_output_block (ob);
|
|
}
|
|
|
|
/* Read section in file FILE_DATA of length LEN with data DATA. */
|
|
|
|
static void
|
|
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
|
|
size_t len)
|
|
{
|
|
const struct lto_function_header *header =
|
|
(const struct lto_function_header *) data;
|
|
const int32_t cfg_offset = sizeof (struct lto_function_header);
|
|
const int32_t main_offset = cfg_offset + header->cfg_size;
|
|
const int32_t string_offset = main_offset + header->main_size;
|
|
struct data_in *data_in;
|
|
struct lto_input_block ib_main;
|
|
unsigned int i;
|
|
unsigned int count;
|
|
|
|
LTO_INIT_INPUT_BLOCK (ib_main, (const char *) data + main_offset, 0,
|
|
header->main_size);
|
|
|
|
data_in =
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
|
header->string_size, NULL);
|
|
count = streamer_read_uhwi (&ib_main);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
unsigned int index;
|
|
struct cgraph_node *node;
|
|
lto_cgraph_encoder_t encoder;
|
|
|
|
index = streamer_read_uhwi (&ib_main);
|
|
encoder = file_data->cgraph_node_encoder;
|
|
node = lto_cgraph_encoder_deref (encoder, index);
|
|
gcc_assert (node->analyzed);
|
|
ipa_read_node_info (&ib_main, node, data_in);
|
|
}
|
|
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
|
|
len);
|
|
lto_data_in_delete (data_in);
|
|
}
|
|
|
|
/* Read ipcp jump functions. */
|
|
|
|
void
|
|
ipa_prop_read_jump_functions (void)
|
|
{
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
|
struct lto_file_decl_data *file_data;
|
|
unsigned int j = 0;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
ipa_register_cgraph_hooks ();
|
|
|
|
while ((file_data = file_data_vec[j++]))
|
|
{
|
|
size_t len;
|
|
const char *data = lto_get_section_data (file_data, LTO_section_jump_functions, NULL, &len);
|
|
|
|
if (data)
|
|
ipa_prop_read_section (file_data, data, len);
|
|
}
|
|
}
|
|
|
|
/* After merging units, we can get mismatch in argument counts.
|
|
Also decl merging might've rendered parameter lists obsolete.
|
|
Also compute called_with_variable_arg info. */
|
|
|
|
void
|
|
ipa_update_after_lto_read (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
|
|
for (node = cgraph_nodes; node; node = node->next)
|
|
if (node->analyzed)
|
|
ipa_initialize_node_params (node);
|
|
}
|