gcc/gcc/ipa-split.c
Richard Guenther f6e52e91bd re PR tree-optimization/50723 (internal compiler error: verify_ssa failed)
2011-10-14  Richard Guenther  <rguenther@suse.de>

	PR tree-optimization/50723
	* ipa-split.c (split_function): Use GSI_CONTINUE_LINKING.

	* gcc.dg/torture/pr50723.c: New testcase.

From-SVN: r179967
2011-10-14 11:03:06 +00:00

1492 lines
47 KiB
C

/* Function splitting pass
Copyright (C) 2010, 2011
Free Software Foundation, Inc.
Contributed by Jan Hubicka <jh@suse.cz>
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* The purpose of this pass is to split function bodies to improve
inlining. I.e. for function of the form:
func (...)
{
if (cheap_test)
something_small
else
something_big
}
Produce:
func.part (...)
{
something_big
}
func (...)
{
if (cheap_test)
something_small
else
func.part (...);
}
When func becomes inlinable and when cheap_test is often true, inlining func,
but not fund.part leads to performance improvement similar as inlining
original func while the code size growth is smaller.
The pass is organized in three stages:
1) Collect local info about basic block into BB_INFO structure and
compute function body estimated size and time.
2) Via DFS walk find all possible basic blocks where we can split
and chose best one.
3) If split point is found, split at the specified BB by creating a clone
and updating function to call it.
The decisions what functions to split are in execute_split_functions
and consider_split.
There are several possible future improvements for this pass including:
1) Splitting to break up large functions
2) Splitting to reduce stack frame usage
3) Allow split part of function to use values computed in the header part.
The values needs to be passed to split function, perhaps via same
interface as for nested functions or as argument.
4) Support for simple rematerialization. I.e. when split part use
value computed in header from function parameter in very cheap way, we
can just recompute it.
5) Support splitting of nested functions.
6) Support non-SSA arguments.
7) There is nothing preventing us from producing multiple parts of single function
when needed or splitting also the parts. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tree.h"
#include "target.h"
#include "cgraph.h"
#include "ipa-prop.h"
#include "tree-flow.h"
#include "tree-pass.h"
#include "flags.h"
#include "timevar.h"
#include "diagnostic.h"
#include "tree-dump.h"
#include "tree-inline.h"
#include "fibheap.h"
#include "params.h"
#include "gimple-pretty-print.h"
#include "ipa-inline.h"
/* Per basic block info. */
typedef struct
{
unsigned int size;
unsigned int time;
} bb_info;
DEF_VEC_O(bb_info);
DEF_VEC_ALLOC_O(bb_info,heap);
static VEC(bb_info, heap) *bb_info_vec;
/* Description of split point. */
struct split_point
{
/* Size of the partitions. */
unsigned int header_time, header_size, split_time, split_size;
/* SSA names that need to be passed into spit function. */
bitmap ssa_names_to_pass;
/* Basic block where we split (that will become entry point of new function. */
basic_block entry_bb;
/* Basic blocks we are splitting away. */
bitmap split_bbs;
/* True when return value is computed on split part and thus it needs
to be returned. */
bool split_part_set_retval;
};
/* Best split point found. */
struct split_point best_split_point;
static tree find_retval (basic_block return_bb);
/* Callback for walk_stmt_load_store_addr_ops. If T is non-SSA automatic
variable, check it if it is present in bitmap passed via DATA. */
static bool
test_nonssa_use (gimple stmt ATTRIBUTE_UNUSED, tree t, void *data)
{
t = get_base_address (t);
if (!t || is_gimple_reg (t))
return false;
if (TREE_CODE (t) == PARM_DECL
|| (TREE_CODE (t) == VAR_DECL
&& auto_var_in_fn_p (t, current_function_decl))
|| TREE_CODE (t) == RESULT_DECL
|| TREE_CODE (t) == LABEL_DECL)
return bitmap_bit_p ((bitmap)data, DECL_UID (t));
/* For DECL_BY_REFERENCE, the return value is actually a pointer. We want
to pretend that the value pointed to is actual result decl. */
if ((TREE_CODE (t) == MEM_REF || INDIRECT_REF_P (t))
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
&& TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (t, 0))) == RESULT_DECL
&& DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
return
bitmap_bit_p ((bitmap)data,
DECL_UID (DECL_RESULT (current_function_decl)));
return false;
}
/* Dump split point CURRENT. */
static void
dump_split_point (FILE * file, struct split_point *current)
{
fprintf (file,
"Split point at BB %i\n"
" header time: %i header size: %i\n"
" split time: %i split size: %i\n bbs: ",
current->entry_bb->index, current->header_time,
current->header_size, current->split_time, current->split_size);
dump_bitmap (file, current->split_bbs);
fprintf (file, " SSA names to pass: ");
dump_bitmap (file, current->ssa_names_to_pass);
}
/* Look for all BBs in header that might lead to the split part and verify
that they are not defining any non-SSA var used by the split part.
Parameters are the same as for consider_split. */
static bool
verify_non_ssa_vars (struct split_point *current, bitmap non_ssa_vars,
basic_block return_bb)
{
bitmap seen = BITMAP_ALLOC (NULL);
VEC (basic_block,heap) *worklist = NULL;
edge e;
edge_iterator ei;
bool ok = true;
FOR_EACH_EDGE (e, ei, current->entry_bb->preds)
if (e->src != ENTRY_BLOCK_PTR
&& !bitmap_bit_p (current->split_bbs, e->src->index))
{
VEC_safe_push (basic_block, heap, worklist, e->src);
bitmap_set_bit (seen, e->src->index);
}
while (!VEC_empty (basic_block, worklist))
{
gimple_stmt_iterator bsi;
basic_block bb = VEC_pop (basic_block, worklist);
FOR_EACH_EDGE (e, ei, bb->preds)
if (e->src != ENTRY_BLOCK_PTR
&& bitmap_set_bit (seen, e->src->index))
{
gcc_checking_assert (!bitmap_bit_p (current->split_bbs,
e->src->index));
VEC_safe_push (basic_block, heap, worklist, e->src);
}
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (is_gimple_debug (stmt))
continue;
if (walk_stmt_load_store_addr_ops
(stmt, non_ssa_vars, test_nonssa_use, test_nonssa_use,
test_nonssa_use))
{
ok = false;
goto done;
}
if (gimple_code (stmt) == GIMPLE_LABEL
&& test_nonssa_use (stmt, gimple_label_label (stmt),
non_ssa_vars))
{
ok = false;
goto done;
}
}
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
if (walk_stmt_load_store_addr_ops
(gsi_stmt (bsi), non_ssa_vars, test_nonssa_use, test_nonssa_use,
test_nonssa_use))
{
ok = false;
goto done;
}
}
FOR_EACH_EDGE (e, ei, bb->succs)
{
if (e->dest != return_bb)
continue;
for (bsi = gsi_start_phis (return_bb); !gsi_end_p (bsi);
gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
tree op = gimple_phi_arg_def (stmt, e->dest_idx);
if (!is_gimple_reg (gimple_phi_result (stmt)))
continue;
if (TREE_CODE (op) != SSA_NAME
&& test_nonssa_use (stmt, op, non_ssa_vars))
{
ok = false;
goto done;
}
}
}
}
done:
BITMAP_FREE (seen);
VEC_free (basic_block, heap, worklist);
return ok;
}
/* We found an split_point CURRENT. NON_SSA_VARS is bitmap of all non ssa
variables used and RETURN_BB is return basic block.
See if we can split function here. */
static void
consider_split (struct split_point *current, bitmap non_ssa_vars,
basic_block return_bb)
{
tree parm;
unsigned int num_args = 0;
unsigned int call_overhead;
edge e;
edge_iterator ei;
gimple_stmt_iterator bsi;
unsigned int i;
int incoming_freq = 0;
tree retval;
if (dump_file && (dump_flags & TDF_DETAILS))
dump_split_point (dump_file, current);
FOR_EACH_EDGE (e, ei, current->entry_bb->preds)
if (!bitmap_bit_p (current->split_bbs, e->src->index))
incoming_freq += EDGE_FREQUENCY (e);
/* Do not split when we would end up calling function anyway. */
if (incoming_freq
>= (ENTRY_BLOCK_PTR->frequency
* PARAM_VALUE (PARAM_PARTIAL_INLINING_ENTRY_PROBABILITY) / 100))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: incoming frequency is too large.\n");
return;
}
if (!current->header_size)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Refused: header empty\n");
return;
}
/* Verify that PHI args on entry are either virtual or all their operands
incoming from header are the same. */
for (bsi = gsi_start_phis (current->entry_bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
tree val = NULL;
if (!is_gimple_reg (gimple_phi_result (stmt)))
continue;
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
edge e = gimple_phi_arg_edge (stmt, i);
if (!bitmap_bit_p (current->split_bbs, e->src->index))
{
tree edge_val = gimple_phi_arg_def (stmt, i);
if (val && edge_val != val)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: entry BB has PHI with multiple variants\n");
return;
}
val = edge_val;
}
}
}
/* See what argument we will pass to the split function and compute
call overhead. */
call_overhead = eni_size_weights.call_cost;
for (parm = DECL_ARGUMENTS (current_function_decl); parm;
parm = DECL_CHAIN (parm))
{
if (!is_gimple_reg (parm))
{
if (bitmap_bit_p (non_ssa_vars, DECL_UID (parm)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: need to pass non-ssa param values\n");
return;
}
}
else if (gimple_default_def (cfun, parm)
&& bitmap_bit_p (current->ssa_names_to_pass,
SSA_NAME_VERSION (gimple_default_def
(cfun, parm))))
{
if (!VOID_TYPE_P (TREE_TYPE (parm)))
call_overhead += estimate_move_cost (TREE_TYPE (parm));
num_args++;
}
}
if (!VOID_TYPE_P (TREE_TYPE (current_function_decl)))
call_overhead += estimate_move_cost (TREE_TYPE (current_function_decl));
if (current->split_size <= call_overhead)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: split size is smaller than call overhead\n");
return;
}
if (current->header_size + call_overhead
>= (unsigned int)(DECL_DECLARED_INLINE_P (current_function_decl)
? MAX_INLINE_INSNS_SINGLE
: MAX_INLINE_INSNS_AUTO))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: header size is too large for inline candidate\n");
return;
}
/* FIXME: we currently can pass only SSA function parameters to the split
arguments. Once parm_adjustment infrastructure is supported by cloning,
we can pass more than that. */
if (num_args != bitmap_count_bits (current->ssa_names_to_pass))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: need to pass non-param values\n");
return;
}
/* When there are non-ssa vars used in the split region, see if they
are used in the header region. If so, reject the split.
FIXME: we can use nested function support to access both. */
if (!bitmap_empty_p (non_ssa_vars)
&& !verify_non_ssa_vars (current, non_ssa_vars, return_bb))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: split part has non-ssa uses\n");
return;
}
/* See if retval used by return bb is computed by header or split part.
When it is computed by split part, we need to produce return statement
in the split part and add code to header to pass it around.
This is bit tricky to test:
1) When there is no return_bb or no return value, we always pass
value around.
2) Invariants are always computed by caller.
3) For SSA we need to look if defining statement is in header or split part
4) For non-SSA we need to look where the var is computed. */
retval = find_retval (return_bb);
if (!retval)
current->split_part_set_retval = true;
else if (is_gimple_min_invariant (retval))
current->split_part_set_retval = false;
/* Special case is value returned by reference we record as if it was non-ssa
set to result_decl. */
else if (TREE_CODE (retval) == SSA_NAME
&& TREE_CODE (SSA_NAME_VAR (retval)) == RESULT_DECL
&& DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
current->split_part_set_retval
= bitmap_bit_p (non_ssa_vars, DECL_UID (SSA_NAME_VAR (retval)));
else if (TREE_CODE (retval) == SSA_NAME)
current->split_part_set_retval
= (!SSA_NAME_IS_DEFAULT_DEF (retval)
&& (bitmap_bit_p (current->split_bbs,
gimple_bb (SSA_NAME_DEF_STMT (retval))->index)
|| gimple_bb (SSA_NAME_DEF_STMT (retval)) == return_bb));
else if (TREE_CODE (retval) == PARM_DECL)
current->split_part_set_retval = false;
else if (TREE_CODE (retval) == VAR_DECL
|| TREE_CODE (retval) == RESULT_DECL)
current->split_part_set_retval
= bitmap_bit_p (non_ssa_vars, DECL_UID (retval));
else
current->split_part_set_retval = true;
/* split_function fixes up at most one PHI non-virtual PHI node in return_bb,
for the return value. If there are other PHIs, give up. */
if (return_bb != EXIT_BLOCK_PTR)
{
gimple_stmt_iterator psi;
for (psi = gsi_start_phis (return_bb); !gsi_end_p (psi); gsi_next (&psi))
if (is_gimple_reg (gimple_phi_result (gsi_stmt (psi)))
&& !(retval
&& current->split_part_set_retval
&& TREE_CODE (retval) == SSA_NAME
&& !DECL_BY_REFERENCE (DECL_RESULT (current_function_decl))
&& SSA_NAME_DEF_STMT (retval) == gsi_stmt (psi)))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
" Refused: return bb has extra PHIs\n");
return;
}
}
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " Accepted!\n");
/* At the moment chose split point with lowest frequency and that leaves
out smallest size of header.
In future we might re-consider this heuristics. */
if (!best_split_point.split_bbs
|| best_split_point.entry_bb->frequency > current->entry_bb->frequency
|| (best_split_point.entry_bb->frequency == current->entry_bb->frequency
&& best_split_point.split_size < current->split_size))
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, " New best split point!\n");
if (best_split_point.ssa_names_to_pass)
{
BITMAP_FREE (best_split_point.ssa_names_to_pass);
BITMAP_FREE (best_split_point.split_bbs);
}
best_split_point = *current;
best_split_point.ssa_names_to_pass = BITMAP_ALLOC (NULL);
bitmap_copy (best_split_point.ssa_names_to_pass,
current->ssa_names_to_pass);
best_split_point.split_bbs = BITMAP_ALLOC (NULL);
bitmap_copy (best_split_point.split_bbs, current->split_bbs);
}
}
/* Return basic block containing RETURN statement. We allow basic blocks
of the form:
<retval> = tmp_var;
return <retval>
but return_bb can not be more complex than this.
If nothing is found, return EXIT_BLOCK_PTR.
When there are multiple RETURN statement, chose one with return value,
since that one is more likely shared by multiple code paths.
Return BB is special, because for function splitting it is the only
basic block that is duplicated in between header and split part of the
function.
TODO: We might support multiple return blocks. */
static basic_block
find_return_bb (void)
{
edge e;
basic_block return_bb = EXIT_BLOCK_PTR;
gimple_stmt_iterator bsi;
bool found_return = false;
tree retval = NULL_TREE;
if (!single_pred_p (EXIT_BLOCK_PTR))
return return_bb;
e = single_pred_edge (EXIT_BLOCK_PTR);
for (bsi = gsi_last_bb (e->src); !gsi_end_p (bsi); gsi_prev (&bsi))
{
gimple stmt = gsi_stmt (bsi);
if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt))
;
else if (gimple_code (stmt) == GIMPLE_ASSIGN
&& found_return
&& gimple_assign_single_p (stmt)
&& (auto_var_in_fn_p (gimple_assign_rhs1 (stmt),
current_function_decl)
|| is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
&& retval == gimple_assign_lhs (stmt))
;
else if (gimple_code (stmt) == GIMPLE_RETURN)
{
found_return = true;
retval = gimple_return_retval (stmt);
}
else
break;
}
if (gsi_end_p (bsi) && found_return)
return_bb = e->src;
return return_bb;
}
/* Given return basic block RETURN_BB, see where return value is really
stored. */
static tree
find_retval (basic_block return_bb)
{
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (return_bb); !gsi_end_p (bsi); gsi_next (&bsi))
if (gimple_code (gsi_stmt (bsi)) == GIMPLE_RETURN)
return gimple_return_retval (gsi_stmt (bsi));
else if (gimple_code (gsi_stmt (bsi)) == GIMPLE_ASSIGN)
return gimple_assign_rhs1 (gsi_stmt (bsi));
return NULL;
}
/* Callback for walk_stmt_load_store_addr_ops. If T is non-SSA automatic
variable, mark it as used in bitmap passed via DATA.
Return true when access to T prevents splitting the function. */
static bool
mark_nonssa_use (gimple stmt ATTRIBUTE_UNUSED, tree t, void *data)
{
t = get_base_address (t);
if (!t || is_gimple_reg (t))
return false;
/* At present we can't pass non-SSA arguments to split function.
FIXME: this can be relaxed by passing references to arguments. */
if (TREE_CODE (t) == PARM_DECL)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Cannot split: use of non-ssa function parameter.\n");
return true;
}
if ((TREE_CODE (t) == VAR_DECL
&& auto_var_in_fn_p (t, current_function_decl))
|| TREE_CODE (t) == RESULT_DECL
|| TREE_CODE (t) == LABEL_DECL)
bitmap_set_bit ((bitmap)data, DECL_UID (t));
/* For DECL_BY_REFERENCE, the return value is actually a pointer. We want
to pretend that the value pointed to is actual result decl. */
if ((TREE_CODE (t) == MEM_REF || INDIRECT_REF_P (t))
&& TREE_CODE (TREE_OPERAND (t, 0)) == SSA_NAME
&& TREE_CODE (SSA_NAME_VAR (TREE_OPERAND (t, 0))) == RESULT_DECL
&& DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
return
bitmap_bit_p ((bitmap)data,
DECL_UID (DECL_RESULT (current_function_decl)));
return false;
}
/* Compute local properties of basic block BB we collect when looking for
split points. We look for ssa defs and store them in SET_SSA_NAMES,
for ssa uses and store them in USED_SSA_NAMES and for any non-SSA automatic
vars stored in NON_SSA_VARS.
When BB has edge to RETURN_BB, collect uses in RETURN_BB too.
Return false when BB contains something that prevents it from being put into
split function. */
static bool
visit_bb (basic_block bb, basic_block return_bb,
bitmap set_ssa_names, bitmap used_ssa_names,
bitmap non_ssa_vars)
{
gimple_stmt_iterator bsi;
edge e;
edge_iterator ei;
bool can_split = true;
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
tree op;
ssa_op_iter iter;
tree decl;
if (is_gimple_debug (stmt))
continue;
/* FIXME: We can split regions containing EH. We can not however
split RESX, EH_DISPATCH and EH_POINTER referring to same region
into different partitions. This would require tracking of
EH regions and checking in consider_split_point if they
are not used elsewhere. */
if (gimple_code (stmt) == GIMPLE_RESX)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Cannot split: resx.\n");
can_split = false;
}
if (gimple_code (stmt) == GIMPLE_EH_DISPATCH)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Cannot split: eh dispatch.\n");
can_split = false;
}
/* Check builtins that prevent splitting. */
if (gimple_code (stmt) == GIMPLE_CALL
&& (decl = gimple_call_fndecl (stmt)) != NULL_TREE
&& DECL_BUILT_IN (decl)
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
switch (DECL_FUNCTION_CODE (decl))
{
/* FIXME: once we will allow passing non-parm values to split part,
we need to be sure to handle correct builtin_stack_save and
builtin_stack_restore. At the moment we are safe; there is no
way to store builtin_stack_save result in non-SSA variable
since all calls to those are compiler generated. */
case BUILT_IN_APPLY:
case BUILT_IN_APPLY_ARGS:
case BUILT_IN_VA_START:
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"Cannot split: builtin_apply and va_start.\n");
can_split = false;
break;
case BUILT_IN_EH_POINTER:
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Cannot split: builtin_eh_pointer.\n");
can_split = false;
break;
default:
break;
}
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
bitmap_set_bit (set_ssa_names, SSA_NAME_VERSION (op));
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
bitmap_set_bit (used_ssa_names, SSA_NAME_VERSION (op));
can_split &= !walk_stmt_load_store_addr_ops (stmt, non_ssa_vars,
mark_nonssa_use,
mark_nonssa_use,
mark_nonssa_use);
}
for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
unsigned int i;
if (is_gimple_debug (stmt))
continue;
if (!is_gimple_reg (gimple_phi_result (stmt)))
continue;
bitmap_set_bit (set_ssa_names,
SSA_NAME_VERSION (gimple_phi_result (stmt)));
for (i = 0; i < gimple_phi_num_args (stmt); i++)
{
tree op = gimple_phi_arg_def (stmt, i);
if (TREE_CODE (op) == SSA_NAME)
bitmap_set_bit (used_ssa_names, SSA_NAME_VERSION (op));
}
can_split &= !walk_stmt_load_store_addr_ops (stmt, non_ssa_vars,
mark_nonssa_use,
mark_nonssa_use,
mark_nonssa_use);
}
/* Record also uses coming from PHI operand in return BB. */
FOR_EACH_EDGE (e, ei, bb->succs)
if (e->dest == return_bb)
{
for (bsi = gsi_start_phis (return_bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
gimple stmt = gsi_stmt (bsi);
tree op = gimple_phi_arg_def (stmt, e->dest_idx);
if (is_gimple_debug (stmt))
continue;
if (!is_gimple_reg (gimple_phi_result (stmt)))
continue;
if (TREE_CODE (op) == SSA_NAME)
bitmap_set_bit (used_ssa_names, SSA_NAME_VERSION (op));
else
can_split &= !mark_nonssa_use (stmt, op, non_ssa_vars);
}
}
return can_split;
}
/* Stack entry for recursive DFS walk in find_split_point. */
typedef struct
{
/* Basic block we are examining. */
basic_block bb;
/* SSA names set and used by the BB and all BBs reachable
from it via DFS walk. */
bitmap set_ssa_names, used_ssa_names;
bitmap non_ssa_vars;
/* All BBS visited from this BB via DFS walk. */
bitmap bbs_visited;
/* Last examined edge in DFS walk. Since we walk unoriented graph,
the value is up to sum of incoming and outgoing edges of BB. */
unsigned int edge_num;
/* Stack entry index of earliest BB reachable from current BB
or any BB visited later in DFS walk. */
int earliest;
/* Overall time and size of all BBs reached from this BB in DFS walk. */
int overall_time, overall_size;
/* When false we can not split on this BB. */
bool can_split;
} stack_entry;
DEF_VEC_O(stack_entry);
DEF_VEC_ALLOC_O(stack_entry,heap);
/* Find all articulations and call consider_split on them.
OVERALL_TIME and OVERALL_SIZE is time and size of the function.
We perform basic algorithm for finding an articulation in a graph
created from CFG by considering it to be an unoriented graph.
The articulation is discovered via DFS walk. We collect earliest
basic block on stack that is reachable via backward edge. Articulation
is any basic block such that there is no backward edge bypassing it.
To reduce stack usage we maintain heap allocated stack in STACK vector.
AUX pointer of BB is set to index it appears in the stack or -1 once
it is visited and popped off the stack.
The algorithm finds articulation after visiting the whole component
reachable by it. This makes it convenient to collect information about
the component used by consider_split. */
static void
find_split_points (int overall_time, int overall_size)
{
stack_entry first;
VEC(stack_entry, heap) *stack = NULL;
basic_block bb;
basic_block return_bb = find_return_bb ();
struct split_point current;
current.header_time = overall_time;
current.header_size = overall_size;
current.split_time = 0;
current.split_size = 0;
current.ssa_names_to_pass = BITMAP_ALLOC (NULL);
first.bb = ENTRY_BLOCK_PTR;
first.edge_num = 0;
first.overall_time = 0;
first.overall_size = 0;
first.earliest = INT_MAX;
first.set_ssa_names = 0;
first.used_ssa_names = 0;
first.bbs_visited = 0;
VEC_safe_push (stack_entry, heap, stack, &first);
ENTRY_BLOCK_PTR->aux = (void *)(intptr_t)-1;
while (!VEC_empty (stack_entry, stack))
{
stack_entry *entry = VEC_last (stack_entry, stack);
/* We are walking an acyclic graph, so edge_num counts
succ and pred edges together. However when considering
articulation, we want to have processed everything reachable
from articulation but nothing that reaches into it. */
if (entry->edge_num == EDGE_COUNT (entry->bb->succs)
&& entry->bb != ENTRY_BLOCK_PTR)
{
int pos = VEC_length (stack_entry, stack);
entry->can_split &= visit_bb (entry->bb, return_bb,
entry->set_ssa_names,
entry->used_ssa_names,
entry->non_ssa_vars);
if (pos <= entry->earliest && !entry->can_split
&& dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file,
"found articulation at bb %i but can not split\n",
entry->bb->index);
if (pos <= entry->earliest && entry->can_split)
{
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "found articulation at bb %i\n",
entry->bb->index);
current.entry_bb = entry->bb;
current.ssa_names_to_pass = BITMAP_ALLOC (NULL);
bitmap_and_compl (current.ssa_names_to_pass,
entry->used_ssa_names, entry->set_ssa_names);
current.header_time = overall_time - entry->overall_time;
current.header_size = overall_size - entry->overall_size;
current.split_time = entry->overall_time;
current.split_size = entry->overall_size;
current.split_bbs = entry->bbs_visited;
consider_split (&current, entry->non_ssa_vars, return_bb);
BITMAP_FREE (current.ssa_names_to_pass);
}
}
/* Do actual DFS walk. */
if (entry->edge_num
< (EDGE_COUNT (entry->bb->succs)
+ EDGE_COUNT (entry->bb->preds)))
{
edge e;
basic_block dest;
if (entry->edge_num < EDGE_COUNT (entry->bb->succs))
{
e = EDGE_SUCC (entry->bb, entry->edge_num);
dest = e->dest;
}
else
{
e = EDGE_PRED (entry->bb, entry->edge_num
- EDGE_COUNT (entry->bb->succs));
dest = e->src;
}
entry->edge_num++;
/* New BB to visit, push it to the stack. */
if (dest != return_bb && dest != EXIT_BLOCK_PTR
&& !dest->aux)
{
stack_entry new_entry;
new_entry.bb = dest;
new_entry.edge_num = 0;
new_entry.overall_time
= VEC_index (bb_info, bb_info_vec, dest->index)->time;
new_entry.overall_size
= VEC_index (bb_info, bb_info_vec, dest->index)->size;
new_entry.earliest = INT_MAX;
new_entry.set_ssa_names = BITMAP_ALLOC (NULL);
new_entry.used_ssa_names = BITMAP_ALLOC (NULL);
new_entry.bbs_visited = BITMAP_ALLOC (NULL);
new_entry.non_ssa_vars = BITMAP_ALLOC (NULL);
new_entry.can_split = true;
bitmap_set_bit (new_entry.bbs_visited, dest->index);
VEC_safe_push (stack_entry, heap, stack, &new_entry);
dest->aux = (void *)(intptr_t)VEC_length (stack_entry, stack);
}
/* Back edge found, record the earliest point. */
else if ((intptr_t)dest->aux > 0
&& (intptr_t)dest->aux < entry->earliest)
entry->earliest = (intptr_t)dest->aux;
}
/* We are done with examining the edges. Pop off the value from stack
and merge stuff we accumulate during the walk. */
else if (entry->bb != ENTRY_BLOCK_PTR)
{
stack_entry *prev = VEC_index (stack_entry, stack,
VEC_length (stack_entry, stack) - 2);
entry->bb->aux = (void *)(intptr_t)-1;
prev->can_split &= entry->can_split;
if (prev->set_ssa_names)
{
bitmap_ior_into (prev->set_ssa_names, entry->set_ssa_names);
bitmap_ior_into (prev->used_ssa_names, entry->used_ssa_names);
bitmap_ior_into (prev->bbs_visited, entry->bbs_visited);
bitmap_ior_into (prev->non_ssa_vars, entry->non_ssa_vars);
}
if (prev->earliest > entry->earliest)
prev->earliest = entry->earliest;
prev->overall_time += entry->overall_time;
prev->overall_size += entry->overall_size;
BITMAP_FREE (entry->set_ssa_names);
BITMAP_FREE (entry->used_ssa_names);
BITMAP_FREE (entry->bbs_visited);
BITMAP_FREE (entry->non_ssa_vars);
VEC_pop (stack_entry, stack);
}
else
VEC_pop (stack_entry, stack);
}
ENTRY_BLOCK_PTR->aux = NULL;
FOR_EACH_BB (bb)
bb->aux = NULL;
VEC_free (stack_entry, heap, stack);
BITMAP_FREE (current.ssa_names_to_pass);
}
/* Split function at SPLIT_POINT. */
static void
split_function (struct split_point *split_point)
{
VEC (tree, heap) *args_to_pass = NULL;
bitmap args_to_skip;
tree parm;
int num = 0;
struct cgraph_node *node, *cur_node = cgraph_get_node (current_function_decl);
basic_block return_bb = find_return_bb ();
basic_block call_bb;
gimple_stmt_iterator gsi;
gimple call;
edge e;
edge_iterator ei;
tree retval = NULL, real_retval = NULL;
bool split_part_return_p = false;
gimple last_stmt = NULL;
unsigned int i;
tree arg;
if (dump_file)
{
fprintf (dump_file, "\n\nSplitting function at:\n");
dump_split_point (dump_file, split_point);
}
if (cur_node->local.can_change_signature)
args_to_skip = BITMAP_ALLOC (NULL);
else
args_to_skip = NULL;
/* Collect the parameters of new function and args_to_skip bitmap. */
for (parm = DECL_ARGUMENTS (current_function_decl);
parm; parm = DECL_CHAIN (parm), num++)
if (args_to_skip
&& (!is_gimple_reg (parm)
|| !gimple_default_def (cfun, parm)
|| !bitmap_bit_p (split_point->ssa_names_to_pass,
SSA_NAME_VERSION (gimple_default_def (cfun,
parm)))))
bitmap_set_bit (args_to_skip, num);
else
{
/* This parm might not have been used up to now, but is going to be
used, hence register it. */
add_referenced_var (parm);
if (is_gimple_reg (parm))
{
arg = gimple_default_def (cfun, parm);
if (!arg)
{
arg = make_ssa_name (parm, gimple_build_nop ());
set_default_def (parm, arg);
}
}
else
arg = parm;
if (!useless_type_conversion_p (DECL_ARG_TYPE (parm), TREE_TYPE (arg)))
arg = fold_convert (DECL_ARG_TYPE (parm), arg);
VEC_safe_push (tree, heap, args_to_pass, arg);
}
/* See if the split function will return. */
FOR_EACH_EDGE (e, ei, return_bb->preds)
if (bitmap_bit_p (split_point->split_bbs, e->src->index))
break;
if (e)
split_part_return_p = true;
/* Add return block to what will become the split function.
We do not return; no return block is needed. */
if (!split_part_return_p)
;
/* We have no return block, so nothing is needed. */
else if (return_bb == EXIT_BLOCK_PTR)
;
/* When we do not want to return value, we need to construct
new return block with empty return statement.
FIXME: Once we are able to change return type, we should change function
to return void instead of just outputting function with undefined return
value. For structures this affects quality of codegen. */
else if (!split_point->split_part_set_retval
&& find_retval (return_bb))
{
bool redirected = true;
basic_block new_return_bb = create_basic_block (NULL, 0, return_bb);
gimple_stmt_iterator gsi = gsi_start_bb (new_return_bb);
gsi_insert_after (&gsi, gimple_build_return (NULL), GSI_NEW_STMT);
while (redirected)
{
redirected = false;
FOR_EACH_EDGE (e, ei, return_bb->preds)
if (bitmap_bit_p (split_point->split_bbs, e->src->index))
{
new_return_bb->count += e->count;
new_return_bb->frequency += EDGE_FREQUENCY (e);
redirect_edge_and_branch (e, new_return_bb);
redirected = true;
break;
}
}
e = make_edge (new_return_bb, EXIT_BLOCK_PTR, 0);
e->probability = REG_BR_PROB_BASE;
e->count = new_return_bb->count;
bitmap_set_bit (split_point->split_bbs, new_return_bb->index);
}
/* When we pass around the value, use existing return block. */
else
bitmap_set_bit (split_point->split_bbs, return_bb->index);
/* If RETURN_BB has virtual operand PHIs, they must be removed and the
virtual operand marked for renaming as we change the CFG in a way that
tree-inline is not able to compensate for.
Note this can happen whether or not we have a return value. If we have
a return value, then RETURN_BB may have PHIs for real operands too. */
if (return_bb != EXIT_BLOCK_PTR)
{
bool phi_p = false;
for (gsi = gsi_start_phis (return_bb); !gsi_end_p (gsi);)
{
gimple stmt = gsi_stmt (gsi);
if (is_gimple_reg (gimple_phi_result (stmt)))
{
gsi_next (&gsi);
continue;
}
mark_virtual_phi_result_for_renaming (stmt);
remove_phi_node (&gsi, true);
phi_p = true;
}
/* In reality we have to rename the reaching definition of the
virtual operand at return_bb as we will eventually release it
when we remove the code region we outlined.
So we have to rename all immediate virtual uses of that region
if we didn't see a PHI definition yet. */
/* ??? In real reality we want to set the reaching vdef of the
entry of the SESE region as the vuse of the call and the reaching
vdef of the exit of the SESE region as the vdef of the call. */
if (!phi_p)
for (gsi = gsi_start_bb (return_bb); !gsi_end_p (gsi); gsi_next (&gsi))
{
gimple stmt = gsi_stmt (gsi);
if (gimple_vuse (stmt))
{
gimple_set_vuse (stmt, NULL_TREE);
update_stmt (stmt);
}
if (gimple_vdef (stmt))
break;
}
}
/* Now create the actual clone. */
rebuild_cgraph_edges ();
node = cgraph_function_versioning (cur_node, NULL, NULL, args_to_skip,
split_point->split_bbs,
split_point->entry_bb, "part");
/* For usual cloning it is enough to clear builtin only when signature
changes. For partial inlining we however can not expect the part
of builtin implementation to have same semantic as the whole. */
if (DECL_BUILT_IN (node->decl))
{
DECL_BUILT_IN_CLASS (node->decl) = NOT_BUILT_IN;
DECL_FUNCTION_CODE (node->decl) = (enum built_in_function) 0;
}
cgraph_node_remove_callees (cur_node);
if (!split_part_return_p)
TREE_THIS_VOLATILE (node->decl) = 1;
if (dump_file)
dump_function_to_file (node->decl, dump_file, dump_flags);
/* Create the basic block we place call into. It is the entry basic block
split after last label. */
call_bb = split_point->entry_bb;
for (gsi = gsi_start_bb (call_bb); !gsi_end_p (gsi);)
if (gimple_code (gsi_stmt (gsi)) == GIMPLE_LABEL)
{
last_stmt = gsi_stmt (gsi);
gsi_next (&gsi);
}
else
break;
e = split_block (split_point->entry_bb, last_stmt);
remove_edge (e);
/* Produce the call statement. */
gsi = gsi_last_bb (call_bb);
FOR_EACH_VEC_ELT (tree, args_to_pass, i, arg)
if (!is_gimple_val (arg))
{
arg = force_gimple_operand_gsi (&gsi, arg, true, NULL_TREE,
false, GSI_CONTINUE_LINKING);
VEC_replace (tree, args_to_pass, i, arg);
}
call = gimple_build_call_vec (node->decl, args_to_pass);
gimple_set_block (call, DECL_INITIAL (current_function_decl));
/* We avoid address being taken on any variable used by split part,
so return slot optimization is always possible. Moreover this is
required to make DECL_BY_REFERENCE work. */
if (aggregate_value_p (DECL_RESULT (current_function_decl),
TREE_TYPE (current_function_decl)))
gimple_call_set_return_slot_opt (call, true);
/* Update return value. This is bit tricky. When we do not return,
do nothing. When we return we might need to update return_bb
or produce a new return statement. */
if (!split_part_return_p)
gsi_insert_after (&gsi, call, GSI_NEW_STMT);
else
{
e = make_edge (call_bb, return_bb,
return_bb == EXIT_BLOCK_PTR ? 0 : EDGE_FALLTHRU);
e->count = call_bb->count;
e->probability = REG_BR_PROB_BASE;
/* If there is return basic block, see what value we need to store
return value into and put call just before it. */
if (return_bb != EXIT_BLOCK_PTR)
{
real_retval = retval = find_retval (return_bb);
if (real_retval && split_point->split_part_set_retval)
{
gimple_stmt_iterator psi;
/* See if we need new SSA_NAME for the result.
When DECL_BY_REFERENCE is true, retval is actually pointer to
return value and it is constant in whole function. */
if (TREE_CODE (retval) == SSA_NAME
&& !DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
{
retval = make_ssa_name (SSA_NAME_VAR (retval), call);
/* See if there is PHI defining return value. */
for (psi = gsi_start_phis (return_bb);
!gsi_end_p (psi); gsi_next (&psi))
if (is_gimple_reg (gimple_phi_result (gsi_stmt (psi))))
break;
/* When there is PHI, just update its value. */
if (TREE_CODE (retval) == SSA_NAME
&& !gsi_end_p (psi))
add_phi_arg (gsi_stmt (psi), retval, e, UNKNOWN_LOCATION);
/* Otherwise update the return BB itself.
find_return_bb allows at most one assignment to return value,
so update first statement. */
else
{
gimple_stmt_iterator bsi;
for (bsi = gsi_start_bb (return_bb); !gsi_end_p (bsi);
gsi_next (&bsi))
if (gimple_code (gsi_stmt (bsi)) == GIMPLE_RETURN)
{
gimple_return_set_retval (gsi_stmt (bsi), retval);
break;
}
else if (gimple_code (gsi_stmt (bsi)) == GIMPLE_ASSIGN)
{
gimple_assign_set_rhs1 (gsi_stmt (bsi), retval);
break;
}
update_stmt (gsi_stmt (bsi));
}
}
if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
{
gimple_call_set_lhs (call, build_simple_mem_ref (retval));
gsi_insert_after (&gsi, call, GSI_NEW_STMT);
}
else
{
tree restype;
restype = TREE_TYPE (DECL_RESULT (current_function_decl));
gsi_insert_after (&gsi, call, GSI_NEW_STMT);
if (!useless_type_conversion_p (TREE_TYPE (retval), restype))
{
gimple cpy;
tree tem = create_tmp_reg (restype, NULL);
tem = make_ssa_name (tem, call);
cpy = gimple_build_assign_with_ops (NOP_EXPR, retval,
tem, NULL_TREE);
gsi_insert_after (&gsi, cpy, GSI_NEW_STMT);
retval = tem;
}
gimple_call_set_lhs (call, retval);
update_stmt (call);
}
}
else
gsi_insert_after (&gsi, call, GSI_NEW_STMT);
}
/* We don't use return block (there is either no return in function or
multiple of them). So create new basic block with return statement.
*/
else
{
gimple ret;
if (split_point->split_part_set_retval
&& !VOID_TYPE_P (TREE_TYPE (TREE_TYPE (current_function_decl))))
{
retval = DECL_RESULT (current_function_decl);
/* We use temporary register to hold value when aggregate_value_p
is false. Similarly for DECL_BY_REFERENCE we must avoid extra
copy. */
if (!aggregate_value_p (retval, TREE_TYPE (current_function_decl))
&& !DECL_BY_REFERENCE (retval))
retval = create_tmp_reg (TREE_TYPE (retval), NULL);
if (is_gimple_reg (retval))
{
/* When returning by reference, there is only one SSA name
assigned to RESULT_DECL (that is pointer to return value).
Look it up or create new one if it is missing. */
if (DECL_BY_REFERENCE (retval))
{
tree retval_name;
if ((retval_name = gimple_default_def (cfun, retval))
!= NULL)
retval = retval_name;
else
{
retval_name = make_ssa_name (retval,
gimple_build_nop ());
set_default_def (retval, retval_name);
retval = retval_name;
}
}
/* Otherwise produce new SSA name for return value. */
else
retval = make_ssa_name (retval, call);
}
if (DECL_BY_REFERENCE (DECL_RESULT (current_function_decl)))
gimple_call_set_lhs (call, build_simple_mem_ref (retval));
else
gimple_call_set_lhs (call, retval);
}
gsi_insert_after (&gsi, call, GSI_NEW_STMT);
ret = gimple_build_return (retval);
gsi_insert_after (&gsi, ret, GSI_NEW_STMT);
}
}
free_dominance_info (CDI_DOMINATORS);
free_dominance_info (CDI_POST_DOMINATORS);
compute_inline_parameters (node, true);
}
/* Execute function splitting pass. */
static unsigned int
execute_split_functions (void)
{
gimple_stmt_iterator bsi;
basic_block bb;
int overall_time = 0, overall_size = 0;
int todo = 0;
struct cgraph_node *node = cgraph_get_node (current_function_decl);
if (flags_from_decl_or_type (current_function_decl) & ECF_NORETURN)
{
if (dump_file)
fprintf (dump_file, "Not splitting: noreturn function.\n");
return 0;
}
if (MAIN_NAME_P (DECL_NAME (current_function_decl)))
{
if (dump_file)
fprintf (dump_file, "Not splitting: main function.\n");
return 0;
}
/* This can be relaxed; function might become inlinable after splitting
away the uninlinable part. */
if (!inline_summary (node)->inlinable)
{
if (dump_file)
fprintf (dump_file, "Not splitting: not inlinable.\n");
return 0;
}
if (DECL_DISREGARD_INLINE_LIMITS (node->decl))
{
if (dump_file)
fprintf (dump_file, "Not splitting: disregarding inline limits.\n");
return 0;
}
/* This can be relaxed; most of versioning tests actually prevents
a duplication. */
if (!tree_versionable_function_p (current_function_decl))
{
if (dump_file)
fprintf (dump_file, "Not splitting: not versionable.\n");
return 0;
}
/* FIXME: we could support this. */
if (DECL_STRUCT_FUNCTION (current_function_decl)->static_chain_decl)
{
if (dump_file)
fprintf (dump_file, "Not splitting: nested function.\n");
return 0;
}
/* See if it makes sense to try to split.
It makes sense to split if we inline, that is if we have direct calls to
handle or direct calls are possibly going to appear as result of indirect
inlining or LTO. Also handle -fprofile-generate as LTO to allow non-LTO
training for LTO -fprofile-use build.
Note that we are not completely conservative about disqualifying functions
called once. It is possible that the caller is called more then once and
then inlining would still benefit. */
if ((!node->callers || !node->callers->next_caller)
&& !node->address_taken
&& (!flag_lto || !node->local.externally_visible))
{
if (dump_file)
fprintf (dump_file, "Not splitting: not called directly "
"or called once.\n");
return 0;
}
/* FIXME: We can actually split if splitting reduces call overhead. */
if (!flag_inline_small_functions
&& !DECL_DECLARED_INLINE_P (current_function_decl))
{
if (dump_file)
fprintf (dump_file, "Not splitting: not autoinlining and function"
" is not inline.\n");
return 0;
}
/* Compute local info about basic blocks and determine function size/time. */
VEC_safe_grow_cleared (bb_info, heap, bb_info_vec, last_basic_block + 1);
memset (&best_split_point, 0, sizeof (best_split_point));
FOR_EACH_BB (bb)
{
int time = 0;
int size = 0;
int freq = compute_call_stmt_bb_frequency (current_function_decl, bb);
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Basic block %i\n", bb->index);
for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
{
int this_time, this_size;
gimple stmt = gsi_stmt (bsi);
this_size = estimate_num_insns (stmt, &eni_size_weights);
this_time = estimate_num_insns (stmt, &eni_time_weights) * freq;
size += this_size;
time += this_time;
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, " freq:%6i size:%3i time:%3i ",
freq, this_size, this_time);
print_gimple_stmt (dump_file, stmt, 0, 0);
}
}
overall_time += time;
overall_size += size;
VEC_index (bb_info, bb_info_vec, bb->index)->time = time;
VEC_index (bb_info, bb_info_vec, bb->index)->size = size;
}
find_split_points (overall_time, overall_size);
if (best_split_point.split_bbs)
{
split_function (&best_split_point);
BITMAP_FREE (best_split_point.ssa_names_to_pass);
BITMAP_FREE (best_split_point.split_bbs);
todo = TODO_update_ssa | TODO_cleanup_cfg;
}
VEC_free (bb_info, heap, bb_info_vec);
bb_info_vec = NULL;
return todo;
}
/* Gate function splitting pass. When doing profile feedback, we want
to execute the pass after profiling is read. So disable one in
early optimization. */
static bool
gate_split_functions (void)
{
return (flag_partial_inlining
&& !profile_arc_flag && !flag_branch_probabilities);
}
struct gimple_opt_pass pass_split_functions =
{
{
GIMPLE_PASS,
"fnsplit", /* name */
gate_split_functions, /* gate */
execute_split_functions, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_FNSPLIT, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_all /* todo_flags_finish */
}
};
/* Gate feedback driven function splitting pass.
We don't need to split when profiling at all, we are producing
lousy code anyway. */
static bool
gate_feedback_split_functions (void)
{
return (flag_partial_inlining
&& flag_branch_probabilities);
}
/* Execute function splitting pass. */
static unsigned int
execute_feedback_split_functions (void)
{
unsigned int retval = execute_split_functions ();
if (retval)
retval |= TODO_rebuild_cgraph_edges;
return retval;
}
struct gimple_opt_pass pass_feedback_split_functions =
{
{
GIMPLE_PASS,
"feedback_fnsplit", /* name */
gate_feedback_split_functions, /* gate */
execute_feedback_split_functions, /* execute */
NULL, /* sub */
NULL, /* next */
0, /* static_pass_number */
TV_IPA_FNSPLIT, /* tv_id */
PROP_cfg, /* properties_required */
0, /* properties_provided */
0, /* properties_destroyed */
0, /* todo_flags_start */
TODO_verify_all /* todo_flags_finish */
}
};