ebf78a479a
* tree-loop-linear.c: Don't include varray.h. (gather_interchange_stats, try_interchange_loops, linear_transform_loops): Use VEC instead of VARRAY. * lambda-mat.c: Don't include varray.h. * tree-chrec.c: Same. * lambda-trans.c: Same. * tree-vectorizer.c (new_loop_vec_info, destroy_loop_vec_info): Use VEC instead of VARRAY. * tree-vectorizer.h: Idem. * tree-data-ref.c (dump_data_references, dump_data_dependence_relations, dump_dist_dir_vectors, dump_ddrs, initialize_data_dependence_relation, finalize_ddr_dependent, compute_all_dependences, find_data_references_in_loop, compute_data_dependences_for_loop, analyze_all_data_dependences, free_dependence_relation, free_dependence_relations, free_data_refs): Idem. * tree-data-ref.h (data_reference_p, subscript_p): New. (data_dependence_relation, DDR_SUBSCRIPT, DDR_NUM_SUBSCRIPTS): Use VEC instead of VARRAY. (DDR_SUBSCRIPTS_VECTOR_INIT): Removed. (find_data_references_in_loop, compute_data_dependences_for_loop, dump_ddrs, dump_dist_dir_vectors, dump_data_references, dump_data_dependence_relations, free_dependence_relations, free_data_refs): Adjust declaration. (lambda_transform_legal_p): Move declaration here... * tree-vect-analyze.c (vect_analyze_data_ref_dependences, vect_compute_data_refs_alignment, vect_verify_datarefs_alignment, vect_enhance_data_refs_alignment, vect_analyze_data_ref_accesses, vect_analyze_data_refs): Use VEC instead of VARRAY. * lambda.h (lambda_transform_legal_p): ...from here. * lambda-code.c (lambda_transform_legal_p): Use VEC instead of VARRAY. * tree-vect-transform.c (vect_update_inits_of_drs): Idem. * Makefile.in (tree-loop-linear.o, lambda-mat.o, lambda-trans.o, tree-chrec.o): Don't depend on VARRAY_H. From-SVN: r112437
661 lines
15 KiB
C
661 lines
15 KiB
C
/* Integer matrix math routines
|
|
Copyright (C) 2003, 2004, 2005 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dberlin@dberlin.org>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 2, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING. If not, write to the Free
|
|
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301, USA. */
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "ggc.h"
|
|
#include "tree.h"
|
|
#include "lambda.h"
|
|
|
|
static void lambda_matrix_get_column (lambda_matrix, int, int,
|
|
lambda_vector);
|
|
|
|
/* Allocate a matrix of M rows x N cols. */
|
|
|
|
lambda_matrix
|
|
lambda_matrix_new (int m, int n)
|
|
{
|
|
lambda_matrix mat;
|
|
int i;
|
|
|
|
mat = ggc_alloc (m * sizeof (lambda_vector));
|
|
|
|
for (i = 0; i < m; i++)
|
|
mat[i] = lambda_vector_new (n);
|
|
|
|
return mat;
|
|
}
|
|
|
|
/* Copy the elements of M x N matrix MAT1 to MAT2. */
|
|
|
|
void
|
|
lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
|
|
int m, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
lambda_vector_copy (mat1[i], mat2[i], n);
|
|
}
|
|
|
|
/* Store the N x N identity matrix in MAT. */
|
|
|
|
void
|
|
lambda_matrix_id (lambda_matrix mat, int size)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < size; i++)
|
|
for (j = 0; j < size; j++)
|
|
mat[i][j] = (i == j) ? 1 : 0;
|
|
}
|
|
|
|
/* Return true if MAT is the identity matrix of SIZE */
|
|
|
|
bool
|
|
lambda_matrix_id_p (lambda_matrix mat, int size)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < size; i++)
|
|
for (j = 0; j < size; j++)
|
|
{
|
|
if (i == j)
|
|
{
|
|
if (mat[i][j] != 1)
|
|
return false;
|
|
}
|
|
else
|
|
{
|
|
if (mat[i][j] != 0)
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Negate the elements of the M x N matrix MAT1 and store it in MAT2. */
|
|
|
|
void
|
|
lambda_matrix_negate (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
lambda_vector_negate (mat1[i], mat2[i], n);
|
|
}
|
|
|
|
/* Take the transpose of matrix MAT1 and store it in MAT2.
|
|
MAT1 is an M x N matrix, so MAT2 must be N x M. */
|
|
|
|
void
|
|
lambda_matrix_transpose (lambda_matrix mat1, lambda_matrix mat2, int m, int n)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < n; i++)
|
|
for (j = 0; j < m; j++)
|
|
mat2[i][j] = mat1[j][i];
|
|
}
|
|
|
|
|
|
/* Add two M x N matrices together: MAT3 = MAT1+MAT2. */
|
|
|
|
void
|
|
lambda_matrix_add (lambda_matrix mat1, lambda_matrix mat2,
|
|
lambda_matrix mat3, int m, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
lambda_vector_add (mat1[i], mat2[i], mat3[i], n);
|
|
}
|
|
|
|
/* MAT3 = CONST1 * MAT1 + CONST2 * MAT2. All matrices are M x N. */
|
|
|
|
void
|
|
lambda_matrix_add_mc (lambda_matrix mat1, int const1,
|
|
lambda_matrix mat2, int const2,
|
|
lambda_matrix mat3, int m, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
lambda_vector_add_mc (mat1[i], const1, mat2[i], const2, mat3[i], n);
|
|
}
|
|
|
|
/* Multiply two matrices: MAT3 = MAT1 * MAT2.
|
|
MAT1 is an M x R matrix, and MAT2 is R x N. The resulting MAT2
|
|
must therefore be M x N. */
|
|
|
|
void
|
|
lambda_matrix_mult (lambda_matrix mat1, lambda_matrix mat2,
|
|
lambda_matrix mat3, int m, int r, int n)
|
|
{
|
|
|
|
int i, j, k;
|
|
|
|
for (i = 0; i < m; i++)
|
|
{
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
mat3[i][j] = 0;
|
|
for (k = 0; k < r; k++)
|
|
mat3[i][j] += mat1[i][k] * mat2[k][j];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Get column COL from the matrix MAT and store it in VEC. MAT has
|
|
N rows, so the length of VEC must be N. */
|
|
|
|
static void
|
|
lambda_matrix_get_column (lambda_matrix mat, int n, int col,
|
|
lambda_vector vec)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
vec[i] = mat[i][col];
|
|
}
|
|
|
|
/* Delete rows r1 to r2 (not including r2). */
|
|
|
|
void
|
|
lambda_matrix_delete_rows (lambda_matrix mat, int rows, int from, int to)
|
|
{
|
|
int i;
|
|
int dist;
|
|
dist = to - from;
|
|
|
|
for (i = to; i < rows; i++)
|
|
mat[i - dist] = mat[i];
|
|
|
|
for (i = rows - dist; i < rows; i++)
|
|
mat[i] = NULL;
|
|
}
|
|
|
|
/* Swap rows R1 and R2 in matrix MAT. */
|
|
|
|
void
|
|
lambda_matrix_row_exchange (lambda_matrix mat, int r1, int r2)
|
|
{
|
|
lambda_vector row;
|
|
|
|
row = mat[r1];
|
|
mat[r1] = mat[r2];
|
|
mat[r2] = row;
|
|
}
|
|
|
|
/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
|
|
R2 = R2 + CONST1 * R1. */
|
|
|
|
void
|
|
lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2, int const1)
|
|
{
|
|
int i;
|
|
|
|
if (const1 == 0)
|
|
return;
|
|
|
|
for (i = 0; i < n; i++)
|
|
mat[r2][i] += const1 * mat[r1][i];
|
|
}
|
|
|
|
/* Negate row R1 of matrix MAT which has N columns. */
|
|
|
|
void
|
|
lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
|
|
{
|
|
lambda_vector_negate (mat[r1], mat[r1], n);
|
|
}
|
|
|
|
/* Multiply row R1 of matrix MAT with N columns by CONST1. */
|
|
|
|
void
|
|
lambda_matrix_row_mc (lambda_matrix mat, int n, int r1, int const1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
mat[r1][i] *= const1;
|
|
}
|
|
|
|
/* Exchange COL1 and COL2 in matrix MAT. M is the number of rows. */
|
|
|
|
void
|
|
lambda_matrix_col_exchange (lambda_matrix mat, int m, int col1, int col2)
|
|
{
|
|
int i;
|
|
int tmp;
|
|
for (i = 0; i < m; i++)
|
|
{
|
|
tmp = mat[i][col1];
|
|
mat[i][col1] = mat[i][col2];
|
|
mat[i][col2] = tmp;
|
|
}
|
|
}
|
|
|
|
/* Add a multiple of column C1 of matrix MAT with M rows to column C2:
|
|
C2 = C2 + CONST1 * C1. */
|
|
|
|
void
|
|
lambda_matrix_col_add (lambda_matrix mat, int m, int c1, int c2, int const1)
|
|
{
|
|
int i;
|
|
|
|
if (const1 == 0)
|
|
return;
|
|
|
|
for (i = 0; i < m; i++)
|
|
mat[i][c2] += const1 * mat[i][c1];
|
|
}
|
|
|
|
/* Negate column C1 of matrix MAT which has M rows. */
|
|
|
|
void
|
|
lambda_matrix_col_negate (lambda_matrix mat, int m, int c1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
mat[i][c1] *= -1;
|
|
}
|
|
|
|
/* Multiply column C1 of matrix MAT with M rows by CONST1. */
|
|
|
|
void
|
|
lambda_matrix_col_mc (lambda_matrix mat, int m, int c1, int const1)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
mat[i][c1] *= const1;
|
|
}
|
|
|
|
/* Compute the inverse of the N x N matrix MAT and store it in INV.
|
|
|
|
We don't _really_ compute the inverse of MAT. Instead we compute
|
|
det(MAT)*inv(MAT), and we return det(MAT) to the caller as the function
|
|
result. This is necessary to preserve accuracy, because we are dealing
|
|
with integer matrices here.
|
|
|
|
The algorithm used here is a column based Gauss-Jordan elimination on MAT
|
|
and the identity matrix in parallel. The inverse is the result of applying
|
|
the same operations on the identity matrix that reduce MAT to the identity
|
|
matrix.
|
|
|
|
When MAT is a 2 x 2 matrix, we don't go through the whole process, because
|
|
it is easily inverted by inspection and it is a very common case. */
|
|
|
|
static int lambda_matrix_inverse_hard (lambda_matrix, lambda_matrix, int);
|
|
|
|
int
|
|
lambda_matrix_inverse (lambda_matrix mat, lambda_matrix inv, int n)
|
|
{
|
|
if (n == 2)
|
|
{
|
|
int a, b, c, d, det;
|
|
a = mat[0][0];
|
|
b = mat[1][0];
|
|
c = mat[0][1];
|
|
d = mat[1][1];
|
|
inv[0][0] = d;
|
|
inv[0][1] = -c;
|
|
inv[1][0] = -b;
|
|
inv[1][1] = a;
|
|
det = (a * d - b * c);
|
|
if (det < 0)
|
|
{
|
|
det *= -1;
|
|
inv[0][0] *= -1;
|
|
inv[1][0] *= -1;
|
|
inv[0][1] *= -1;
|
|
inv[1][1] *= -1;
|
|
}
|
|
return det;
|
|
}
|
|
else
|
|
return lambda_matrix_inverse_hard (mat, inv, n);
|
|
}
|
|
|
|
/* If MAT is not a special case, invert it the hard way. */
|
|
|
|
static int
|
|
lambda_matrix_inverse_hard (lambda_matrix mat, lambda_matrix inv, int n)
|
|
{
|
|
lambda_vector row;
|
|
lambda_matrix temp;
|
|
int i, j;
|
|
int determinant;
|
|
|
|
temp = lambda_matrix_new (n, n);
|
|
lambda_matrix_copy (mat, temp, n, n);
|
|
lambda_matrix_id (inv, n);
|
|
|
|
/* Reduce TEMP to a lower triangular form, applying the same operations on
|
|
INV which starts as the identity matrix. N is the number of rows and
|
|
columns. */
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
row = temp[j];
|
|
|
|
/* Make every element in the current row positive. */
|
|
for (i = j; i < n; i++)
|
|
if (row[i] < 0)
|
|
{
|
|
lambda_matrix_col_negate (temp, n, i);
|
|
lambda_matrix_col_negate (inv, n, i);
|
|
}
|
|
|
|
/* Sweep the upper triangle. Stop when only the diagonal element in the
|
|
current row is nonzero. */
|
|
while (lambda_vector_first_nz (row, n, j + 1) < n)
|
|
{
|
|
int min_col = lambda_vector_min_nz (row, n, j);
|
|
lambda_matrix_col_exchange (temp, n, j, min_col);
|
|
lambda_matrix_col_exchange (inv, n, j, min_col);
|
|
|
|
for (i = j + 1; i < n; i++)
|
|
{
|
|
int factor;
|
|
|
|
factor = -1 * row[i];
|
|
if (row[j] != 1)
|
|
factor /= row[j];
|
|
|
|
lambda_matrix_col_add (temp, n, j, i, factor);
|
|
lambda_matrix_col_add (inv, n, j, i, factor);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reduce TEMP from a lower triangular to the identity matrix. Also compute
|
|
the determinant, which now is simply the product of the elements on the
|
|
diagonal of TEMP. If one of these elements is 0, the matrix has 0 as an
|
|
eigenvalue so it is singular and hence not invertible. */
|
|
determinant = 1;
|
|
for (j = n - 1; j >= 0; j--)
|
|
{
|
|
int diagonal;
|
|
|
|
row = temp[j];
|
|
diagonal = row[j];
|
|
|
|
/* The matrix must not be singular. */
|
|
gcc_assert (diagonal);
|
|
|
|
determinant = determinant * diagonal;
|
|
|
|
/* If the diagonal is not 1, then multiply the each row by the
|
|
diagonal so that the middle number is now 1, rather than a
|
|
rational. */
|
|
if (diagonal != 1)
|
|
{
|
|
for (i = 0; i < j; i++)
|
|
lambda_matrix_col_mc (inv, n, i, diagonal);
|
|
for (i = j + 1; i < n; i++)
|
|
lambda_matrix_col_mc (inv, n, i, diagonal);
|
|
|
|
row[j] = diagonal = 1;
|
|
}
|
|
|
|
/* Sweep the lower triangle column wise. */
|
|
for (i = j - 1; i >= 0; i--)
|
|
{
|
|
if (row[i])
|
|
{
|
|
int factor = -row[i];
|
|
lambda_matrix_col_add (temp, n, j, i, factor);
|
|
lambda_matrix_col_add (inv, n, j, i, factor);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
return determinant;
|
|
}
|
|
|
|
/* Decompose a N x N matrix MAT to a product of a lower triangular H
|
|
and a unimodular U matrix such that MAT = H.U. N is the size of
|
|
the rows of MAT. */
|
|
|
|
void
|
|
lambda_matrix_hermite (lambda_matrix mat, int n,
|
|
lambda_matrix H, lambda_matrix U)
|
|
{
|
|
lambda_vector row;
|
|
int i, j, factor, minimum_col;
|
|
|
|
lambda_matrix_copy (mat, H, n, n);
|
|
lambda_matrix_id (U, n);
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
row = H[j];
|
|
|
|
/* Make every element of H[j][j..n] positive. */
|
|
for (i = j; i < n; i++)
|
|
{
|
|
if (row[i] < 0)
|
|
{
|
|
lambda_matrix_col_negate (H, n, i);
|
|
lambda_vector_negate (U[i], U[i], n);
|
|
}
|
|
}
|
|
|
|
/* Stop when only the diagonal element is nonzero. */
|
|
while (lambda_vector_first_nz (row, n, j + 1) < n)
|
|
{
|
|
minimum_col = lambda_vector_min_nz (row, n, j);
|
|
lambda_matrix_col_exchange (H, n, j, minimum_col);
|
|
lambda_matrix_row_exchange (U, j, minimum_col);
|
|
|
|
for (i = j + 1; i < n; i++)
|
|
{
|
|
factor = row[i] / row[j];
|
|
lambda_matrix_col_add (H, n, j, i, -1 * factor);
|
|
lambda_matrix_row_add (U, n, i, j, factor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given an M x N integer matrix A, this function determines an M x
|
|
M unimodular matrix U, and an M x N echelon matrix S such that
|
|
"U.A = S". This decomposition is also known as "right Hermite".
|
|
|
|
Ref: Algorithm 2.1 page 33 in "Loop Transformations for
|
|
Restructuring Compilers" Utpal Banerjee. */
|
|
|
|
void
|
|
lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
|
|
lambda_matrix S, lambda_matrix U)
|
|
{
|
|
int i, j, i0 = 0;
|
|
|
|
lambda_matrix_copy (A, S, m, n);
|
|
lambda_matrix_id (U, m);
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
if (lambda_vector_first_nz (S[j], m, i0) < m)
|
|
{
|
|
++i0;
|
|
for (i = m - 1; i >= i0; i--)
|
|
{
|
|
while (S[i][j] != 0)
|
|
{
|
|
int sigma, factor, a, b;
|
|
|
|
a = S[i-1][j];
|
|
b = S[i][j];
|
|
sigma = (a * b < 0) ? -1: 1;
|
|
a = abs (a);
|
|
b = abs (b);
|
|
factor = sigma * (a / b);
|
|
|
|
lambda_matrix_row_add (S, n, i, i-1, -factor);
|
|
lambda_matrix_row_exchange (S, i, i-1);
|
|
|
|
lambda_matrix_row_add (U, m, i, i-1, -factor);
|
|
lambda_matrix_row_exchange (U, i, i-1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Given an M x N integer matrix A, this function determines an M x M
|
|
unimodular matrix V, and an M x N echelon matrix S such that "A =
|
|
V.S". This decomposition is also known as "left Hermite".
|
|
|
|
Ref: Algorithm 2.2 page 36 in "Loop Transformations for
|
|
Restructuring Compilers" Utpal Banerjee. */
|
|
|
|
void
|
|
lambda_matrix_left_hermite (lambda_matrix A, int m, int n,
|
|
lambda_matrix S, lambda_matrix V)
|
|
{
|
|
int i, j, i0 = 0;
|
|
|
|
lambda_matrix_copy (A, S, m, n);
|
|
lambda_matrix_id (V, m);
|
|
|
|
for (j = 0; j < n; j++)
|
|
{
|
|
if (lambda_vector_first_nz (S[j], m, i0) < m)
|
|
{
|
|
++i0;
|
|
for (i = m - 1; i >= i0; i--)
|
|
{
|
|
while (S[i][j] != 0)
|
|
{
|
|
int sigma, factor, a, b;
|
|
|
|
a = S[i-1][j];
|
|
b = S[i][j];
|
|
sigma = (a * b < 0) ? -1: 1;
|
|
a = abs (a);
|
|
b = abs (b);
|
|
factor = sigma * (a / b);
|
|
|
|
lambda_matrix_row_add (S, n, i, i-1, -factor);
|
|
lambda_matrix_row_exchange (S, i, i-1);
|
|
|
|
lambda_matrix_col_add (V, m, i-1, i, factor);
|
|
lambda_matrix_col_exchange (V, m, i, i-1);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* When it exists, return the first nonzero row in MAT after row
|
|
STARTROW. Otherwise return rowsize. */
|
|
|
|
int
|
|
lambda_matrix_first_nz_vec (lambda_matrix mat, int rowsize, int colsize,
|
|
int startrow)
|
|
{
|
|
int j;
|
|
bool found = false;
|
|
|
|
for (j = startrow; (j < rowsize) && !found; j++)
|
|
{
|
|
if ((mat[j] != NULL)
|
|
&& (lambda_vector_first_nz (mat[j], colsize, startrow) < colsize))
|
|
found = true;
|
|
}
|
|
|
|
if (found)
|
|
return j - 1;
|
|
return rowsize;
|
|
}
|
|
|
|
/* Calculate the projection of E sub k to the null space of B. */
|
|
|
|
void
|
|
lambda_matrix_project_to_null (lambda_matrix B, int rowsize,
|
|
int colsize, int k, lambda_vector x)
|
|
{
|
|
lambda_matrix M1, M2, M3, I;
|
|
int determinant;
|
|
|
|
/* Compute c(I-B^T inv(B B^T) B) e sub k. */
|
|
|
|
/* M1 is the transpose of B. */
|
|
M1 = lambda_matrix_new (colsize, colsize);
|
|
lambda_matrix_transpose (B, M1, rowsize, colsize);
|
|
|
|
/* M2 = B * B^T */
|
|
M2 = lambda_matrix_new (colsize, colsize);
|
|
lambda_matrix_mult (B, M1, M2, rowsize, colsize, rowsize);
|
|
|
|
/* M3 = inv(M2) */
|
|
M3 = lambda_matrix_new (colsize, colsize);
|
|
determinant = lambda_matrix_inverse (M2, M3, rowsize);
|
|
|
|
/* M2 = B^T (inv(B B^T)) */
|
|
lambda_matrix_mult (M1, M3, M2, colsize, rowsize, rowsize);
|
|
|
|
/* M1 = B^T (inv(B B^T)) B */
|
|
lambda_matrix_mult (M2, B, M1, colsize, rowsize, colsize);
|
|
lambda_matrix_negate (M1, M1, colsize, colsize);
|
|
|
|
I = lambda_matrix_new (colsize, colsize);
|
|
lambda_matrix_id (I, colsize);
|
|
|
|
lambda_matrix_add_mc (I, determinant, M1, 1, M2, colsize, colsize);
|
|
|
|
lambda_matrix_get_column (M2, colsize, k - 1, x);
|
|
|
|
}
|
|
|
|
/* Multiply a vector VEC by a matrix MAT.
|
|
MAT is an M*N matrix, and VEC is a vector with length N. The result
|
|
is stored in DEST which must be a vector of length M. */
|
|
|
|
void
|
|
lambda_matrix_vector_mult (lambda_matrix matrix, int m, int n,
|
|
lambda_vector vec, lambda_vector dest)
|
|
{
|
|
int i, j;
|
|
|
|
lambda_vector_clear (dest, m);
|
|
for (i = 0; i < m; i++)
|
|
for (j = 0; j < n; j++)
|
|
dest[i] += matrix[i][j] * vec[j];
|
|
}
|
|
|
|
/* Print out an M x N matrix MAT to OUTFILE. */
|
|
|
|
void
|
|
print_lambda_matrix (FILE * outfile, lambda_matrix matrix, int m, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < m; i++)
|
|
print_lambda_vector (outfile, matrix[i], n);
|
|
fprintf (outfile, "\n");
|
|
}
|
|
|