63d74fed45
gcc/ChangeLog: * ira.c (ira_setup_alts, ira_get_dup_out_num): Process digital constraints > 9. * ira-lives.c (single_reg_class): Ditto.
1765 lines
52 KiB
C
1765 lines
52 KiB
C
/* IRA processing allocno lives to build allocno live ranges.
|
|
Copyright (C) 2006-2021 Free Software Foundation, Inc.
|
|
Contributed by Vladimir Makarov <vmakarov@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "target.h"
|
|
#include "rtl.h"
|
|
#include "predict.h"
|
|
#include "df.h"
|
|
#include "memmodel.h"
|
|
#include "tm_p.h"
|
|
#include "insn-config.h"
|
|
#include "regs.h"
|
|
#include "ira.h"
|
|
#include "ira-int.h"
|
|
#include "sparseset.h"
|
|
#include "function-abi.h"
|
|
|
|
/* The code in this file is similar to one in global but the code
|
|
works on the allocno basis and creates live ranges instead of
|
|
pseudo-register conflicts. */
|
|
|
|
/* Program points are enumerated by numbers from range
|
|
0..IRA_MAX_POINT-1. There are approximately two times more program
|
|
points than insns. Program points are places in the program where
|
|
liveness info can be changed. In most general case (there are more
|
|
complicated cases too) some program points correspond to places
|
|
where input operand dies and other ones correspond to places where
|
|
output operands are born. */
|
|
int ira_max_point;
|
|
|
|
/* Arrays of size IRA_MAX_POINT mapping a program point to the allocno
|
|
live ranges with given start/finish point. */
|
|
live_range_t *ira_start_point_ranges, *ira_finish_point_ranges;
|
|
|
|
/* Number of the current program point. */
|
|
static int curr_point;
|
|
|
|
/* Point where register pressure excess started or -1 if there is no
|
|
register pressure excess. Excess pressure for a register class at
|
|
some point means that there are more allocnos of given register
|
|
class living at the point than number of hard-registers of the
|
|
class available for the allocation. It is defined only for
|
|
pressure classes. */
|
|
static int high_pressure_start_point[N_REG_CLASSES];
|
|
|
|
/* Objects live at current point in the scan. */
|
|
static sparseset objects_live;
|
|
|
|
/* A temporary bitmap used in functions that wish to avoid visiting an allocno
|
|
multiple times. */
|
|
static sparseset allocnos_processed;
|
|
|
|
/* Set of hard regs (except eliminable ones) currently live. */
|
|
static HARD_REG_SET hard_regs_live;
|
|
|
|
/* The loop tree node corresponding to the current basic block. */
|
|
static ira_loop_tree_node_t curr_bb_node;
|
|
|
|
/* The number of the last processed call. */
|
|
static int last_call_num;
|
|
/* The number of last call at which given allocno was saved. */
|
|
static int *allocno_saved_at_call;
|
|
|
|
/* The value returned by ira_setup_alts for the current instruction;
|
|
i.e. the set of alternatives that we should consider to be likely
|
|
candidates during reloading. */
|
|
static alternative_mask preferred_alternatives;
|
|
|
|
/* If non-NULL, the source operand of a register to register copy for which
|
|
we should not add a conflict with the copy's destination operand. */
|
|
static rtx ignore_reg_for_conflicts;
|
|
|
|
/* Record hard register REGNO as now being live. */
|
|
static void
|
|
make_hard_regno_live (int regno)
|
|
{
|
|
SET_HARD_REG_BIT (hard_regs_live, regno);
|
|
}
|
|
|
|
/* Process the definition of hard register REGNO. This updates
|
|
hard_regs_live and hard reg conflict information for living allocnos. */
|
|
static void
|
|
make_hard_regno_dead (int regno)
|
|
{
|
|
unsigned int i;
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[i];
|
|
|
|
if (ignore_reg_for_conflicts != NULL_RTX
|
|
&& REGNO (ignore_reg_for_conflicts)
|
|
== (unsigned int) ALLOCNO_REGNO (OBJECT_ALLOCNO (obj)))
|
|
continue;
|
|
|
|
SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
|
|
SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
|
|
}
|
|
CLEAR_HARD_REG_BIT (hard_regs_live, regno);
|
|
}
|
|
|
|
/* Record object OBJ as now being live. Set a bit for it in objects_live,
|
|
and start a new live range for it if necessary. */
|
|
static void
|
|
make_object_live (ira_object_t obj)
|
|
{
|
|
sparseset_set_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
|
|
|
live_range_t lr = OBJECT_LIVE_RANGES (obj);
|
|
if (lr == NULL
|
|
|| (lr->finish != curr_point && lr->finish + 1 != curr_point))
|
|
ira_add_live_range_to_object (obj, curr_point, -1);
|
|
}
|
|
|
|
/* Update ALLOCNO_EXCESS_PRESSURE_POINTS_NUM for the allocno
|
|
associated with object OBJ. */
|
|
static void
|
|
update_allocno_pressure_excess_length (ira_object_t obj)
|
|
{
|
|
ira_allocno_t a = OBJECT_ALLOCNO (obj);
|
|
int start, i;
|
|
enum reg_class aclass, pclass, cl;
|
|
live_range_t p;
|
|
|
|
aclass = ALLOCNO_CLASS (a);
|
|
pclass = ira_pressure_class_translate[aclass];
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
if (! ira_reg_pressure_class_p[cl])
|
|
continue;
|
|
if (high_pressure_start_point[cl] < 0)
|
|
continue;
|
|
p = OBJECT_LIVE_RANGES (obj);
|
|
ira_assert (p != NULL);
|
|
start = (high_pressure_start_point[cl] > p->start
|
|
? high_pressure_start_point[cl] : p->start);
|
|
ALLOCNO_EXCESS_PRESSURE_POINTS_NUM (a) += curr_point - start + 1;
|
|
}
|
|
}
|
|
|
|
/* Process the definition of object OBJ, which is associated with allocno A.
|
|
This finishes the current live range for it. */
|
|
static void
|
|
make_object_dead (ira_object_t obj)
|
|
{
|
|
live_range_t lr;
|
|
int regno;
|
|
int ignore_regno = -1;
|
|
int ignore_total_regno = -1;
|
|
int end_regno = -1;
|
|
|
|
sparseset_clear_bit (objects_live, OBJECT_CONFLICT_ID (obj));
|
|
|
|
/* Check whether any part of IGNORE_REG_FOR_CONFLICTS already conflicts
|
|
with OBJ. */
|
|
if (ignore_reg_for_conflicts != NULL_RTX
|
|
&& REGNO (ignore_reg_for_conflicts) < FIRST_PSEUDO_REGISTER)
|
|
{
|
|
end_regno = END_REGNO (ignore_reg_for_conflicts);
|
|
ignore_regno = ignore_total_regno = REGNO (ignore_reg_for_conflicts);
|
|
|
|
for (regno = ignore_regno; regno < end_regno; regno++)
|
|
{
|
|
if (TEST_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno))
|
|
ignore_regno = end_regno;
|
|
if (TEST_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno))
|
|
ignore_total_regno = end_regno;
|
|
}
|
|
}
|
|
|
|
OBJECT_CONFLICT_HARD_REGS (obj) |= hard_regs_live;
|
|
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= hard_regs_live;
|
|
|
|
/* If IGNORE_REG_FOR_CONFLICTS did not already conflict with OBJ, make
|
|
sure it still doesn't. */
|
|
for (regno = ignore_regno; regno < end_regno; regno++)
|
|
CLEAR_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
|
|
for (regno = ignore_total_regno; regno < end_regno; regno++)
|
|
CLEAR_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
|
|
|
|
lr = OBJECT_LIVE_RANGES (obj);
|
|
ira_assert (lr != NULL);
|
|
lr->finish = curr_point;
|
|
update_allocno_pressure_excess_length (obj);
|
|
}
|
|
|
|
/* The current register pressures for each pressure class for the current
|
|
basic block. */
|
|
static int curr_reg_pressure[N_REG_CLASSES];
|
|
|
|
/* Record that register pressure for PCLASS increased by N registers.
|
|
Update the current register pressure, maximal register pressure for
|
|
the current BB and the start point of the register pressure
|
|
excess. */
|
|
static void
|
|
inc_register_pressure (enum reg_class pclass, int n)
|
|
{
|
|
int i;
|
|
enum reg_class cl;
|
|
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
if (! ira_reg_pressure_class_p[cl])
|
|
continue;
|
|
curr_reg_pressure[cl] += n;
|
|
if (high_pressure_start_point[cl] < 0
|
|
&& (curr_reg_pressure[cl] > ira_class_hard_regs_num[cl]))
|
|
high_pressure_start_point[cl] = curr_point;
|
|
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
}
|
|
}
|
|
|
|
/* Record that register pressure for PCLASS has decreased by NREGS
|
|
registers; update current register pressure, start point of the
|
|
register pressure excess, and register pressure excess length for
|
|
living allocnos. */
|
|
|
|
static void
|
|
dec_register_pressure (enum reg_class pclass, int nregs)
|
|
{
|
|
int i;
|
|
unsigned int j;
|
|
enum reg_class cl;
|
|
bool set_p = false;
|
|
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
if (! ira_reg_pressure_class_p[cl])
|
|
continue;
|
|
curr_reg_pressure[cl] -= nregs;
|
|
ira_assert (curr_reg_pressure[cl] >= 0);
|
|
if (high_pressure_start_point[cl] >= 0
|
|
&& curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
|
|
set_p = true;
|
|
}
|
|
if (set_p)
|
|
{
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, j)
|
|
update_allocno_pressure_excess_length (ira_object_id_map[j]);
|
|
for (i = 0;
|
|
(cl = ira_reg_class_super_classes[pclass][i]) != LIM_REG_CLASSES;
|
|
i++)
|
|
{
|
|
if (! ira_reg_pressure_class_p[cl])
|
|
continue;
|
|
if (high_pressure_start_point[cl] >= 0
|
|
&& curr_reg_pressure[cl] <= ira_class_hard_regs_num[cl])
|
|
high_pressure_start_point[cl] = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Determine from the objects_live bitmap whether REGNO is currently live,
|
|
and occupies only one object. Return false if we have no information. */
|
|
static bool
|
|
pseudo_regno_single_word_and_live_p (int regno)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
ira_object_t obj;
|
|
|
|
if (a == NULL)
|
|
return false;
|
|
if (ALLOCNO_NUM_OBJECTS (a) > 1)
|
|
return false;
|
|
|
|
obj = ALLOCNO_OBJECT (a, 0);
|
|
|
|
return sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj));
|
|
}
|
|
|
|
/* Mark the pseudo register REGNO as live. Update all information about
|
|
live ranges and register pressure. */
|
|
static void
|
|
mark_pseudo_regno_live (int regno)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
enum reg_class pclass;
|
|
int i, n, nregs;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
|
|
nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
|
|
if (n > 1)
|
|
{
|
|
/* We track every subobject separately. */
|
|
gcc_assert (nregs == n);
|
|
nregs = 1;
|
|
}
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
|
|
|
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
continue;
|
|
|
|
inc_register_pressure (pclass, nregs);
|
|
make_object_live (obj);
|
|
}
|
|
}
|
|
|
|
/* Like mark_pseudo_regno_live, but try to only mark one subword of
|
|
the pseudo as live. SUBWORD indicates which; a value of 0
|
|
indicates the low part. */
|
|
static void
|
|
mark_pseudo_regno_subword_live (int regno, int subword)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n;
|
|
enum reg_class pclass;
|
|
ira_object_t obj;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
if (n == 1)
|
|
{
|
|
mark_pseudo_regno_live (regno);
|
|
return;
|
|
}
|
|
|
|
pclass = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
|
|
gcc_assert
|
|
(n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
|
|
obj = ALLOCNO_OBJECT (a, subword);
|
|
|
|
if (sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
return;
|
|
|
|
inc_register_pressure (pclass, 1);
|
|
make_object_live (obj);
|
|
}
|
|
|
|
/* Mark the register REG as live. Store a 1 in hard_regs_live for
|
|
this register, record how many consecutive hardware registers it
|
|
actually needs. */
|
|
static void
|
|
mark_hard_reg_live (rtx reg)
|
|
{
|
|
int regno = REGNO (reg);
|
|
|
|
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
{
|
|
int last = END_REGNO (reg);
|
|
enum reg_class aclass, pclass;
|
|
|
|
while (regno < last)
|
|
{
|
|
if (! TEST_HARD_REG_BIT (hard_regs_live, regno)
|
|
&& ! TEST_HARD_REG_BIT (eliminable_regset, regno))
|
|
{
|
|
aclass = ira_hard_regno_allocno_class[regno];
|
|
pclass = ira_pressure_class_translate[aclass];
|
|
inc_register_pressure (pclass, 1);
|
|
make_hard_regno_live (regno);
|
|
}
|
|
regno++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark a pseudo, or one of its subwords, as live. REGNO is the pseudo's
|
|
register number; ORIG_REG is the access in the insn, which may be a
|
|
subreg. */
|
|
static void
|
|
mark_pseudo_reg_live (rtx orig_reg, unsigned regno)
|
|
{
|
|
if (read_modify_subreg_p (orig_reg))
|
|
{
|
|
mark_pseudo_regno_subword_live (regno,
|
|
subreg_lowpart_p (orig_reg) ? 0 : 1);
|
|
}
|
|
else
|
|
mark_pseudo_regno_live (regno);
|
|
}
|
|
|
|
/* Mark the register referenced by use or def REF as live. */
|
|
static void
|
|
mark_ref_live (df_ref ref)
|
|
{
|
|
rtx reg = DF_REF_REG (ref);
|
|
rtx orig_reg = reg;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
|
mark_pseudo_reg_live (orig_reg, REGNO (reg));
|
|
else
|
|
mark_hard_reg_live (reg);
|
|
}
|
|
|
|
/* Mark the pseudo register REGNO as dead. Update all information about
|
|
live ranges and register pressure. */
|
|
static void
|
|
mark_pseudo_regno_dead (int regno)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n, i, nregs;
|
|
enum reg_class cl;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
|
|
nregs = ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)];
|
|
if (n > 1)
|
|
{
|
|
/* We track every subobject separately. */
|
|
gcc_assert (nregs == n);
|
|
nregs = 1;
|
|
}
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, i);
|
|
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
continue;
|
|
|
|
dec_register_pressure (cl, nregs);
|
|
make_object_dead (obj);
|
|
}
|
|
}
|
|
|
|
/* Like mark_pseudo_regno_dead, but called when we know that only part of the
|
|
register dies. SUBWORD indicates which; a value of 0 indicates the low part. */
|
|
static void
|
|
mark_pseudo_regno_subword_dead (int regno, int subword)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[regno];
|
|
int n;
|
|
enum reg_class cl;
|
|
ira_object_t obj;
|
|
|
|
if (a == NULL)
|
|
return;
|
|
|
|
/* Invalidate because it is referenced. */
|
|
allocno_saved_at_call[ALLOCNO_NUM (a)] = 0;
|
|
|
|
n = ALLOCNO_NUM_OBJECTS (a);
|
|
if (n == 1)
|
|
/* The allocno as a whole doesn't die in this case. */
|
|
return;
|
|
|
|
cl = ira_pressure_class_translate[ALLOCNO_CLASS (a)];
|
|
gcc_assert
|
|
(n == ira_reg_class_max_nregs[ALLOCNO_CLASS (a)][ALLOCNO_MODE (a)]);
|
|
|
|
obj = ALLOCNO_OBJECT (a, subword);
|
|
if (!sparseset_bit_p (objects_live, OBJECT_CONFLICT_ID (obj)))
|
|
return;
|
|
|
|
dec_register_pressure (cl, 1);
|
|
make_object_dead (obj);
|
|
}
|
|
|
|
/* Process the definition of hard register REG. This updates hard_regs_live
|
|
and hard reg conflict information for living allocnos. */
|
|
static void
|
|
mark_hard_reg_dead (rtx reg)
|
|
{
|
|
int regno = REGNO (reg);
|
|
|
|
if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
|
|
{
|
|
int last = END_REGNO (reg);
|
|
enum reg_class aclass, pclass;
|
|
|
|
while (regno < last)
|
|
{
|
|
if (TEST_HARD_REG_BIT (hard_regs_live, regno))
|
|
{
|
|
aclass = ira_hard_regno_allocno_class[regno];
|
|
pclass = ira_pressure_class_translate[aclass];
|
|
dec_register_pressure (pclass, 1);
|
|
make_hard_regno_dead (regno);
|
|
}
|
|
regno++;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark a pseudo, or one of its subwords, as dead. REGNO is the pseudo's
|
|
register number; ORIG_REG is the access in the insn, which may be a
|
|
subreg. */
|
|
static void
|
|
mark_pseudo_reg_dead (rtx orig_reg, unsigned regno)
|
|
{
|
|
if (read_modify_subreg_p (orig_reg))
|
|
{
|
|
mark_pseudo_regno_subword_dead (regno,
|
|
subreg_lowpart_p (orig_reg) ? 0 : 1);
|
|
}
|
|
else
|
|
mark_pseudo_regno_dead (regno);
|
|
}
|
|
|
|
/* Mark the register referenced by definition DEF as dead, if the
|
|
definition is a total one. */
|
|
static void
|
|
mark_ref_dead (df_ref def)
|
|
{
|
|
rtx reg = DF_REF_REG (def);
|
|
rtx orig_reg = reg;
|
|
|
|
if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL))
|
|
return;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL)
|
|
&& (GET_CODE (orig_reg) != SUBREG
|
|
|| REGNO (reg) < FIRST_PSEUDO_REGISTER
|
|
|| !read_modify_subreg_p (orig_reg)))
|
|
return;
|
|
|
|
if (REGNO (reg) >= FIRST_PSEUDO_REGISTER)
|
|
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
|
|
else
|
|
mark_hard_reg_dead (reg);
|
|
}
|
|
|
|
/* If REG is a pseudo or a subreg of it, and the class of its allocno
|
|
intersects CL, make a conflict with pseudo DREG. ORIG_DREG is the
|
|
rtx actually accessed, it may be identical to DREG or a subreg of it.
|
|
Advance the current program point before making the conflict if
|
|
ADVANCE_P. Return TRUE if we will need to advance the current
|
|
program point. */
|
|
static bool
|
|
make_pseudo_conflict (rtx reg, enum reg_class cl, rtx dreg, rtx orig_dreg,
|
|
bool advance_p)
|
|
{
|
|
rtx orig_reg = reg;
|
|
ira_allocno_t a;
|
|
|
|
if (GET_CODE (reg) == SUBREG)
|
|
reg = SUBREG_REG (reg);
|
|
|
|
if (! REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
|
|
return advance_p;
|
|
|
|
a = ira_curr_regno_allocno_map[REGNO (reg)];
|
|
if (! reg_classes_intersect_p (cl, ALLOCNO_CLASS (a)))
|
|
return advance_p;
|
|
|
|
if (advance_p)
|
|
curr_point++;
|
|
|
|
mark_pseudo_reg_live (orig_reg, REGNO (reg));
|
|
mark_pseudo_reg_live (orig_dreg, REGNO (dreg));
|
|
mark_pseudo_reg_dead (orig_reg, REGNO (reg));
|
|
mark_pseudo_reg_dead (orig_dreg, REGNO (dreg));
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Check and make if necessary conflicts for pseudo DREG of class
|
|
DEF_CL of the current insn with input operand USE of class USE_CL.
|
|
ORIG_DREG is the rtx actually accessed, it may be identical to
|
|
DREG or a subreg of it. Advance the current program point before
|
|
making the conflict if ADVANCE_P. Return TRUE if we will need to
|
|
advance the current program point. */
|
|
static bool
|
|
check_and_make_def_use_conflict (rtx dreg, rtx orig_dreg,
|
|
enum reg_class def_cl, int use,
|
|
enum reg_class use_cl, bool advance_p)
|
|
{
|
|
if (! reg_classes_intersect_p (def_cl, use_cl))
|
|
return advance_p;
|
|
|
|
advance_p = make_pseudo_conflict (recog_data.operand[use],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
|
|
/* Reload may end up swapping commutative operands, so you
|
|
have to take both orderings into account. The
|
|
constraints for the two operands can be completely
|
|
different. (Indeed, if the constraints for the two
|
|
operands are the same for all alternatives, there's no
|
|
point marking them as commutative.) */
|
|
if (use < recog_data.n_operands - 1
|
|
&& recog_data.constraints[use][0] == '%')
|
|
advance_p
|
|
= make_pseudo_conflict (recog_data.operand[use + 1],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
if (use >= 1
|
|
&& recog_data.constraints[use - 1][0] == '%')
|
|
advance_p
|
|
= make_pseudo_conflict (recog_data.operand[use - 1],
|
|
use_cl, dreg, orig_dreg, advance_p);
|
|
return advance_p;
|
|
}
|
|
|
|
/* Check and make if necessary conflicts for definition DEF of class
|
|
DEF_CL of the current insn with input operands. Process only
|
|
constraints of alternative ALT.
|
|
|
|
One of three things is true when this function is called:
|
|
|
|
(1) DEF is an earlyclobber for alternative ALT. Input operands then
|
|
conflict with DEF in ALT unless they explicitly match DEF via 0-9
|
|
constraints.
|
|
|
|
(2) DEF matches (via 0-9 constraints) an operand that is an
|
|
earlyclobber for alternative ALT. Other input operands then
|
|
conflict with DEF in ALT.
|
|
|
|
(3) [FOR_TIE_P] Some input operand X matches DEF for alternative ALT.
|
|
Input operands with a different value from X then conflict with
|
|
DEF in ALT.
|
|
|
|
However, there's still a judgement call to make when deciding
|
|
whether a conflict in ALT is important enough to be reflected
|
|
in the pan-alternative allocno conflict set. */
|
|
static void
|
|
check_and_make_def_conflict (int alt, int def, enum reg_class def_cl,
|
|
bool for_tie_p)
|
|
{
|
|
int use, use_match;
|
|
ira_allocno_t a;
|
|
enum reg_class use_cl, acl;
|
|
bool advance_p;
|
|
rtx dreg = recog_data.operand[def];
|
|
rtx orig_dreg = dreg;
|
|
|
|
if (def_cl == NO_REGS)
|
|
return;
|
|
|
|
if (GET_CODE (dreg) == SUBREG)
|
|
dreg = SUBREG_REG (dreg);
|
|
|
|
if (! REG_P (dreg) || REGNO (dreg) < FIRST_PSEUDO_REGISTER)
|
|
return;
|
|
|
|
a = ira_curr_regno_allocno_map[REGNO (dreg)];
|
|
acl = ALLOCNO_CLASS (a);
|
|
if (! reg_classes_intersect_p (acl, def_cl))
|
|
return;
|
|
|
|
advance_p = true;
|
|
|
|
int n_operands = recog_data.n_operands;
|
|
const operand_alternative *op_alt = &recog_op_alt[alt * n_operands];
|
|
for (use = 0; use < n_operands; use++)
|
|
{
|
|
int alt1;
|
|
|
|
if (use == def || recog_data.operand_type[use] == OP_OUT)
|
|
continue;
|
|
|
|
/* An earlyclobber on DEF doesn't apply to an input operand X if X
|
|
explicitly matches DEF, but it applies to other input operands
|
|
even if they happen to be the same value as X.
|
|
|
|
In contrast, if an input operand X is tied to a non-earlyclobber
|
|
DEF, there's no conflict with other input operands that have the
|
|
same value as X. */
|
|
if (op_alt[use].matches == def
|
|
|| (for_tie_p
|
|
&& rtx_equal_p (recog_data.operand[use],
|
|
recog_data.operand[op_alt[def].matched])))
|
|
continue;
|
|
|
|
if (op_alt[use].anything_ok)
|
|
use_cl = ALL_REGS;
|
|
else
|
|
use_cl = op_alt[use].cl;
|
|
if (use_cl == NO_REGS)
|
|
continue;
|
|
|
|
/* If DEF is simply a tied operand, ignore cases in which this
|
|
alternative requires USE to have a likely-spilled class.
|
|
Adding a conflict would just constrain USE further if DEF
|
|
happens to be allocated first. */
|
|
if (for_tie_p && targetm.class_likely_spilled_p (use_cl))
|
|
continue;
|
|
|
|
/* If there's any alternative that allows USE to match DEF, do not
|
|
record a conflict. If that causes us to create an invalid
|
|
instruction due to the earlyclobber, reload must fix it up.
|
|
|
|
Likewise, if we're treating a tied DEF like a partial earlyclobber,
|
|
do not record a conflict if there's another alternative in which
|
|
DEF is neither tied nor earlyclobber. */
|
|
for (alt1 = 0; alt1 < recog_data.n_alternatives; alt1++)
|
|
{
|
|
if (!TEST_BIT (preferred_alternatives, alt1))
|
|
continue;
|
|
const operand_alternative *op_alt1
|
|
= &recog_op_alt[alt1 * n_operands];
|
|
if (op_alt1[use].matches == def
|
|
|| (use < n_operands - 1
|
|
&& recog_data.constraints[use][0] == '%'
|
|
&& op_alt1[use + 1].matches == def)
|
|
|| (use >= 1
|
|
&& recog_data.constraints[use - 1][0] == '%'
|
|
&& op_alt1[use - 1].matches == def))
|
|
break;
|
|
if (for_tie_p
|
|
&& !op_alt1[def].earlyclobber
|
|
&& op_alt1[def].matched < 0
|
|
&& alternative_class (op_alt1, def) != NO_REGS
|
|
&& alternative_class (op_alt1, use) != NO_REGS)
|
|
break;
|
|
}
|
|
|
|
if (alt1 < recog_data.n_alternatives)
|
|
continue;
|
|
|
|
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
|
|
use, use_cl, advance_p);
|
|
|
|
if ((use_match = op_alt[use].matches) >= 0)
|
|
{
|
|
gcc_checking_assert (use_match != def);
|
|
|
|
if (op_alt[use_match].anything_ok)
|
|
use_cl = ALL_REGS;
|
|
else
|
|
use_cl = op_alt[use_match].cl;
|
|
advance_p = check_and_make_def_use_conflict (dreg, orig_dreg, def_cl,
|
|
use, use_cl, advance_p);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Make conflicts of early clobber pseudo registers of the current
|
|
insn with its inputs. Avoid introducing unnecessary conflicts by
|
|
checking classes of the constraints and pseudos because otherwise
|
|
significant code degradation is possible for some targets.
|
|
|
|
For these purposes, tying an input to an output makes that output act
|
|
like an earlyclobber for inputs with a different value, since the output
|
|
register then has a predetermined purpose on input to the instruction. */
|
|
static void
|
|
make_early_clobber_and_input_conflicts (void)
|
|
{
|
|
int alt;
|
|
int def, def_match;
|
|
enum reg_class def_cl;
|
|
|
|
int n_alternatives = recog_data.n_alternatives;
|
|
int n_operands = recog_data.n_operands;
|
|
const operand_alternative *op_alt = recog_op_alt;
|
|
for (alt = 0; alt < n_alternatives; alt++, op_alt += n_operands)
|
|
if (TEST_BIT (preferred_alternatives, alt))
|
|
for (def = 0; def < n_operands; def++)
|
|
{
|
|
if (op_alt[def].anything_ok)
|
|
def_cl = ALL_REGS;
|
|
else
|
|
def_cl = op_alt[def].cl;
|
|
if (def_cl != NO_REGS)
|
|
{
|
|
if (op_alt[def].earlyclobber)
|
|
check_and_make_def_conflict (alt, def, def_cl, false);
|
|
else if (op_alt[def].matched >= 0
|
|
&& !targetm.class_likely_spilled_p (def_cl))
|
|
check_and_make_def_conflict (alt, def, def_cl, true);
|
|
}
|
|
|
|
if ((def_match = op_alt[def].matches) >= 0
|
|
&& (op_alt[def_match].earlyclobber
|
|
|| op_alt[def].earlyclobber))
|
|
{
|
|
if (op_alt[def_match].anything_ok)
|
|
def_cl = ALL_REGS;
|
|
else
|
|
def_cl = op_alt[def_match].cl;
|
|
check_and_make_def_conflict (alt, def, def_cl, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Mark early clobber hard registers of the current INSN as live (if
|
|
LIVE_P) or dead. Return true if there are such registers. */
|
|
static bool
|
|
mark_hard_reg_early_clobbers (rtx_insn *insn, bool live_p)
|
|
{
|
|
df_ref def;
|
|
bool set_p = false;
|
|
|
|
FOR_EACH_INSN_DEF (def, insn)
|
|
if (DF_REF_FLAGS_IS_SET (def, DF_REF_MUST_CLOBBER))
|
|
{
|
|
rtx dreg = DF_REF_REG (def);
|
|
|
|
if (GET_CODE (dreg) == SUBREG)
|
|
dreg = SUBREG_REG (dreg);
|
|
if (! REG_P (dreg) || REGNO (dreg) >= FIRST_PSEUDO_REGISTER)
|
|
continue;
|
|
|
|
/* Hard register clobbers are believed to be early clobber
|
|
because there is no way to say that non-operand hard
|
|
register clobbers are not early ones. */
|
|
if (live_p)
|
|
mark_ref_live (def);
|
|
else
|
|
mark_ref_dead (def);
|
|
set_p = true;
|
|
}
|
|
|
|
return set_p;
|
|
}
|
|
|
|
/* Checks that CONSTRAINTS permits to use only one hard register. If
|
|
it is so, the function returns the class of the hard register.
|
|
Otherwise it returns NO_REGS. */
|
|
static enum reg_class
|
|
single_reg_class (const char *constraints, rtx op, rtx equiv_const)
|
|
{
|
|
int c;
|
|
enum reg_class cl, next_cl;
|
|
enum constraint_num cn;
|
|
|
|
cl = NO_REGS;
|
|
alternative_mask preferred = preferred_alternatives;
|
|
while ((c = *constraints))
|
|
{
|
|
if (c == '#')
|
|
preferred &= ~ALTERNATIVE_BIT (0);
|
|
else if (c == ',')
|
|
preferred >>= 1;
|
|
else if (preferred & 1)
|
|
switch (c)
|
|
{
|
|
case 'g':
|
|
return NO_REGS;
|
|
|
|
default:
|
|
/* ??? Is this the best way to handle memory constraints? */
|
|
cn = lookup_constraint (constraints);
|
|
if (insn_extra_memory_constraint (cn)
|
|
|| insn_extra_special_memory_constraint (cn)
|
|
|| insn_extra_address_constraint (cn))
|
|
return NO_REGS;
|
|
if (constraint_satisfied_p (op, cn)
|
|
|| (equiv_const != NULL_RTX
|
|
&& CONSTANT_P (equiv_const)
|
|
&& constraint_satisfied_p (equiv_const, cn)))
|
|
return NO_REGS;
|
|
next_cl = reg_class_for_constraint (cn);
|
|
if (next_cl == NO_REGS)
|
|
break;
|
|
if (cl == NO_REGS
|
|
? ira_class_singleton[next_cl][GET_MODE (op)] < 0
|
|
: (ira_class_singleton[cl][GET_MODE (op)]
|
|
!= ira_class_singleton[next_cl][GET_MODE (op)]))
|
|
return NO_REGS;
|
|
cl = next_cl;
|
|
break;
|
|
|
|
case '0': case '1': case '2': case '3': case '4':
|
|
case '5': case '6': case '7': case '8': case '9':
|
|
{
|
|
char *end;
|
|
unsigned long dup = strtoul (constraints, &end, 10);
|
|
constraints = end;
|
|
next_cl
|
|
= single_reg_class (recog_data.constraints[dup],
|
|
recog_data.operand[dup], NULL_RTX);
|
|
if (cl == NO_REGS
|
|
? ira_class_singleton[next_cl][GET_MODE (op)] < 0
|
|
: (ira_class_singleton[cl][GET_MODE (op)]
|
|
!= ira_class_singleton[next_cl][GET_MODE (op)]))
|
|
return NO_REGS;
|
|
cl = next_cl;
|
|
continue;
|
|
}
|
|
}
|
|
constraints += CONSTRAINT_LEN (c, constraints);
|
|
}
|
|
return cl;
|
|
}
|
|
|
|
/* The function checks that operand OP_NUM of the current insn can use
|
|
only one hard register. If it is so, the function returns the
|
|
class of the hard register. Otherwise it returns NO_REGS. */
|
|
static enum reg_class
|
|
single_reg_operand_class (int op_num)
|
|
{
|
|
if (op_num < 0 || recog_data.n_alternatives == 0)
|
|
return NO_REGS;
|
|
return single_reg_class (recog_data.constraints[op_num],
|
|
recog_data.operand[op_num], NULL_RTX);
|
|
}
|
|
|
|
/* The function sets up hard register set *SET to hard registers which
|
|
might be used by insn reloads because the constraints are too
|
|
strict. */
|
|
void
|
|
ira_implicitly_set_insn_hard_regs (HARD_REG_SET *set,
|
|
alternative_mask preferred)
|
|
{
|
|
int i, c, regno = 0;
|
|
enum reg_class cl;
|
|
rtx op;
|
|
machine_mode mode;
|
|
|
|
CLEAR_HARD_REG_SET (*set);
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
|
{
|
|
op = recog_data.operand[i];
|
|
|
|
if (GET_CODE (op) == SUBREG)
|
|
op = SUBREG_REG (op);
|
|
|
|
if (GET_CODE (op) == SCRATCH
|
|
|| (REG_P (op) && (regno = REGNO (op)) >= FIRST_PSEUDO_REGISTER))
|
|
{
|
|
const char *p = recog_data.constraints[i];
|
|
|
|
mode = (GET_CODE (op) == SCRATCH
|
|
? GET_MODE (op) : PSEUDO_REGNO_MODE (regno));
|
|
cl = NO_REGS;
|
|
for (; (c = *p); p += CONSTRAINT_LEN (c, p))
|
|
if (c == '#')
|
|
preferred &= ~ALTERNATIVE_BIT (0);
|
|
else if (c == ',')
|
|
preferred >>= 1;
|
|
else if (preferred & 1)
|
|
{
|
|
cl = reg_class_for_constraint (lookup_constraint (p));
|
|
if (cl != NO_REGS)
|
|
{
|
|
/* There is no register pressure problem if all of the
|
|
regs in this class are fixed. */
|
|
int regno = ira_class_singleton[cl][mode];
|
|
if (regno >= 0)
|
|
add_to_hard_reg_set (set, mode, regno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
/* Processes input operands, if IN_P, or output operands otherwise of
|
|
the current insn with FREQ to find allocno which can use only one
|
|
hard register and makes other currently living allocnos conflicting
|
|
with the hard register. */
|
|
static void
|
|
process_single_reg_class_operands (bool in_p, int freq)
|
|
{
|
|
int i, regno;
|
|
unsigned int px;
|
|
enum reg_class cl;
|
|
rtx operand;
|
|
ira_allocno_t operand_a, a;
|
|
|
|
for (i = 0; i < recog_data.n_operands; i++)
|
|
{
|
|
operand = recog_data.operand[i];
|
|
if (in_p && recog_data.operand_type[i] != OP_IN
|
|
&& recog_data.operand_type[i] != OP_INOUT)
|
|
continue;
|
|
if (! in_p && recog_data.operand_type[i] != OP_OUT
|
|
&& recog_data.operand_type[i] != OP_INOUT)
|
|
continue;
|
|
cl = single_reg_operand_class (i);
|
|
if (cl == NO_REGS)
|
|
continue;
|
|
|
|
operand_a = NULL;
|
|
|
|
if (GET_CODE (operand) == SUBREG)
|
|
operand = SUBREG_REG (operand);
|
|
|
|
if (REG_P (operand)
|
|
&& (regno = REGNO (operand)) >= FIRST_PSEUDO_REGISTER)
|
|
{
|
|
enum reg_class aclass;
|
|
|
|
operand_a = ira_curr_regno_allocno_map[regno];
|
|
aclass = ALLOCNO_CLASS (operand_a);
|
|
if (ira_class_subset_p[cl][aclass])
|
|
{
|
|
/* View the desired allocation of OPERAND as:
|
|
|
|
(REG:YMODE YREGNO),
|
|
|
|
a simplification of:
|
|
|
|
(subreg:YMODE (reg:XMODE XREGNO) OFFSET). */
|
|
machine_mode ymode, xmode;
|
|
int xregno, yregno;
|
|
poly_int64 offset;
|
|
|
|
xmode = recog_data.operand_mode[i];
|
|
xregno = ira_class_singleton[cl][xmode];
|
|
gcc_assert (xregno >= 0);
|
|
ymode = ALLOCNO_MODE (operand_a);
|
|
offset = subreg_lowpart_offset (ymode, xmode);
|
|
yregno = simplify_subreg_regno (xregno, xmode, offset, ymode);
|
|
if (yregno >= 0
|
|
&& ira_class_hard_reg_index[aclass][yregno] >= 0)
|
|
{
|
|
int cost;
|
|
|
|
ira_allocate_and_set_costs
|
|
(&ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a),
|
|
aclass, 0);
|
|
ira_init_register_move_cost_if_necessary (xmode);
|
|
cost = freq * (in_p
|
|
? ira_register_move_cost[xmode][aclass][cl]
|
|
: ira_register_move_cost[xmode][cl][aclass]);
|
|
ALLOCNO_CONFLICT_HARD_REG_COSTS (operand_a)
|
|
[ira_class_hard_reg_index[aclass][yregno]] -= cost;
|
|
}
|
|
}
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[px];
|
|
a = OBJECT_ALLOCNO (obj);
|
|
if (a != operand_a)
|
|
{
|
|
/* We could increase costs of A instead of making it
|
|
conflicting with the hard register. But it works worse
|
|
because it will be spilled in reload in anyway. */
|
|
OBJECT_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
|
|
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj) |= reg_class_contents[cl];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Look through the CALL_INSN_FUNCTION_USAGE of a call insn INSN, and see if
|
|
we find a SET rtx that we can use to deduce that a register can be cheaply
|
|
caller-saved. Return such a register, or NULL_RTX if none is found. */
|
|
static rtx
|
|
find_call_crossed_cheap_reg (rtx_insn *insn)
|
|
{
|
|
rtx cheap_reg = NULL_RTX;
|
|
rtx exp = CALL_INSN_FUNCTION_USAGE (insn);
|
|
|
|
while (exp != NULL)
|
|
{
|
|
rtx x = XEXP (exp, 0);
|
|
if (GET_CODE (x) == SET)
|
|
{
|
|
exp = x;
|
|
break;
|
|
}
|
|
exp = XEXP (exp, 1);
|
|
}
|
|
if (exp != NULL)
|
|
{
|
|
basic_block bb = BLOCK_FOR_INSN (insn);
|
|
rtx reg = SET_SRC (exp);
|
|
rtx_insn *prev = PREV_INSN (insn);
|
|
while (prev && !(INSN_P (prev)
|
|
&& BLOCK_FOR_INSN (prev) != bb))
|
|
{
|
|
if (NONDEBUG_INSN_P (prev))
|
|
{
|
|
rtx set = single_set (prev);
|
|
|
|
if (set && rtx_equal_p (SET_DEST (set), reg))
|
|
{
|
|
rtx src = SET_SRC (set);
|
|
if (!REG_P (src) || HARD_REGISTER_P (src)
|
|
|| !pseudo_regno_single_word_and_live_p (REGNO (src)))
|
|
break;
|
|
if (!modified_between_p (src, prev, insn))
|
|
cheap_reg = src;
|
|
break;
|
|
}
|
|
if (set && rtx_equal_p (SET_SRC (set), reg))
|
|
{
|
|
rtx dest = SET_DEST (set);
|
|
if (!REG_P (dest) || HARD_REGISTER_P (dest)
|
|
|| !pseudo_regno_single_word_and_live_p (REGNO (dest)))
|
|
break;
|
|
if (!modified_between_p (dest, prev, insn))
|
|
cheap_reg = dest;
|
|
break;
|
|
}
|
|
|
|
if (reg_set_p (reg, prev))
|
|
break;
|
|
}
|
|
prev = PREV_INSN (prev);
|
|
}
|
|
}
|
|
return cheap_reg;
|
|
}
|
|
|
|
/* Determine whether INSN is a register to register copy of the type where
|
|
we do not need to make the source and destiniation registers conflict.
|
|
If this is a copy instruction, then return the source reg. Otherwise,
|
|
return NULL_RTX. */
|
|
rtx
|
|
non_conflicting_reg_copy_p (rtx_insn *insn)
|
|
{
|
|
/* Reload has issues with overlapping pseudos being assigned to the
|
|
same hard register, so don't allow it. See PR87600 for details. */
|
|
if (!targetm.lra_p ())
|
|
return NULL_RTX;
|
|
|
|
rtx set = single_set (insn);
|
|
|
|
/* Disallow anything other than a simple register to register copy
|
|
that has no side effects. */
|
|
if (set == NULL_RTX
|
|
|| !REG_P (SET_DEST (set))
|
|
|| !REG_P (SET_SRC (set))
|
|
|| side_effects_p (set))
|
|
return NULL_RTX;
|
|
|
|
int dst_regno = REGNO (SET_DEST (set));
|
|
int src_regno = REGNO (SET_SRC (set));
|
|
machine_mode mode = GET_MODE (SET_DEST (set));
|
|
|
|
/* By definition, a register does not conflict with itself, therefore we
|
|
do not have to handle it specially. Returning NULL_RTX now, helps
|
|
simplify the callers of this function. */
|
|
if (dst_regno == src_regno)
|
|
return NULL_RTX;
|
|
|
|
/* Computing conflicts for register pairs is difficult to get right, so
|
|
for now, disallow it. */
|
|
if ((HARD_REGISTER_NUM_P (dst_regno)
|
|
&& hard_regno_nregs (dst_regno, mode) != 1)
|
|
|| (HARD_REGISTER_NUM_P (src_regno)
|
|
&& hard_regno_nregs (src_regno, mode) != 1))
|
|
return NULL_RTX;
|
|
|
|
return SET_SRC (set);
|
|
}
|
|
|
|
#ifdef EH_RETURN_DATA_REGNO
|
|
|
|
/* Add EH return hard registers as conflict hard registers to allocnos
|
|
living at end of BB. For most allocnos it is already done in
|
|
process_bb_node_lives when we processing input edges but it does
|
|
not work when and EH edge is edge out of the current region. This
|
|
function covers such out of region edges. */
|
|
static void
|
|
process_out_of_region_eh_regs (basic_block bb)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bool eh_p = false;
|
|
|
|
FOR_EACH_EDGE (e, ei, bb->succs)
|
|
if ((e->flags & EDGE_EH)
|
|
&& IRA_BB_NODE (e->dest)->parent != IRA_BB_NODE (bb)->parent)
|
|
eh_p = true;
|
|
|
|
if (! eh_p)
|
|
return;
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), FIRST_PSEUDO_REGISTER, i, bi)
|
|
{
|
|
ira_allocno_t a = ira_curr_regno_allocno_map[i];
|
|
for (int n = ALLOCNO_NUM_OBJECTS (a) - 1; n >= 0; n--)
|
|
{
|
|
ira_object_t obj = ALLOCNO_OBJECT (a, n);
|
|
for (int k = 0; ; k++)
|
|
{
|
|
unsigned int regno = EH_RETURN_DATA_REGNO (k);
|
|
if (regno == INVALID_REGNUM)
|
|
break;
|
|
SET_HARD_REG_BIT (OBJECT_CONFLICT_HARD_REGS (obj), regno);
|
|
SET_HARD_REG_BIT (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj), regno);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
/* Process insns of the basic block given by its LOOP_TREE_NODE to
|
|
update allocno live ranges, allocno hard register conflicts,
|
|
intersected calls, and register pressure info for allocnos for the
|
|
basic block for and regions containing the basic block. */
|
|
static void
|
|
process_bb_node_lives (ira_loop_tree_node_t loop_tree_node)
|
|
{
|
|
int i, freq;
|
|
unsigned int j;
|
|
basic_block bb;
|
|
rtx_insn *insn;
|
|
bitmap_iterator bi;
|
|
bitmap reg_live_out;
|
|
unsigned int px;
|
|
bool set_p;
|
|
|
|
bb = loop_tree_node->bb;
|
|
if (bb != NULL)
|
|
{
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
|
{
|
|
curr_reg_pressure[ira_pressure_classes[i]] = 0;
|
|
high_pressure_start_point[ira_pressure_classes[i]] = -1;
|
|
}
|
|
curr_bb_node = loop_tree_node;
|
|
reg_live_out = df_get_live_out (bb);
|
|
sparseset_clear (objects_live);
|
|
REG_SET_TO_HARD_REG_SET (hard_regs_live, reg_live_out);
|
|
hard_regs_live &= ~(eliminable_regset | ira_no_alloc_regs);
|
|
for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
|
|
if (TEST_HARD_REG_BIT (hard_regs_live, i))
|
|
{
|
|
enum reg_class aclass, pclass, cl;
|
|
|
|
aclass = ira_allocno_class_translate[REGNO_REG_CLASS (i)];
|
|
pclass = ira_pressure_class_translate[aclass];
|
|
for (j = 0;
|
|
(cl = ira_reg_class_super_classes[pclass][j])
|
|
!= LIM_REG_CLASSES;
|
|
j++)
|
|
{
|
|
if (! ira_reg_pressure_class_p[cl])
|
|
continue;
|
|
curr_reg_pressure[cl]++;
|
|
if (curr_bb_node->reg_pressure[cl] < curr_reg_pressure[cl])
|
|
curr_bb_node->reg_pressure[cl] = curr_reg_pressure[cl];
|
|
ira_assert (curr_reg_pressure[cl]
|
|
<= ira_class_hard_regs_num[cl]);
|
|
}
|
|
}
|
|
EXECUTE_IF_SET_IN_BITMAP (reg_live_out, FIRST_PSEUDO_REGISTER, j, bi)
|
|
mark_pseudo_regno_live (j);
|
|
|
|
#ifdef EH_RETURN_DATA_REGNO
|
|
process_out_of_region_eh_regs (bb);
|
|
#endif
|
|
|
|
freq = REG_FREQ_FROM_BB (bb);
|
|
if (freq == 0)
|
|
freq = 1;
|
|
|
|
/* Invalidate all allocno_saved_at_call entries. */
|
|
last_call_num++;
|
|
|
|
/* Scan the code of this basic block, noting which allocnos and
|
|
hard regs are born or die.
|
|
|
|
Note that this loop treats uninitialized values as live until
|
|
the beginning of the block. For example, if an instruction
|
|
uses (reg:DI foo), and only (subreg:SI (reg:DI foo) 0) is ever
|
|
set, FOO will remain live until the beginning of the block.
|
|
Likewise if FOO is not set at all. This is unnecessarily
|
|
pessimistic, but it probably doesn't matter much in practice. */
|
|
FOR_BB_INSNS_REVERSE (bb, insn)
|
|
{
|
|
ira_allocno_t a;
|
|
df_ref def, use;
|
|
bool call_p;
|
|
|
|
if (!NONDEBUG_INSN_P (insn))
|
|
continue;
|
|
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
fprintf (ira_dump_file, " Insn %u(l%d): point = %d\n",
|
|
INSN_UID (insn), loop_tree_node->parent->loop_num,
|
|
curr_point);
|
|
|
|
call_p = CALL_P (insn);
|
|
ignore_reg_for_conflicts = non_conflicting_reg_copy_p (insn);
|
|
|
|
/* Mark each defined value as live. We need to do this for
|
|
unused values because they still conflict with quantities
|
|
that are live at the time of the definition.
|
|
|
|
Ignore DF_REF_MAY_CLOBBERs on a call instruction. Such
|
|
references represent the effect of the called function
|
|
on a call-clobbered register. Marking the register as
|
|
live would stop us from allocating it to a call-crossing
|
|
allocno. */
|
|
FOR_EACH_INSN_DEF (def, insn)
|
|
if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
|
mark_ref_live (def);
|
|
|
|
/* If INSN has multiple outputs, then any value used in one
|
|
of the outputs conflicts with the other outputs. Model this
|
|
by making the used value live during the output phase.
|
|
|
|
It is unsafe to use !single_set here since it will ignore
|
|
an unused output. Just because an output is unused does
|
|
not mean the compiler can assume the side effect will not
|
|
occur. Consider if ALLOCNO appears in the address of an
|
|
output and we reload the output. If we allocate ALLOCNO
|
|
to the same hard register as an unused output we could
|
|
set the hard register before the output reload insn. */
|
|
if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
|
|
FOR_EACH_INSN_USE (use, insn)
|
|
{
|
|
int i;
|
|
rtx reg;
|
|
|
|
reg = DF_REF_REG (use);
|
|
for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
|
|
{
|
|
rtx set;
|
|
|
|
set = XVECEXP (PATTERN (insn), 0, i);
|
|
if (GET_CODE (set) == SET
|
|
&& reg_overlap_mentioned_p (reg, SET_DEST (set)))
|
|
{
|
|
/* After the previous loop, this is a no-op if
|
|
REG is contained within SET_DEST (SET). */
|
|
mark_ref_live (use);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
preferred_alternatives = ira_setup_alts (insn);
|
|
process_single_reg_class_operands (false, freq);
|
|
|
|
if (call_p)
|
|
{
|
|
/* Try to find a SET in the CALL_INSN_FUNCTION_USAGE, and from
|
|
there, try to find a pseudo that is live across the call but
|
|
can be cheaply reconstructed from the return value. */
|
|
rtx cheap_reg = find_call_crossed_cheap_reg (insn);
|
|
if (cheap_reg != NULL_RTX)
|
|
add_reg_note (insn, REG_RETURNED, cheap_reg);
|
|
|
|
last_call_num++;
|
|
sparseset_clear (allocnos_processed);
|
|
/* The current set of live allocnos are live across the call. */
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
{
|
|
ira_object_t obj = ira_object_id_map[i];
|
|
a = OBJECT_ALLOCNO (obj);
|
|
int num = ALLOCNO_NUM (a);
|
|
function_abi callee_abi = insn_callee_abi (insn);
|
|
|
|
/* Don't allocate allocnos that cross setjmps or any
|
|
call, if this function receives a nonlocal
|
|
goto. */
|
|
if (cfun->has_nonlocal_label
|
|
|| (!targetm.setjmp_preserves_nonvolatile_regs_p ()
|
|
&& (find_reg_note (insn, REG_SETJMP, NULL_RTX)
|
|
!= NULL_RTX)))
|
|
{
|
|
SET_HARD_REG_SET (OBJECT_CONFLICT_HARD_REGS (obj));
|
|
SET_HARD_REG_SET (OBJECT_TOTAL_CONFLICT_HARD_REGS (obj));
|
|
}
|
|
if (can_throw_internal (insn))
|
|
{
|
|
OBJECT_CONFLICT_HARD_REGS (obj)
|
|
|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
|
|
OBJECT_TOTAL_CONFLICT_HARD_REGS (obj)
|
|
|= callee_abi.mode_clobbers (ALLOCNO_MODE (a));
|
|
}
|
|
|
|
if (sparseset_bit_p (allocnos_processed, num))
|
|
continue;
|
|
sparseset_set_bit (allocnos_processed, num);
|
|
|
|
if (allocno_saved_at_call[num] != last_call_num)
|
|
/* Here we are mimicking caller-save.c behavior
|
|
which does not save hard register at a call if
|
|
it was saved on previous call in the same basic
|
|
block and the hard register was not mentioned
|
|
between the two calls. */
|
|
ALLOCNO_CALL_FREQ (a) += freq;
|
|
/* Mark it as saved at the next call. */
|
|
allocno_saved_at_call[num] = last_call_num + 1;
|
|
ALLOCNO_CALLS_CROSSED_NUM (a)++;
|
|
ALLOCNO_CROSSED_CALLS_ABIS (a) |= 1 << callee_abi.id ();
|
|
ALLOCNO_CROSSED_CALLS_CLOBBERED_REGS (a)
|
|
|= callee_abi.full_and_partial_reg_clobbers ();
|
|
if (cheap_reg != NULL_RTX
|
|
&& ALLOCNO_REGNO (a) == (int) REGNO (cheap_reg))
|
|
ALLOCNO_CHEAP_CALLS_CROSSED_NUM (a)++;
|
|
}
|
|
}
|
|
|
|
/* See which defined values die here. Note that we include
|
|
the call insn in the lifetimes of these values, so we don't
|
|
mistakenly consider, for e.g. an addressing mode with a
|
|
side-effect like a post-increment fetching the address,
|
|
that the use happens before the call, and the def to happen
|
|
after the call: we believe both to happen before the actual
|
|
call. (We don't handle return-values here.) */
|
|
FOR_EACH_INSN_DEF (def, insn)
|
|
if (!call_p || !DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
|
|
mark_ref_dead (def);
|
|
|
|
make_early_clobber_and_input_conflicts ();
|
|
|
|
curr_point++;
|
|
|
|
/* Mark each used value as live. */
|
|
FOR_EACH_INSN_USE (use, insn)
|
|
mark_ref_live (use);
|
|
|
|
process_single_reg_class_operands (true, freq);
|
|
|
|
set_p = mark_hard_reg_early_clobbers (insn, true);
|
|
|
|
if (set_p)
|
|
{
|
|
mark_hard_reg_early_clobbers (insn, false);
|
|
|
|
/* Mark each hard reg as live again. For example, a
|
|
hard register can be in clobber and in an insn
|
|
input. */
|
|
FOR_EACH_INSN_USE (use, insn)
|
|
{
|
|
rtx ureg = DF_REF_REG (use);
|
|
|
|
if (GET_CODE (ureg) == SUBREG)
|
|
ureg = SUBREG_REG (ureg);
|
|
if (! REG_P (ureg) || REGNO (ureg) >= FIRST_PSEUDO_REGISTER)
|
|
continue;
|
|
|
|
mark_ref_live (use);
|
|
}
|
|
}
|
|
|
|
curr_point++;
|
|
}
|
|
ignore_reg_for_conflicts = NULL_RTX;
|
|
|
|
if (bb_has_eh_pred (bb))
|
|
for (j = 0; ; ++j)
|
|
{
|
|
unsigned int regno = EH_RETURN_DATA_REGNO (j);
|
|
if (regno == INVALID_REGNUM)
|
|
break;
|
|
make_hard_regno_live (regno);
|
|
}
|
|
|
|
/* Allocnos can't go in stack regs at the start of a basic block
|
|
that is reached by an abnormal edge. Likewise for registers
|
|
that are at least partly call clobbered, because caller-save,
|
|
fixup_abnormal_edges and possibly the table driven EH machinery
|
|
are not quite ready to handle such allocnos live across such
|
|
edges. */
|
|
if (bb_has_abnormal_pred (bb))
|
|
{
|
|
#ifdef STACK_REGS
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, px)
|
|
{
|
|
ira_allocno_t a = OBJECT_ALLOCNO (ira_object_id_map[px]);
|
|
|
|
ALLOCNO_NO_STACK_REG_P (a) = true;
|
|
ALLOCNO_TOTAL_NO_STACK_REG_P (a) = true;
|
|
}
|
|
for (px = FIRST_STACK_REG; px <= LAST_STACK_REG; px++)
|
|
make_hard_regno_live (px);
|
|
#endif
|
|
/* No need to record conflicts for call clobbered regs if we
|
|
have nonlocal labels around, as we don't ever try to
|
|
allocate such regs in this case. */
|
|
if (!cfun->has_nonlocal_label
|
|
&& has_abnormal_call_or_eh_pred_edge_p (bb))
|
|
for (px = 0; px < FIRST_PSEUDO_REGISTER; px++)
|
|
if (eh_edge_abi.clobbers_at_least_part_of_reg_p (px)
|
|
#ifdef REAL_PIC_OFFSET_TABLE_REGNUM
|
|
/* We should create a conflict of PIC pseudo with
|
|
PIC hard reg as PIC hard reg can have a wrong
|
|
value after jump described by the abnormal edge.
|
|
In this case we cannot allocate PIC hard reg to
|
|
PIC pseudo as PIC pseudo will also have a wrong
|
|
value. This code is not critical as LRA can fix
|
|
it but it is better to have the right allocation
|
|
earlier. */
|
|
|| (px == REAL_PIC_OFFSET_TABLE_REGNUM
|
|
&& pic_offset_table_rtx != NULL_RTX
|
|
&& REGNO (pic_offset_table_rtx) >= FIRST_PSEUDO_REGISTER)
|
|
#endif
|
|
)
|
|
make_hard_regno_live (px);
|
|
}
|
|
|
|
EXECUTE_IF_SET_IN_SPARSESET (objects_live, i)
|
|
make_object_dead (ira_object_id_map[i]);
|
|
|
|
curr_point++;
|
|
|
|
}
|
|
/* Propagate register pressure to upper loop tree nodes. */
|
|
if (loop_tree_node != ira_loop_tree_root)
|
|
for (i = 0; i < ira_pressure_classes_num; i++)
|
|
{
|
|
enum reg_class pclass;
|
|
|
|
pclass = ira_pressure_classes[i];
|
|
if (loop_tree_node->reg_pressure[pclass]
|
|
> loop_tree_node->parent->reg_pressure[pclass])
|
|
loop_tree_node->parent->reg_pressure[pclass]
|
|
= loop_tree_node->reg_pressure[pclass];
|
|
}
|
|
}
|
|
|
|
/* Create and set up IRA_START_POINT_RANGES and
|
|
IRA_FINISH_POINT_RANGES. */
|
|
static void
|
|
create_start_finish_chains (void)
|
|
{
|
|
ira_object_t obj;
|
|
ira_object_iterator oi;
|
|
live_range_t r;
|
|
|
|
ira_start_point_ranges
|
|
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
|
|
memset (ira_start_point_ranges, 0, ira_max_point * sizeof (live_range_t));
|
|
ira_finish_point_ranges
|
|
= (live_range_t *) ira_allocate (ira_max_point * sizeof (live_range_t));
|
|
memset (ira_finish_point_ranges, 0, ira_max_point * sizeof (live_range_t));
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
|
{
|
|
r->start_next = ira_start_point_ranges[r->start];
|
|
ira_start_point_ranges[r->start] = r;
|
|
r->finish_next = ira_finish_point_ranges[r->finish];
|
|
ira_finish_point_ranges[r->finish] = r;
|
|
}
|
|
}
|
|
|
|
/* Rebuild IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES after
|
|
new live ranges and program points were added as a result if new
|
|
insn generation. */
|
|
void
|
|
ira_rebuild_start_finish_chains (void)
|
|
{
|
|
ira_free (ira_finish_point_ranges);
|
|
ira_free (ira_start_point_ranges);
|
|
create_start_finish_chains ();
|
|
}
|
|
|
|
/* Compress allocno live ranges by removing program points where
|
|
nothing happens. */
|
|
static void
|
|
remove_some_program_points_and_update_live_ranges (void)
|
|
{
|
|
unsigned i;
|
|
int n;
|
|
int *map;
|
|
ira_object_t obj;
|
|
ira_object_iterator oi;
|
|
live_range_t r, prev_r, next_r;
|
|
sbitmap_iterator sbi;
|
|
bool born_p, dead_p, prev_born_p, prev_dead_p;
|
|
|
|
auto_sbitmap born (ira_max_point);
|
|
auto_sbitmap dead (ira_max_point);
|
|
bitmap_clear (born);
|
|
bitmap_clear (dead);
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj); r != NULL; r = r->next)
|
|
{
|
|
ira_assert (r->start <= r->finish);
|
|
bitmap_set_bit (born, r->start);
|
|
bitmap_set_bit (dead, r->finish);
|
|
}
|
|
|
|
auto_sbitmap born_or_dead (ira_max_point);
|
|
bitmap_ior (born_or_dead, born, dead);
|
|
map = (int *) ira_allocate (sizeof (int) * ira_max_point);
|
|
n = -1;
|
|
prev_born_p = prev_dead_p = false;
|
|
EXECUTE_IF_SET_IN_BITMAP (born_or_dead, 0, i, sbi)
|
|
{
|
|
born_p = bitmap_bit_p (born, i);
|
|
dead_p = bitmap_bit_p (dead, i);
|
|
if ((prev_born_p && ! prev_dead_p && born_p && ! dead_p)
|
|
|| (prev_dead_p && ! prev_born_p && dead_p && ! born_p))
|
|
map[i] = n;
|
|
else
|
|
map[i] = ++n;
|
|
prev_born_p = born_p;
|
|
prev_dead_p = dead_p;
|
|
}
|
|
|
|
n++;
|
|
if (internal_flag_ira_verbose > 1 && ira_dump_file != NULL)
|
|
fprintf (ira_dump_file, "Compressing live ranges: from %d to %d - %d%%\n",
|
|
ira_max_point, n, 100 * n / ira_max_point);
|
|
ira_max_point = n;
|
|
|
|
FOR_EACH_OBJECT (obj, oi)
|
|
for (r = OBJECT_LIVE_RANGES (obj), prev_r = NULL; r != NULL; r = next_r)
|
|
{
|
|
next_r = r->next;
|
|
r->start = map[r->start];
|
|
r->finish = map[r->finish];
|
|
if (prev_r == NULL || prev_r->start > r->finish + 1)
|
|
{
|
|
prev_r = r;
|
|
continue;
|
|
}
|
|
prev_r->start = r->start;
|
|
prev_r->next = next_r;
|
|
ira_finish_live_range (r);
|
|
}
|
|
|
|
ira_free (map);
|
|
}
|
|
|
|
/* Print live ranges R to file F. */
|
|
void
|
|
ira_print_live_range_list (FILE *f, live_range_t r)
|
|
{
|
|
for (; r != NULL; r = r->next)
|
|
fprintf (f, " [%d..%d]", r->start, r->finish);
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (live_range &ref)
|
|
{
|
|
ira_print_live_range_list (stderr, &ref);
|
|
}
|
|
|
|
DEBUG_FUNCTION void
|
|
debug (live_range *ptr)
|
|
{
|
|
if (ptr)
|
|
debug (*ptr);
|
|
else
|
|
fprintf (stderr, "<nil>\n");
|
|
}
|
|
|
|
/* Print live ranges R to stderr. */
|
|
void
|
|
ira_debug_live_range_list (live_range_t r)
|
|
{
|
|
ira_print_live_range_list (stderr, r);
|
|
}
|
|
|
|
/* Print live ranges of object OBJ to file F. */
|
|
static void
|
|
print_object_live_ranges (FILE *f, ira_object_t obj)
|
|
{
|
|
ira_print_live_range_list (f, OBJECT_LIVE_RANGES (obj));
|
|
}
|
|
|
|
/* Print live ranges of allocno A to file F. */
|
|
static void
|
|
print_allocno_live_ranges (FILE *f, ira_allocno_t a)
|
|
{
|
|
int n = ALLOCNO_NUM_OBJECTS (a);
|
|
int i;
|
|
|
|
for (i = 0; i < n; i++)
|
|
{
|
|
fprintf (f, " a%d(r%d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
|
|
if (n > 1)
|
|
fprintf (f, " [%d]", i);
|
|
fprintf (f, "):");
|
|
print_object_live_ranges (f, ALLOCNO_OBJECT (a, i));
|
|
}
|
|
}
|
|
|
|
/* Print live ranges of allocno A to stderr. */
|
|
void
|
|
ira_debug_allocno_live_ranges (ira_allocno_t a)
|
|
{
|
|
print_allocno_live_ranges (stderr, a);
|
|
}
|
|
|
|
/* Print live ranges of all allocnos to file F. */
|
|
static void
|
|
print_live_ranges (FILE *f)
|
|
{
|
|
ira_allocno_t a;
|
|
ira_allocno_iterator ai;
|
|
|
|
FOR_EACH_ALLOCNO (a, ai)
|
|
print_allocno_live_ranges (f, a);
|
|
}
|
|
|
|
/* Print live ranges of all allocnos to stderr. */
|
|
void
|
|
ira_debug_live_ranges (void)
|
|
{
|
|
print_live_ranges (stderr);
|
|
}
|
|
|
|
/* The main entry function creates live ranges, set up
|
|
CONFLICT_HARD_REGS and TOTAL_CONFLICT_HARD_REGS for objects, and
|
|
calculate register pressure info. */
|
|
void
|
|
ira_create_allocno_live_ranges (void)
|
|
{
|
|
objects_live = sparseset_alloc (ira_objects_num);
|
|
allocnos_processed = sparseset_alloc (ira_allocnos_num);
|
|
curr_point = 0;
|
|
last_call_num = 0;
|
|
allocno_saved_at_call
|
|
= (int *) ira_allocate (ira_allocnos_num * sizeof (int));
|
|
memset (allocno_saved_at_call, 0, ira_allocnos_num * sizeof (int));
|
|
ira_traverse_loop_tree (true, ira_loop_tree_root, NULL,
|
|
process_bb_node_lives);
|
|
ira_max_point = curr_point;
|
|
create_start_finish_chains ();
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
print_live_ranges (ira_dump_file);
|
|
/* Clean up. */
|
|
ira_free (allocno_saved_at_call);
|
|
sparseset_free (objects_live);
|
|
sparseset_free (allocnos_processed);
|
|
}
|
|
|
|
/* Compress allocno live ranges. */
|
|
void
|
|
ira_compress_allocno_live_ranges (void)
|
|
{
|
|
remove_some_program_points_and_update_live_ranges ();
|
|
ira_rebuild_start_finish_chains ();
|
|
if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
|
|
{
|
|
fprintf (ira_dump_file, "Ranges after the compression:\n");
|
|
print_live_ranges (ira_dump_file);
|
|
}
|
|
}
|
|
|
|
/* Free arrays IRA_START_POINT_RANGES and IRA_FINISH_POINT_RANGES. */
|
|
void
|
|
ira_finish_allocno_live_ranges (void)
|
|
{
|
|
ira_free (ira_finish_point_ranges);
|
|
ira_free (ira_start_point_ranges);
|
|
}
|