1122 lines
30 KiB
C
1122 lines
30 KiB
C
/* Fixed-point arithmetic support.
|
|
Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "tm.h"
|
|
#include "tree.h"
|
|
#include "diagnostic-core.h"
|
|
|
|
/* Compare two fixed objects for bitwise identity. */
|
|
|
|
bool
|
|
fixed_identical (const FIXED_VALUE_TYPE *a, const FIXED_VALUE_TYPE *b)
|
|
{
|
|
return (a->mode == b->mode
|
|
&& a->data.high == b->data.high
|
|
&& a->data.low == b->data.low);
|
|
}
|
|
|
|
/* Calculate a hash value. */
|
|
|
|
unsigned int
|
|
fixed_hash (const FIXED_VALUE_TYPE *f)
|
|
{
|
|
return (unsigned int) (f->data.low ^ f->data.high);
|
|
}
|
|
|
|
/* Define the enum code for the range of the fixed-point value. */
|
|
enum fixed_value_range_code {
|
|
FIXED_OK, /* The value is within the range. */
|
|
FIXED_UNDERFLOW, /* The value is less than the minimum. */
|
|
FIXED_GT_MAX_EPS, /* The value is greater than the maximum, but not equal
|
|
to the maximum plus the epsilon. */
|
|
FIXED_MAX_EPS /* The value equals the maximum plus the epsilon. */
|
|
};
|
|
|
|
/* Check REAL_VALUE against the range of the fixed-point mode.
|
|
Return FIXED_OK, if it is within the range.
|
|
FIXED_UNDERFLOW, if it is less than the minimum.
|
|
FIXED_GT_MAX_EPS, if it is greater than the maximum, but not equal to
|
|
the maximum plus the epsilon.
|
|
FIXED_MAX_EPS, if it is equal to the maximum plus the epsilon. */
|
|
|
|
static enum fixed_value_range_code
|
|
check_real_for_fixed_mode (REAL_VALUE_TYPE *real_value, machine_mode mode)
|
|
{
|
|
REAL_VALUE_TYPE max_value, min_value, epsilon_value;
|
|
|
|
real_2expN (&max_value, GET_MODE_IBIT (mode), VOIDmode);
|
|
real_2expN (&epsilon_value, -GET_MODE_FBIT (mode), VOIDmode);
|
|
|
|
if (SIGNED_FIXED_POINT_MODE_P (mode))
|
|
min_value = real_value_negate (&max_value);
|
|
else
|
|
real_from_string (&min_value, "0.0");
|
|
|
|
if (real_compare (LT_EXPR, real_value, &min_value))
|
|
return FIXED_UNDERFLOW;
|
|
if (real_compare (EQ_EXPR, real_value, &max_value))
|
|
return FIXED_MAX_EPS;
|
|
real_arithmetic (&max_value, MINUS_EXPR, &max_value, &epsilon_value);
|
|
if (real_compare (GT_EXPR, real_value, &max_value))
|
|
return FIXED_GT_MAX_EPS;
|
|
return FIXED_OK;
|
|
}
|
|
|
|
|
|
/* Construct a CONST_FIXED from a bit payload and machine mode MODE.
|
|
The bits in PAYLOAD are sign-extended/zero-extended according to MODE. */
|
|
|
|
FIXED_VALUE_TYPE
|
|
fixed_from_double_int (double_int payload, scalar_mode mode)
|
|
{
|
|
FIXED_VALUE_TYPE value;
|
|
|
|
gcc_assert (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_DOUBLE_INT);
|
|
|
|
if (SIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
|
|
value.data = payload.sext (1 + GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
|
|
else if (UNSIGNED_SCALAR_FIXED_POINT_MODE_P (mode))
|
|
value.data = payload.zext (GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode));
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
value.mode = mode;
|
|
|
|
return value;
|
|
}
|
|
|
|
|
|
/* Initialize from a decimal or hexadecimal string. */
|
|
|
|
void
|
|
fixed_from_string (FIXED_VALUE_TYPE *f, const char *str, scalar_mode mode)
|
|
{
|
|
REAL_VALUE_TYPE real_value, fixed_value, base_value;
|
|
unsigned int fbit;
|
|
enum fixed_value_range_code temp;
|
|
bool fail;
|
|
|
|
f->mode = mode;
|
|
fbit = GET_MODE_FBIT (mode);
|
|
|
|
real_from_string (&real_value, str);
|
|
temp = check_real_for_fixed_mode (&real_value, f->mode);
|
|
/* We don't want to warn the case when the _Fract value is 1.0. */
|
|
if (temp == FIXED_UNDERFLOW
|
|
|| temp == FIXED_GT_MAX_EPS
|
|
|| (temp == FIXED_MAX_EPS && ALL_ACCUM_MODE_P (f->mode)))
|
|
warning (OPT_Woverflow,
|
|
"large fixed-point constant implicitly truncated to fixed-point type");
|
|
real_2expN (&base_value, fbit, VOIDmode);
|
|
real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
|
|
wide_int w = real_to_integer (&fixed_value, &fail,
|
|
GET_MODE_PRECISION (mode));
|
|
f->data.low = w.ulow ();
|
|
f->data.high = w.elt (1);
|
|
|
|
if (temp == FIXED_MAX_EPS && ALL_FRACT_MODE_P (f->mode))
|
|
{
|
|
/* From the spec, we need to evaluate 1 to the maximal value. */
|
|
f->data.low = -1;
|
|
f->data.high = -1;
|
|
f->data = f->data.zext (GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode));
|
|
}
|
|
else
|
|
f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
|
|
+ GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode),
|
|
UNSIGNED_FIXED_POINT_MODE_P (f->mode));
|
|
}
|
|
|
|
/* Render F as a decimal floating point constant. */
|
|
|
|
void
|
|
fixed_to_decimal (char *str, const FIXED_VALUE_TYPE *f_orig,
|
|
size_t buf_size)
|
|
{
|
|
REAL_VALUE_TYPE real_value, base_value, fixed_value;
|
|
|
|
signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f_orig->mode) ? UNSIGNED : SIGNED;
|
|
real_2expN (&base_value, GET_MODE_FBIT (f_orig->mode), VOIDmode);
|
|
real_from_integer (&real_value, VOIDmode,
|
|
wide_int::from (f_orig->data,
|
|
GET_MODE_PRECISION (f_orig->mode), sgn),
|
|
sgn);
|
|
real_arithmetic (&fixed_value, RDIV_EXPR, &real_value, &base_value);
|
|
real_to_decimal (str, &fixed_value, buf_size, 0, 1);
|
|
}
|
|
|
|
/* If SAT_P, saturate A to the maximum or the minimum, and save to *F based on
|
|
the machine mode MODE.
|
|
Do not modify *F otherwise.
|
|
This function assumes the width of double_int is greater than the width
|
|
of the fixed-point value (the sum of a possible sign bit, possible ibits,
|
|
and fbits).
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
fixed_saturate1 (machine_mode mode, double_int a, double_int *f,
|
|
bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
|
|
int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
|
|
|
|
if (unsigned_p) /* Unsigned type. */
|
|
{
|
|
double_int max;
|
|
max.low = -1;
|
|
max.high = -1;
|
|
max = max.zext (i_f_bits);
|
|
if (a.ugt (max))
|
|
{
|
|
if (sat_p)
|
|
*f = max;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
else /* Signed type. */
|
|
{
|
|
double_int max, min;
|
|
max.high = -1;
|
|
max.low = -1;
|
|
max = max.zext (i_f_bits);
|
|
min.high = 0;
|
|
min.low = 1;
|
|
min = min.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
|
|
min = min.sext (1 + i_f_bits);
|
|
if (a.sgt (max))
|
|
{
|
|
if (sat_p)
|
|
*f = max;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else if (a.slt (min))
|
|
{
|
|
if (sat_p)
|
|
*f = min;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
return overflow_p;
|
|
}
|
|
|
|
/* If SAT_P, saturate {A_HIGH, A_LOW} to the maximum or the minimum, and
|
|
save to *F based on the machine mode MODE.
|
|
Do not modify *F otherwise.
|
|
This function assumes the width of two double_int is greater than the width
|
|
of the fixed-point value (the sum of a possible sign bit, possible ibits,
|
|
and fbits).
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
fixed_saturate2 (machine_mode mode, double_int a_high, double_int a_low,
|
|
double_int *f, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
|
|
int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
|
|
|
|
if (unsigned_p) /* Unsigned type. */
|
|
{
|
|
double_int max_r, max_s;
|
|
max_r.high = 0;
|
|
max_r.low = 0;
|
|
max_s.high = -1;
|
|
max_s.low = -1;
|
|
max_s = max_s.zext (i_f_bits);
|
|
if (a_high.ugt (max_r)
|
|
|| (a_high == max_r &&
|
|
a_low.ugt (max_s)))
|
|
{
|
|
if (sat_p)
|
|
*f = max_s;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
else /* Signed type. */
|
|
{
|
|
double_int max_r, max_s, min_r, min_s;
|
|
max_r.high = 0;
|
|
max_r.low = 0;
|
|
max_s.high = -1;
|
|
max_s.low = -1;
|
|
max_s = max_s.zext (i_f_bits);
|
|
min_r.high = -1;
|
|
min_r.low = -1;
|
|
min_s.high = 0;
|
|
min_s.low = 1;
|
|
min_s = min_s.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
|
|
min_s = min_s.sext (1 + i_f_bits);
|
|
if (a_high.sgt (max_r)
|
|
|| (a_high == max_r &&
|
|
a_low.ugt (max_s)))
|
|
{
|
|
if (sat_p)
|
|
*f = max_s;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else if (a_high.slt (min_r)
|
|
|| (a_high == min_r &&
|
|
a_low.ult (min_s)))
|
|
{
|
|
if (sat_p)
|
|
*f = min_s;
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Return the sign bit based on I_F_BITS. */
|
|
|
|
static inline int
|
|
get_fixed_sign_bit (double_int a, int i_f_bits)
|
|
{
|
|
if (i_f_bits < HOST_BITS_PER_WIDE_INT)
|
|
return (a.low >> i_f_bits) & 1;
|
|
else
|
|
return (a.high >> (i_f_bits - HOST_BITS_PER_WIDE_INT)) & 1;
|
|
}
|
|
|
|
/* Calculate F = A + (SUBTRACT_P ? -B : B).
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
do_fixed_add (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
|
|
const FIXED_VALUE_TYPE *b, bool subtract_p, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p;
|
|
double_int temp;
|
|
int i_f_bits;
|
|
|
|
/* This was a conditional expression but it triggered a bug in
|
|
Sun C 5.5. */
|
|
if (subtract_p)
|
|
temp = -b->data;
|
|
else
|
|
temp = b->data;
|
|
|
|
unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
|
|
i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
|
|
f->mode = a->mode;
|
|
f->data = a->data + temp;
|
|
if (unsigned_p) /* Unsigned type. */
|
|
{
|
|
if (subtract_p) /* Unsigned subtraction. */
|
|
{
|
|
if (a->data.ult (b->data))
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.high = 0;
|
|
f->data.low = 0;
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
else /* Unsigned addition. */
|
|
{
|
|
f->data = f->data.zext (i_f_bits);
|
|
if (f->data.ult (a->data)
|
|
|| f->data.ult (b->data))
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.high = -1;
|
|
f->data.low = -1;
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
}
|
|
else /* Signed type. */
|
|
{
|
|
if ((!subtract_p
|
|
&& (get_fixed_sign_bit (a->data, i_f_bits)
|
|
== get_fixed_sign_bit (b->data, i_f_bits))
|
|
&& (get_fixed_sign_bit (a->data, i_f_bits)
|
|
!= get_fixed_sign_bit (f->data, i_f_bits)))
|
|
|| (subtract_p
|
|
&& (get_fixed_sign_bit (a->data, i_f_bits)
|
|
!= get_fixed_sign_bit (b->data, i_f_bits))
|
|
&& (get_fixed_sign_bit (a->data, i_f_bits)
|
|
!= get_fixed_sign_bit (f->data, i_f_bits))))
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = 1;
|
|
f->data.high = 0;
|
|
f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
|
|
if (get_fixed_sign_bit (a->data, i_f_bits) == 0)
|
|
{
|
|
--f->data;
|
|
}
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Calculate F = A * B.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
do_fixed_multiply (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
|
|
const FIXED_VALUE_TYPE *b, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
|
|
int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
|
|
f->mode = a->mode;
|
|
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
f->data = a->data * b->data;
|
|
f->data = f->data.lshift (-GET_MODE_FBIT (f->mode),
|
|
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
|
|
}
|
|
else
|
|
{
|
|
/* The result of multiplication expands to two double_int. */
|
|
double_int a_high, a_low, b_high, b_low;
|
|
double_int high_high, high_low, low_high, low_low;
|
|
double_int r, s, temp1, temp2;
|
|
int carry = 0;
|
|
|
|
/* Decompose a and b to four double_int. */
|
|
a_high.low = a->data.high;
|
|
a_high.high = 0;
|
|
a_low.low = a->data.low;
|
|
a_low.high = 0;
|
|
b_high.low = b->data.high;
|
|
b_high.high = 0;
|
|
b_low.low = b->data.low;
|
|
b_low.high = 0;
|
|
|
|
/* Perform four multiplications. */
|
|
low_low = a_low * b_low;
|
|
low_high = a_low * b_high;
|
|
high_low = a_high * b_low;
|
|
high_high = a_high * b_high;
|
|
|
|
/* Accumulate four results to {r, s}. */
|
|
temp1.high = high_low.low;
|
|
temp1.low = 0;
|
|
s = low_low + temp1;
|
|
if (s.ult (low_low)
|
|
|| s.ult (temp1))
|
|
carry ++; /* Carry */
|
|
temp1.high = s.high;
|
|
temp1.low = s.low;
|
|
temp2.high = low_high.low;
|
|
temp2.low = 0;
|
|
s = temp1 + temp2;
|
|
if (s.ult (temp1)
|
|
|| s.ult (temp2))
|
|
carry ++; /* Carry */
|
|
|
|
temp1.low = high_low.high;
|
|
temp1.high = 0;
|
|
r = high_high + temp1;
|
|
temp1.low = low_high.high;
|
|
temp1.high = 0;
|
|
r += temp1;
|
|
temp1.low = carry;
|
|
temp1.high = 0;
|
|
r += temp1;
|
|
|
|
/* We need to subtract b from r, if a < 0. */
|
|
if (!unsigned_p && a->data.high < 0)
|
|
r -= b->data;
|
|
/* We need to subtract a from r, if b < 0. */
|
|
if (!unsigned_p && b->data.high < 0)
|
|
r -= a->data;
|
|
|
|
/* Shift right the result by FBIT. */
|
|
if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
s.low = r.low;
|
|
s.high = r.high;
|
|
if (unsigned_p)
|
|
{
|
|
r.low = 0;
|
|
r.high = 0;
|
|
}
|
|
else
|
|
{
|
|
r.low = -1;
|
|
r.high = -1;
|
|
}
|
|
f->data.low = s.low;
|
|
f->data.high = s.high;
|
|
}
|
|
else
|
|
{
|
|
s = s.llshift ((-GET_MODE_FBIT (f->mode)), HOST_BITS_PER_DOUBLE_INT);
|
|
f->data = r.llshift ((HOST_BITS_PER_DOUBLE_INT
|
|
- GET_MODE_FBIT (f->mode)),
|
|
HOST_BITS_PER_DOUBLE_INT);
|
|
f->data.low = f->data.low | s.low;
|
|
f->data.high = f->data.high | s.high;
|
|
s.low = f->data.low;
|
|
s.high = f->data.high;
|
|
r = r.lshift (-GET_MODE_FBIT (f->mode),
|
|
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
|
|
}
|
|
|
|
overflow_p = fixed_saturate2 (f->mode, r, s, &f->data, sat_p);
|
|
}
|
|
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Calculate F = A / B.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
do_fixed_divide (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
|
|
const FIXED_VALUE_TYPE *b, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
|
|
int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
|
|
f->mode = a->mode;
|
|
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT)
|
|
{
|
|
f->data = a->data.lshift (GET_MODE_FBIT (f->mode),
|
|
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
|
|
f->data = f->data.div (b->data, unsigned_p, TRUNC_DIV_EXPR);
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
|
|
}
|
|
else
|
|
{
|
|
double_int pos_a, pos_b, r, s;
|
|
double_int quo_r, quo_s, mod, temp;
|
|
int num_of_neg = 0;
|
|
int i;
|
|
|
|
/* If a < 0, negate a. */
|
|
if (!unsigned_p && a->data.high < 0)
|
|
{
|
|
pos_a = -a->data;
|
|
num_of_neg ++;
|
|
}
|
|
else
|
|
pos_a = a->data;
|
|
|
|
/* If b < 0, negate b. */
|
|
if (!unsigned_p && b->data.high < 0)
|
|
{
|
|
pos_b = -b->data;
|
|
num_of_neg ++;
|
|
}
|
|
else
|
|
pos_b = b->data;
|
|
|
|
/* Left shift pos_a to {r, s} by FBIT. */
|
|
if (GET_MODE_FBIT (f->mode) == HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
r = pos_a;
|
|
s.high = 0;
|
|
s.low = 0;
|
|
}
|
|
else
|
|
{
|
|
s = pos_a.llshift (GET_MODE_FBIT (f->mode), HOST_BITS_PER_DOUBLE_INT);
|
|
r = pos_a.llshift (- (HOST_BITS_PER_DOUBLE_INT
|
|
- GET_MODE_FBIT (f->mode)),
|
|
HOST_BITS_PER_DOUBLE_INT);
|
|
}
|
|
|
|
/* Divide r by pos_b to quo_r. The remainder is in mod. */
|
|
quo_r = r.divmod (pos_b, 1, TRUNC_DIV_EXPR, &mod);
|
|
quo_s = double_int_zero;
|
|
|
|
for (i = 0; i < HOST_BITS_PER_DOUBLE_INT; i++)
|
|
{
|
|
/* Record the leftmost bit of mod. */
|
|
int leftmost_mod = (mod.high < 0);
|
|
|
|
/* Shift left mod by 1 bit. */
|
|
mod = mod.lshift (1);
|
|
|
|
/* Test the leftmost bit of s to add to mod. */
|
|
if (s.high < 0)
|
|
mod.low += 1;
|
|
|
|
/* Shift left quo_s by 1 bit. */
|
|
quo_s = quo_s.lshift (1);
|
|
|
|
/* Try to calculate (mod - pos_b). */
|
|
temp = mod - pos_b;
|
|
|
|
if (leftmost_mod == 1 || mod.ucmp (pos_b) != -1)
|
|
{
|
|
quo_s.low += 1;
|
|
mod = temp;
|
|
}
|
|
|
|
/* Shift left s by 1 bit. */
|
|
s = s.lshift (1);
|
|
|
|
}
|
|
|
|
if (num_of_neg == 1)
|
|
{
|
|
quo_s = -quo_s;
|
|
if (quo_s.high == 0 && quo_s.low == 0)
|
|
quo_r = -quo_r;
|
|
else
|
|
{
|
|
quo_r.low = ~quo_r.low;
|
|
quo_r.high = ~quo_r.high;
|
|
}
|
|
}
|
|
|
|
f->data = quo_s;
|
|
overflow_p = fixed_saturate2 (f->mode, quo_r, quo_s, &f->data, sat_p);
|
|
}
|
|
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Calculate F = A << B if LEFT_P. Otherwise, F = A >> B.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
do_fixed_shift (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a,
|
|
const FIXED_VALUE_TYPE *b, bool left_p, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
|
|
int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
|
|
f->mode = a->mode;
|
|
|
|
if (b->data.low == 0)
|
|
{
|
|
f->data = a->data;
|
|
return overflow_p;
|
|
}
|
|
|
|
if (GET_MODE_PRECISION (f->mode) <= HOST_BITS_PER_WIDE_INT || (!left_p))
|
|
{
|
|
f->data = a->data.lshift (left_p ? b->data.low : -b->data.low,
|
|
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
|
|
if (left_p) /* Only left shift saturates. */
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
|
|
}
|
|
else /* We need two double_int to store the left-shift result. */
|
|
{
|
|
double_int temp_high, temp_low;
|
|
if (b->data.low == HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
temp_high = a->data;
|
|
temp_low.high = 0;
|
|
temp_low.low = 0;
|
|
}
|
|
else
|
|
{
|
|
temp_low = a->data.lshift (b->data.low,
|
|
HOST_BITS_PER_DOUBLE_INT, !unsigned_p);
|
|
/* Logical shift right to temp_high. */
|
|
temp_high = a->data.llshift (b->data.low - HOST_BITS_PER_DOUBLE_INT,
|
|
HOST_BITS_PER_DOUBLE_INT);
|
|
}
|
|
if (!unsigned_p && a->data.high < 0) /* Signed-extend temp_high. */
|
|
temp_high = temp_high.ext (b->data.low, unsigned_p);
|
|
f->data = temp_low;
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
|
|
sat_p);
|
|
}
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Calculate F = -A.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
static bool
|
|
do_fixed_neg (FIXED_VALUE_TYPE *f, const FIXED_VALUE_TYPE *a, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (a->mode);
|
|
int i_f_bits = GET_MODE_IBIT (a->mode) + GET_MODE_FBIT (a->mode);
|
|
f->mode = a->mode;
|
|
f->data = -a->data;
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
|
|
if (unsigned_p) /* Unsigned type. */
|
|
{
|
|
if (f->data.low != 0 || f->data.high != 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = 0;
|
|
f->data.high = 0;
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
else /* Signed type. */
|
|
{
|
|
if (!(f->data.high == 0 && f->data.low == 0)
|
|
&& f->data.high == a->data.high && f->data.low == a->data.low )
|
|
{
|
|
if (sat_p)
|
|
{
|
|
/* Saturate to the maximum by subtracting f->data by one. */
|
|
f->data.low = -1;
|
|
f->data.high = -1;
|
|
f->data = f->data.zext (i_f_bits);
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
}
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Perform the binary or unary operation described by CODE.
|
|
Note that OP0 and OP1 must have the same mode for binary operators.
|
|
For a unary operation, leave OP1 NULL.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
bool
|
|
fixed_arithmetic (FIXED_VALUE_TYPE *f, int icode, const FIXED_VALUE_TYPE *op0,
|
|
const FIXED_VALUE_TYPE *op1, bool sat_p)
|
|
{
|
|
switch (icode)
|
|
{
|
|
case NEGATE_EXPR:
|
|
return do_fixed_neg (f, op0, sat_p);
|
|
|
|
case PLUS_EXPR:
|
|
gcc_assert (op0->mode == op1->mode);
|
|
return do_fixed_add (f, op0, op1, false, sat_p);
|
|
|
|
case MINUS_EXPR:
|
|
gcc_assert (op0->mode == op1->mode);
|
|
return do_fixed_add (f, op0, op1, true, sat_p);
|
|
|
|
case MULT_EXPR:
|
|
gcc_assert (op0->mode == op1->mode);
|
|
return do_fixed_multiply (f, op0, op1, sat_p);
|
|
|
|
case TRUNC_DIV_EXPR:
|
|
gcc_assert (op0->mode == op1->mode);
|
|
return do_fixed_divide (f, op0, op1, sat_p);
|
|
|
|
case LSHIFT_EXPR:
|
|
return do_fixed_shift (f, op0, op1, true, sat_p);
|
|
|
|
case RSHIFT_EXPR:
|
|
return do_fixed_shift (f, op0, op1, false, sat_p);
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Compare fixed-point values by tree_code.
|
|
Note that OP0 and OP1 must have the same mode. */
|
|
|
|
bool
|
|
fixed_compare (int icode, const FIXED_VALUE_TYPE *op0,
|
|
const FIXED_VALUE_TYPE *op1)
|
|
{
|
|
enum tree_code code = (enum tree_code) icode;
|
|
gcc_assert (op0->mode == op1->mode);
|
|
|
|
switch (code)
|
|
{
|
|
case NE_EXPR:
|
|
return op0->data != op1->data;
|
|
|
|
case EQ_EXPR:
|
|
return op0->data == op1->data;
|
|
|
|
case LT_EXPR:
|
|
return op0->data.cmp (op1->data,
|
|
UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == -1;
|
|
|
|
case LE_EXPR:
|
|
return op0->data.cmp (op1->data,
|
|
UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != 1;
|
|
|
|
case GT_EXPR:
|
|
return op0->data.cmp (op1->data,
|
|
UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) == 1;
|
|
|
|
case GE_EXPR:
|
|
return op0->data.cmp (op1->data,
|
|
UNSIGNED_FIXED_POINT_MODE_P (op0->mode)) != -1;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Extend or truncate to a new mode.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
bool
|
|
fixed_convert (FIXED_VALUE_TYPE *f, scalar_mode mode,
|
|
const FIXED_VALUE_TYPE *a, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
if (mode == a->mode)
|
|
{
|
|
*f = *a;
|
|
return overflow_p;
|
|
}
|
|
|
|
if (GET_MODE_FBIT (mode) > GET_MODE_FBIT (a->mode))
|
|
{
|
|
/* Left shift a to temp_high, temp_low based on a->mode. */
|
|
double_int temp_high, temp_low;
|
|
int amount = GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode);
|
|
temp_low = a->data.lshift (amount,
|
|
HOST_BITS_PER_DOUBLE_INT,
|
|
SIGNED_FIXED_POINT_MODE_P (a->mode));
|
|
/* Logical shift right to temp_high. */
|
|
temp_high = a->data.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
|
|
HOST_BITS_PER_DOUBLE_INT);
|
|
if (SIGNED_FIXED_POINT_MODE_P (a->mode)
|
|
&& a->data.high < 0) /* Signed-extend temp_high. */
|
|
temp_high = temp_high.sext (amount);
|
|
f->mode = mode;
|
|
f->data = temp_low;
|
|
if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
|
|
SIGNED_FIXED_POINT_MODE_P (f->mode))
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
|
|
sat_p);
|
|
else
|
|
{
|
|
/* Take care of the cases when converting between signed and
|
|
unsigned. */
|
|
if (SIGNED_FIXED_POINT_MODE_P (a->mode))
|
|
{
|
|
/* Signed -> Unsigned. */
|
|
if (a->data.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = 0; /* Set to zero. */
|
|
f->data.high = 0; /* Set to zero. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
|
|
&f->data, sat_p);
|
|
}
|
|
else
|
|
{
|
|
/* Unsigned -> Signed. */
|
|
if (temp_high.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
/* Set to maximum. */
|
|
f->data.low = -1; /* Set to all ones. */
|
|
f->data.high = -1; /* Set to all ones. */
|
|
f->data = f->data.zext (GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode));
|
|
/* Clear the sign. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
|
|
&f->data, sat_p);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Right shift a to temp based on a->mode. */
|
|
double_int temp;
|
|
temp = a->data.lshift (GET_MODE_FBIT (mode) - GET_MODE_FBIT (a->mode),
|
|
HOST_BITS_PER_DOUBLE_INT,
|
|
SIGNED_FIXED_POINT_MODE_P (a->mode));
|
|
f->mode = mode;
|
|
f->data = temp;
|
|
if (SIGNED_FIXED_POINT_MODE_P (a->mode) ==
|
|
SIGNED_FIXED_POINT_MODE_P (f->mode))
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data, sat_p);
|
|
else
|
|
{
|
|
/* Take care of the cases when converting between signed and
|
|
unsigned. */
|
|
if (SIGNED_FIXED_POINT_MODE_P (a->mode))
|
|
{
|
|
/* Signed -> Unsigned. */
|
|
if (a->data.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = 0; /* Set to zero. */
|
|
f->data.high = 0; /* Set to zero. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
|
|
sat_p);
|
|
}
|
|
else
|
|
{
|
|
/* Unsigned -> Signed. */
|
|
if (temp.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
/* Set to maximum. */
|
|
f->data.low = -1; /* Set to all ones. */
|
|
f->data.high = -1; /* Set to all ones. */
|
|
f->data = f->data.zext (GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode));
|
|
/* Clear the sign. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate1 (f->mode, f->data, &f->data,
|
|
sat_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
|
|
+ GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode),
|
|
UNSIGNED_FIXED_POINT_MODE_P (f->mode));
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Convert to a new fixed-point mode from an integer.
|
|
If UNSIGNED_P, this integer is unsigned.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
bool
|
|
fixed_convert_from_int (FIXED_VALUE_TYPE *f, scalar_mode mode,
|
|
double_int a, bool unsigned_p, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
/* Left shift a to temp_high, temp_low. */
|
|
double_int temp_high, temp_low;
|
|
int amount = GET_MODE_FBIT (mode);
|
|
if (amount == HOST_BITS_PER_DOUBLE_INT)
|
|
{
|
|
temp_high = a;
|
|
temp_low.low = 0;
|
|
temp_low.high = 0;
|
|
}
|
|
else
|
|
{
|
|
temp_low = a.llshift (amount, HOST_BITS_PER_DOUBLE_INT);
|
|
|
|
/* Logical shift right to temp_high. */
|
|
temp_high = a.llshift (amount - HOST_BITS_PER_DOUBLE_INT,
|
|
HOST_BITS_PER_DOUBLE_INT);
|
|
}
|
|
if (!unsigned_p && a.high < 0) /* Signed-extend temp_high. */
|
|
temp_high = temp_high.sext (amount);
|
|
|
|
f->mode = mode;
|
|
f->data = temp_low;
|
|
|
|
if (unsigned_p == UNSIGNED_FIXED_POINT_MODE_P (f->mode))
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low, &f->data,
|
|
sat_p);
|
|
else
|
|
{
|
|
/* Take care of the cases when converting between signed and unsigned. */
|
|
if (!unsigned_p)
|
|
{
|
|
/* Signed -> Unsigned. */
|
|
if (a.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = 0; /* Set to zero. */
|
|
f->data.high = 0; /* Set to zero. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
|
|
&f->data, sat_p);
|
|
}
|
|
else
|
|
{
|
|
/* Unsigned -> Signed. */
|
|
if (temp_high.high < 0)
|
|
{
|
|
if (sat_p)
|
|
{
|
|
/* Set to maximum. */
|
|
f->data.low = -1; /* Set to all ones. */
|
|
f->data.high = -1; /* Set to all ones. */
|
|
f->data = f->data.zext (GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode));
|
|
/* Clear the sign. */
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else
|
|
overflow_p = fixed_saturate2 (f->mode, temp_high, temp_low,
|
|
&f->data, sat_p);
|
|
}
|
|
}
|
|
f->data = f->data.ext (SIGNED_FIXED_POINT_MODE_P (f->mode)
|
|
+ GET_MODE_FBIT (f->mode)
|
|
+ GET_MODE_IBIT (f->mode),
|
|
UNSIGNED_FIXED_POINT_MODE_P (f->mode));
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Convert to a new fixed-point mode from a real.
|
|
If SAT_P, saturate the result to the max or the min.
|
|
Return true, if !SAT_P and overflow. */
|
|
|
|
bool
|
|
fixed_convert_from_real (FIXED_VALUE_TYPE *f, scalar_mode mode,
|
|
const REAL_VALUE_TYPE *a, bool sat_p)
|
|
{
|
|
bool overflow_p = false;
|
|
REAL_VALUE_TYPE real_value, fixed_value, base_value;
|
|
bool unsigned_p = UNSIGNED_FIXED_POINT_MODE_P (mode);
|
|
int i_f_bits = GET_MODE_IBIT (mode) + GET_MODE_FBIT (mode);
|
|
unsigned int fbit = GET_MODE_FBIT (mode);
|
|
enum fixed_value_range_code temp;
|
|
bool fail;
|
|
|
|
real_value = *a;
|
|
f->mode = mode;
|
|
real_2expN (&base_value, fbit, VOIDmode);
|
|
real_arithmetic (&fixed_value, MULT_EXPR, &real_value, &base_value);
|
|
|
|
wide_int w = real_to_integer (&fixed_value, &fail,
|
|
GET_MODE_PRECISION (mode));
|
|
f->data.low = w.ulow ();
|
|
f->data.high = w.elt (1);
|
|
temp = check_real_for_fixed_mode (&real_value, mode);
|
|
if (temp == FIXED_UNDERFLOW) /* Minimum. */
|
|
{
|
|
if (sat_p)
|
|
{
|
|
if (unsigned_p)
|
|
{
|
|
f->data.low = 0;
|
|
f->data.high = 0;
|
|
}
|
|
else
|
|
{
|
|
f->data.low = 1;
|
|
f->data.high = 0;
|
|
f->data = f->data.alshift (i_f_bits, HOST_BITS_PER_DOUBLE_INT);
|
|
f->data = f->data.sext (1 + i_f_bits);
|
|
}
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
else if (temp == FIXED_GT_MAX_EPS || temp == FIXED_MAX_EPS) /* Maximum. */
|
|
{
|
|
if (sat_p)
|
|
{
|
|
f->data.low = -1;
|
|
f->data.high = -1;
|
|
f->data = f->data.zext (i_f_bits);
|
|
}
|
|
else
|
|
overflow_p = true;
|
|
}
|
|
f->data = f->data.ext ((!unsigned_p) + i_f_bits, unsigned_p);
|
|
return overflow_p;
|
|
}
|
|
|
|
/* Convert to a new real mode from a fixed-point. */
|
|
|
|
void
|
|
real_convert_from_fixed (REAL_VALUE_TYPE *r, scalar_mode mode,
|
|
const FIXED_VALUE_TYPE *f)
|
|
{
|
|
REAL_VALUE_TYPE base_value, fixed_value, real_value;
|
|
|
|
signop sgn = UNSIGNED_FIXED_POINT_MODE_P (f->mode) ? UNSIGNED : SIGNED;
|
|
real_2expN (&base_value, GET_MODE_FBIT (f->mode), VOIDmode);
|
|
real_from_integer (&fixed_value, VOIDmode,
|
|
wide_int::from (f->data, GET_MODE_PRECISION (f->mode),
|
|
sgn), sgn);
|
|
real_arithmetic (&real_value, RDIV_EXPR, &fixed_value, &base_value);
|
|
real_convert (r, mode, &real_value);
|
|
}
|
|
|
|
/* Determine whether a fixed-point value F is negative. */
|
|
|
|
bool
|
|
fixed_isneg (const FIXED_VALUE_TYPE *f)
|
|
{
|
|
if (SIGNED_FIXED_POINT_MODE_P (f->mode))
|
|
{
|
|
int i_f_bits = GET_MODE_IBIT (f->mode) + GET_MODE_FBIT (f->mode);
|
|
int sign_bit = get_fixed_sign_bit (f->data, i_f_bits);
|
|
if (sign_bit == 1)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|