gcc/libstdc++-v3/include/pstl/parallel_backend_tbb.h
Thomas Rodgers e957b86ca2 libstdc++: Rebase include/pstl to current upstream
From llvm-project/pstl @ 0b2e0e80d96

libstdc++-v3/ChangeLog:

	* include/pstl/algorithm_impl.h: Update file.
	* include/pstl/execution_impl.h: Likewise.
	* include/pstl/glue_algorithm_impl.h: Likewise.
	* include/pstl/glue_memory_impl.h: Likewise.
	* include/pstl/glue_numeric_impl.h: Likewise.
	* include/pstl/memory_impl.h: Likewise.
	* include/pstl/numeric_impl.h: Likewise.
	* include/pstl/parallel_backend.h: Likewise.
	* include/pstl/parallel_backend_serial.h: Likewise.
	* include/pstl/parallel_backend_tbb.h: Likewise.
	* include/pstl/parallel_backend_utils.h: Likewise.
	* include/pstl/pstl_config.h: Likewise.
	* include/pstl/unseq_backend_simd.h: Likewise.
2020-10-21 06:11:28 -07:00

1292 lines
43 KiB
C++

// -*- C++ -*-
//===-- parallel_backend_tbb.h --------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#ifndef _PSTL_PARALLEL_BACKEND_TBB_H
#define _PSTL_PARALLEL_BACKEND_TBB_H
#include <algorithm>
#include <type_traits>
#include "parallel_backend_utils.h"
// Bring in minimal required subset of Intel TBB
#include <tbb/blocked_range.h>
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <tbb/parallel_scan.h>
#include <tbb/parallel_invoke.h>
#include <tbb/task_arena.h>
#include <tbb/tbb_allocator.h>
#include <tbb/task.h>
#if TBB_INTERFACE_VERSION < 10000
# error Intel(R) Threading Building Blocks 2018 is required; older versions are not supported.
#endif
namespace __pstl
{
namespace __tbb_backend
{
//! Raw memory buffer with automatic freeing and no exceptions.
/** Some of our algorithms need to start with raw memory buffer,
not an initialize array, because initialization/destruction
would make the span be at least O(N). */
// tbb::allocator can improve performance in some cases.
template <typename _Tp>
class __buffer
{
tbb::tbb_allocator<_Tp> _M_allocator;
_Tp* _M_ptr;
const std::size_t _M_buf_size;
__buffer(const __buffer&) = delete;
void
operator=(const __buffer&) = delete;
public:
//! Try to obtain buffer of given size to store objects of _Tp type
__buffer(std::size_t n) : _M_allocator(), _M_ptr(_M_allocator.allocate(n)), _M_buf_size(n) {}
//! True if buffer was successfully obtained, zero otherwise.
operator bool() const { return _M_ptr != NULL; }
//! Return pointer to buffer, or NULL if buffer could not be obtained.
_Tp*
get() const
{
return _M_ptr;
}
//! Destroy buffer
~__buffer() { _M_allocator.deallocate(_M_ptr, _M_buf_size); }
};
// Wrapper for tbb::task
inline void
__cancel_execution()
{
#if TBB_INTERFACE_VERSION <= 12000
tbb::task::self().group()->cancel_group_execution();
#else
tbb::task::current_context()->cancel_group_execution();
#endif
}
//------------------------------------------------------------------------
// parallel_for
//------------------------------------------------------------------------
template <class _Index, class _RealBody>
class __parallel_for_body
{
public:
__parallel_for_body(const _RealBody& __body) : _M_body(__body) {}
__parallel_for_body(const __parallel_for_body& __body) : _M_body(__body._M_body) {}
void
operator()(const tbb::blocked_range<_Index>& __range) const
{
_M_body(__range.begin(), __range.end());
}
private:
_RealBody _M_body;
};
//! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last)
// wrapper over tbb::parallel_for
template <class _ExecutionPolicy, class _Index, class _Fp>
void
__parallel_for(_ExecutionPolicy&&, _Index __first, _Index __last, _Fp __f)
{
tbb::this_task_arena::isolate([=]() {
tbb::parallel_for(tbb::blocked_range<_Index>(__first, __last), __parallel_for_body<_Index, _Fp>(__f));
});
}
//! Evaluation of brick f[i,j) for each subrange [i,j) of [first,last)
// wrapper over tbb::parallel_reduce
template <class _ExecutionPolicy, class _Value, class _Index, typename _RealBody, typename _Reduction>
_Value
__parallel_reduce(_ExecutionPolicy&&, _Index __first, _Index __last, const _Value& __identity,
const _RealBody& __real_body, const _Reduction& __reduction)
{
return tbb::this_task_arena::isolate([__first, __last, &__identity, &__real_body, &__reduction]() -> _Value {
return tbb::parallel_reduce(
tbb::blocked_range<_Index>(__first, __last), __identity,
[__real_body](const tbb::blocked_range<_Index>& __r, const _Value& __value) -> _Value {
return __real_body(__r.begin(), __r.end(), __value);
},
__reduction);
});
}
//------------------------------------------------------------------------
// parallel_transform_reduce
//
// Notation:
// r(i,j,init) returns reduction of init with reduction over [i,j)
// u(i) returns f(i,i+1,identity) for a hypothetical left identity element of r
// c(x,y) combines values x and y that were the result of r or u
//------------------------------------------------------------------------
template <class _Index, class _Up, class _Tp, class _Cp, class _Rp>
struct __par_trans_red_body
{
alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true
_Rp _M_brick_reduce; // Most likely to have non-empty layout
_Up _M_u;
_Cp _M_combine;
bool _M_has_sum; // Put last to minimize size of class
_Tp&
sum()
{
_PSTL_ASSERT_MSG(_M_has_sum, "sum expected");
return *(_Tp*)_M_sum_storage;
}
__par_trans_red_body(_Up __u, _Tp __init, _Cp __c, _Rp __r)
: _M_brick_reduce(__r), _M_u(__u), _M_combine(__c), _M_has_sum(true)
{
new (_M_sum_storage) _Tp(__init);
}
__par_trans_red_body(__par_trans_red_body& __left, tbb::split)
: _M_brick_reduce(__left._M_brick_reduce), _M_u(__left._M_u), _M_combine(__left._M_combine), _M_has_sum(false)
{
}
~__par_trans_red_body()
{
// 17.6.5.12 tells us to not worry about catching exceptions from destructors.
if (_M_has_sum)
sum().~_Tp();
}
void
join(__par_trans_red_body& __rhs)
{
sum() = _M_combine(sum(), __rhs.sum());
}
void
operator()(const tbb::blocked_range<_Index>& __range)
{
_Index __i = __range.begin();
_Index __j = __range.end();
if (!_M_has_sum)
{
_PSTL_ASSERT_MSG(__range.size() > 1, "there should be at least 2 elements");
new (&_M_sum_storage)
_Tp(_M_combine(_M_u(__i), _M_u(__i + 1))); // The condition i+1 < j is provided by the grain size of 3
_M_has_sum = true;
std::advance(__i, 2);
if (__i == __j)
return;
}
sum() = _M_brick_reduce(__i, __j, sum());
}
};
template <class _ExecutionPolicy, class _Index, class _Up, class _Tp, class _Cp, class _Rp>
_Tp
__parallel_transform_reduce(_ExecutionPolicy&&, _Index __first, _Index __last, _Up __u, _Tp __init, _Cp __combine,
_Rp __brick_reduce)
{
__tbb_backend::__par_trans_red_body<_Index, _Up, _Tp, _Cp, _Rp> __body(__u, __init, __combine, __brick_reduce);
// The grain size of 3 is used in order to provide mininum 2 elements for each body
tbb::this_task_arena::isolate(
[__first, __last, &__body]() { tbb::parallel_reduce(tbb::blocked_range<_Index>(__first, __last, 3), __body); });
return __body.sum();
}
//------------------------------------------------------------------------
// parallel_scan
//------------------------------------------------------------------------
template <class _Index, class _Up, class _Tp, class _Cp, class _Rp, class _Sp>
class __trans_scan_body
{
alignas(_Tp) char _M_sum_storage[sizeof(_Tp)]; // Holds generalized non-commutative sum when has_sum==true
_Rp _M_brick_reduce; // Most likely to have non-empty layout
_Up _M_u;
_Cp _M_combine;
_Sp _M_scan;
bool _M_has_sum; // Put last to minimize size of class
public:
__trans_scan_body(_Up __u, _Tp __init, _Cp __combine, _Rp __reduce, _Sp __scan)
: _M_brick_reduce(__reduce), _M_u(__u), _M_combine(__combine), _M_scan(__scan), _M_has_sum(true)
{
new (_M_sum_storage) _Tp(__init);
}
__trans_scan_body(__trans_scan_body& __b, tbb::split)
: _M_brick_reduce(__b._M_brick_reduce), _M_u(__b._M_u), _M_combine(__b._M_combine), _M_scan(__b._M_scan),
_M_has_sum(false)
{
}
~__trans_scan_body()
{
// 17.6.5.12 tells us to not worry about catching exceptions from destructors.
if (_M_has_sum)
sum().~_Tp();
}
_Tp&
sum() const
{
_PSTL_ASSERT_MSG(_M_has_sum, "sum expected");
return *const_cast<_Tp*>(reinterpret_cast<_Tp const*>(_M_sum_storage));
}
void
operator()(const tbb::blocked_range<_Index>& __range, tbb::pre_scan_tag)
{
_Index __i = __range.begin();
_Index __j = __range.end();
if (!_M_has_sum)
{
new (&_M_sum_storage) _Tp(_M_u(__i));
_M_has_sum = true;
++__i;
if (__i == __j)
return;
}
sum() = _M_brick_reduce(__i, __j, sum());
}
void
operator()(const tbb::blocked_range<_Index>& __range, tbb::final_scan_tag)
{
sum() = _M_scan(__range.begin(), __range.end(), sum());
}
void
reverse_join(__trans_scan_body& __a)
{
if (_M_has_sum)
{
sum() = _M_combine(__a.sum(), sum());
}
else
{
new (&_M_sum_storage) _Tp(__a.sum());
_M_has_sum = true;
}
}
void
assign(__trans_scan_body& __b)
{
sum() = __b.sum();
}
};
template <typename _Index>
_Index
__split(_Index __m)
{
_Index __k = 1;
while (2 * __k < __m)
__k *= 2;
return __k;
}
//------------------------------------------------------------------------
// __parallel_strict_scan
//------------------------------------------------------------------------
template <typename _Index, typename _Tp, typename _Rp, typename _Cp>
void
__upsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Rp __reduce, _Cp __combine)
{
if (__m == 1)
__r[0] = __reduce(__i * __tilesize, __lastsize);
else
{
_Index __k = __split(__m);
tbb::parallel_invoke(
[=] { __tbb_backend::__upsweep(__i, __k, __tilesize, __r, __tilesize, __reduce, __combine); },
[=] {
__tbb_backend::__upsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize, __reduce, __combine);
});
if (__m == 2 * __k)
__r[__m - 1] = __combine(__r[__k - 1], __r[__m - 1]);
}
}
template <typename _Index, typename _Tp, typename _Cp, typename _Sp>
void
__downsweep(_Index __i, _Index __m, _Index __tilesize, _Tp* __r, _Index __lastsize, _Tp __initial, _Cp __combine,
_Sp __scan)
{
if (__m == 1)
__scan(__i * __tilesize, __lastsize, __initial);
else
{
const _Index __k = __split(__m);
tbb::parallel_invoke(
[=] { __tbb_backend::__downsweep(__i, __k, __tilesize, __r, __tilesize, __initial, __combine, __scan); },
// Assumes that __combine never throws.
//TODO: Consider adding a requirement for user functors to be constant.
[=, &__combine] {
__tbb_backend::__downsweep(__i + __k, __m - __k, __tilesize, __r + __k, __lastsize,
__combine(__initial, __r[__k - 1]), __combine, __scan);
});
}
}
// Adapted from Intel(R) Cilk(TM) version from cilkpub.
// Let i:len denote a counted interval of length n starting at i. s denotes a generalized-sum value.
// Expected actions of the functors are:
// reduce(i,len) -> s -- return reduction value of i:len.
// combine(s1,s2) -> s -- return merged sum
// apex(s) -- do any processing necessary between reduce and scan.
// scan(i,len,initial) -- perform scan over i:len starting with initial.
// The initial range 0:n is partitioned into consecutive subranges.
// reduce and scan are each called exactly once per subrange.
// Thus callers can rely upon side effects in reduce.
// combine must not throw an exception.
// apex is called exactly once, after all calls to reduce and before all calls to scan.
// For example, it's useful for allocating a __buffer used by scan but whose size is the sum of all reduction values.
// T must have a trivial constructor and destructor.
template <class _ExecutionPolicy, typename _Index, typename _Tp, typename _Rp, typename _Cp, typename _Sp, typename _Ap>
void
__parallel_strict_scan(_ExecutionPolicy&&, _Index __n, _Tp __initial, _Rp __reduce, _Cp __combine, _Sp __scan,
_Ap __apex)
{
tbb::this_task_arena::isolate([=, &__combine]() {
if (__n > 1)
{
_Index __p = tbb::this_task_arena::max_concurrency();
const _Index __slack = 4;
_Index __tilesize = (__n - 1) / (__slack * __p) + 1;
_Index __m = (__n - 1) / __tilesize;
__buffer<_Tp> __buf(__m + 1);
_Tp* __r = __buf.get();
__tbb_backend::__upsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __reduce,
__combine);
// When __apex is a no-op and __combine has no side effects, a good optimizer
// should be able to eliminate all code between here and __apex.
// Alternatively, provide a default value for __apex that can be
// recognized by metaprogramming that conditionlly executes the following.
size_t __k = __m + 1;
_Tp __t = __r[__k - 1];
while ((__k &= __k - 1))
__t = __combine(__r[__k - 1], __t);
__apex(__combine(__initial, __t));
__tbb_backend::__downsweep(_Index(0), _Index(__m + 1), __tilesize, __r, __n - __m * __tilesize, __initial,
__combine, __scan);
return;
}
// Fewer than 2 elements in sequence, or out of memory. Handle has single block.
_Tp __sum = __initial;
if (__n)
__sum = __combine(__sum, __reduce(_Index(0), __n));
__apex(__sum);
if (__n)
__scan(_Index(0), __n, __initial);
});
}
template <class _ExecutionPolicy, class _Index, class _Up, class _Tp, class _Cp, class _Rp, class _Sp>
_Tp
__parallel_transform_scan(_ExecutionPolicy&&, _Index __n, _Up __u, _Tp __init, _Cp __combine, _Rp __brick_reduce,
_Sp __scan)
{
__trans_scan_body<_Index, _Up, _Tp, _Cp, _Rp, _Sp> __body(__u, __init, __combine, __brick_reduce, __scan);
auto __range = tbb::blocked_range<_Index>(0, __n);
tbb::this_task_arena::isolate([__range, &__body]() { tbb::parallel_scan(__range, __body); });
return __body.sum();
}
//------------------------------------------------------------------------
// parallel_stable_sort
//------------------------------------------------------------------------
//------------------------------------------------------------------------
// stable_sort utilities
//
// These are used by parallel implementations but do not depend on them.
//------------------------------------------------------------------------
#define _PSTL_MERGE_CUT_OFF 2000
template <typename _Func>
class __func_task;
template <typename _Func>
class __root_task;
#if TBB_INTERFACE_VERSION <= 12000
class __task : public tbb::task
{
public:
template <typename _Fn>
__task*
make_continuation(_Fn&& __f)
{
return new (allocate_continuation()) __func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f));
}
template <typename _Fn>
__task*
make_child_of(__task* parent, _Fn&& __f)
{
return new (parent->allocate_child()) __func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f));
}
template <typename _Fn>
__task*
make_additional_child_of(tbb::task* parent, _Fn&& __f)
{
return new (tbb::task::allocate_additional_child_of(*parent))
__func_task<typename std::decay<_Fn>::type>(std::forward<_Fn>(__f));
}
inline void
recycle_as_continuation()
{
tbb::task::recycle_as_continuation();
}
inline void
recycle_as_child_of(__task* parent)
{
tbb::task::recycle_as_child_of(*parent);
}
inline void
spawn(__task* __t)
{
tbb::task::spawn(*__t);
}
template <typename _Fn>
static inline void
spawn_root_and_wait(__root_task<_Fn>& __root)
{
tbb::task::spawn_root_and_wait(*__root._M_task);
}
};
template <typename _Func>
class __func_task : public __task
{
_Func _M_func;
tbb::task*
execute()
{
return _M_func(this);
};
public:
template <typename _Fn>
__func_task(_Fn&& __f) : _M_func{std::forward<_Fn>(__f)}
{
}
_Func&
body()
{
return _M_func;
}
};
template <typename _Func>
class __root_task
{
tbb::task* _M_task;
public:
template <typename... Args>
__root_task(Args&&... args)
: _M_task{new (tbb::task::allocate_root()) __func_task<_Func>{_Func(std::forward<Args>(args)...)}}
{
}
friend class __task;
friend class __func_task<_Func>;
};
#else // TBB_INTERFACE_VERSION <= 12000
class __task : public tbb::detail::d1::task
{
protected:
tbb::detail::d1::small_object_allocator _M_allocator{};
tbb::detail::d1::execution_data* _M_execute_data{};
__task* _M_parent{};
std::atomic<int> _M_refcount{};
bool _M_recycle{};
template <typename _Fn>
__task*
allocate_func_task(_Fn&& __f)
{
_PSTL_ASSERT(_M_execute_data != nullptr);
tbb::detail::d1::small_object_allocator __alloc{};
auto __t =
__alloc.new_object<__func_task<typename std::decay<_Fn>::type>>(*_M_execute_data, std::forward<_Fn>(__f));
__t->_M_allocator = __alloc;
return __t;
}
public:
__task*
parent()
{
return _M_parent;
}
void
set_ref_count(int __n)
{
_M_refcount.store(__n, std::memory_order_release);
}
template <typename _Fn>
__task*
make_continuation(_Fn&& __f)
{
auto __t = allocate_func_task(std::forward<_Fn&&>(__f));
__t->_M_parent = _M_parent;
_M_parent = nullptr;
return __t;
}
template <typename _Fn>
__task*
make_child_of(__task* __parent, _Fn&& __f)
{
auto __t = allocate_func_task(std::forward<_Fn&&>(__f));
__t->_M_parent = __parent;
return __t;
}
template <typename _Fn>
__task*
make_additional_child_of(__task* __parent, _Fn&& __f)
{
auto __t = make_child_of(__parent, std::forward<_Fn>(__f));
_PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0);
++__parent->_M_refcount;
return __t;
}
inline void
recycle_as_continuation()
{
_M_recycle = true;
}
inline void
recycle_as_child_of(__task* parent)
{
_M_recycle = true;
_M_parent = parent;
}
inline void
spawn(__task* __t)
{
_PSTL_ASSERT(_M_execute_data != nullptr);
tbb::detail::d1::spawn(*__t, *_M_execute_data->context);
}
template <typename _Fn>
static inline void
spawn_root_and_wait(__root_task<_Fn>& __root)
{
tbb::detail::d1::execute_and_wait(*__root._M_func_task, __root._M_context, __root._M_wait_object,
__root._M_context);
}
template <typename _Func>
friend class __func_task;
};
template <typename _Func>
class __func_task : public __task
{
_Func _M_func;
__task*
execute(tbb::detail::d1::execution_data& __ed) override
{
_M_execute_data = &__ed;
_M_recycle = false;
__task* __next = _M_func(this);
return finalize(__next);
};
__task*
cancel(tbb::detail::d1::execution_data& __ed) override
{
return finalize(nullptr);
}
__task*
finalize(__task* __next)
{
bool __recycle = _M_recycle;
_M_recycle = false;
if (__recycle)
{
return __next;
}
auto __parent = _M_parent;
auto __alloc = _M_allocator;
auto __ed = _M_execute_data;
this->~__func_task();
_PSTL_ASSERT(__parent != nullptr);
_PSTL_ASSERT(__parent->_M_refcount.load(std::memory_order_relaxed) > 0);
if (--__parent->_M_refcount == 0)
{
_PSTL_ASSERT(__next == nullptr);
__alloc.deallocate(this, *__ed);
return __parent;
}
return __next;
}
friend class __root_task<_Func>;
public:
template <typename _Fn>
__func_task(_Fn&& __f) : _M_func(std::forward<_Fn>(__f))
{
}
_Func&
body()
{
return _M_func;
}
};
template <typename _Func>
class __root_task : public __task
{
__task*
execute(tbb::detail::d1::execution_data& __ed) override
{
_M_wait_object.release();
return nullptr;
};
__task*
cancel(tbb::detail::d1::execution_data& __ed) override
{
_M_wait_object.release();
return nullptr;
}
__func_task<_Func>* _M_func_task{};
tbb::detail::d1::wait_context _M_wait_object{0};
tbb::task_group_context _M_context{};
public:
template <typename... Args>
__root_task(Args&&... args) : _M_wait_object{1}
{
tbb::detail::d1::small_object_allocator __alloc{};
_M_func_task = __alloc.new_object<__func_task<_Func>>(_Func(std::forward<Args>(args)...));
_M_func_task->_M_allocator = __alloc;
_M_func_task->_M_parent = this;
_M_refcount.store(1, std::memory_order_relaxed);
}
friend class __task;
};
#endif // TBB_INTERFACE_VERSION <= 12000
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _Cleanup,
typename _LeafMerge>
class __merge_func
{
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
typedef typename std::iterator_traits<_RandomAccessIterator1>::value_type _ValueType;
_RandomAccessIterator1 _M_x_beg;
_RandomAccessIterator2 _M_z_beg;
_SizeType _M_xs, _M_xe;
_SizeType _M_ys, _M_ye;
_SizeType _M_zs;
_Compare _M_comp;
_LeafMerge _M_leaf_merge;
_SizeType _M_nsort; //number of elements to be sorted for partial_sort alforithm
static const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
bool _root; //means a task is merging root task
bool _x_orig; //"true" means X(or left ) subrange is in the original container; false - in the buffer
bool _y_orig; //"true" means Y(or right) subrange is in the original container; false - in the buffer
bool _split; //"true" means a merge task is a split task for parallel merging, the execution logic differs
bool
is_partial() const
{
return _M_nsort > 0;
}
struct __move_value
{
template <typename Iterator1, typename Iterator2>
void
operator()(Iterator1 __x, Iterator2 __z)
{
*__z = std::move(*__x);
}
};
struct __move_value_construct
{
template <typename Iterator1, typename Iterator2>
void
operator()(Iterator1 __x, Iterator2 __z)
{
::new (std::addressof(*__z)) _ValueType(std::move(*__x));
}
};
struct __move_range
{
template <typename Iterator1, typename Iterator2>
Iterator2
operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2)
{
if (__last1 - __first1 < __merge_cut_off)
return std::move(__first1, __last1, __first2);
auto __n = __last1 - __first1;
tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off),
[__first1, __first2](const tbb::blocked_range<_SizeType>& __range) {
std::move(__first1 + __range.begin(), __first1 + __range.end(),
__first2 + __range.begin());
});
return __first2 + __n;
}
};
struct __move_range_construct
{
template <typename Iterator1, typename Iterator2>
Iterator2
operator()(Iterator1 __first1, Iterator1 __last1, Iterator2 __first2)
{
if (__last1 - __first1 < __merge_cut_off)
{
for (; __first1 != __last1; ++__first1, ++__first2)
__move_value_construct()(__first1, __first2);
return __first2;
}
auto __n = __last1 - __first1;
tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off),
[__first1, __first2](const tbb::blocked_range<_SizeType>& __range) {
for (auto i = __range.begin(); i != __range.end(); ++i)
__move_value_construct()(__first1 + i, __first2 + i);
});
return __first2 + __n;
}
};
struct __cleanup_range
{
template <typename Iterator>
void
operator()(Iterator __first, Iterator __last)
{
if (__last - __first < __merge_cut_off)
_Cleanup()(__first, __last);
else
{
auto __n = __last - __first;
tbb::parallel_for(tbb::blocked_range<_SizeType>(0, __n, __merge_cut_off),
[__first](const tbb::blocked_range<_SizeType>& __range) {
_Cleanup()(__first + __range.begin(), __first + __range.end());
});
}
}
};
public:
__merge_func(_SizeType __xs, _SizeType __xe, _SizeType __ys, _SizeType __ye, _SizeType __zs, _Compare __comp,
_Cleanup, _LeafMerge __leaf_merge, _SizeType __nsort, _RandomAccessIterator1 __x_beg,
_RandomAccessIterator2 __z_beg, bool __x_orig, bool __y_orig, bool __root)
: _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_x_beg(__x_beg), _M_z_beg(__z_beg),
_M_comp(__comp), _M_leaf_merge(__leaf_merge), _M_nsort(__nsort), _root(__root),
_x_orig(__x_orig), _y_orig(__y_orig), _split(false)
{
}
bool
is_left(_SizeType __idx) const
{
return _M_xs == __idx;
}
template <typename IndexType>
void
set_odd(IndexType __idx, bool __on_off)
{
if (is_left(__idx))
_x_orig = __on_off;
else
_y_orig = __on_off;
}
__task*
operator()(__task* __self);
private:
__merge_func*
parent_merge(__task* __self) const
{
return _root ? nullptr : &static_cast<__func_task<__merge_func>*>(__self->parent())->body();
}
bool
x_less_y()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_PSTL_ASSERT(__nx > 0 && __ny > 0);
_PSTL_ASSERT(_x_orig == _y_orig);
_PSTL_ASSERT(!is_partial());
if (_x_orig)
{
_PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_comp));
_PSTL_ASSERT(std::is_sorted(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_comp));
return !_M_comp(*(_M_x_beg + _M_ys), *(_M_x_beg + _M_xe - 1));
}
_PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp));
_PSTL_ASSERT(std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp));
return !_M_comp(*(_M_z_beg + _M_zs + __nx), *(_M_z_beg + _M_zs + __nx - 1));
}
void
move_x_range()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_PSTL_ASSERT(__nx > 0 && __ny > 0);
if (_x_orig)
__move_range_construct()(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_z_beg + _M_zs);
else
{
__move_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx, _M_x_beg + _M_xs);
__cleanup_range()(_M_z_beg + _M_zs, _M_z_beg + _M_zs + __nx);
}
_x_orig = !_x_orig;
}
void
move_y_range()
{
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
if (_y_orig)
__move_range_construct()(_M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs + __nx);
else
{
__move_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny, _M_x_beg + _M_ys);
__cleanup_range()(_M_z_beg + _M_zs + __nx, _M_z_beg + _M_zs + __nx + __ny);
}
_y_orig = !_y_orig;
}
__task*
merge_ranges(__task* __self)
{
_PSTL_ASSERT(_x_orig == _y_orig); //two merged subrange must be lie into the same buffer
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
const auto __n = __nx + __ny;
// need to merge {x} and {y}
if (__n > __merge_cut_off)
return split_merging(__self);
//merge to buffer
if (_x_orig)
{
_M_leaf_merge(_M_x_beg + _M_xs, _M_x_beg + _M_xe, _M_x_beg + _M_ys, _M_x_beg + _M_ye, _M_z_beg + _M_zs,
_M_comp, __move_value_construct(), __move_value_construct(), __move_range_construct(),
__move_range_construct());
_PSTL_ASSERT(parent_merge(__self)); //not root merging task
}
//merge to "origin"
else
{
_PSTL_ASSERT(_x_orig == _y_orig);
_PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_comp));
_PSTL_ASSERT(is_partial() || std::is_sorted(_M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_comp));
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_M_leaf_merge(_M_z_beg + _M_xs, _M_z_beg + _M_xe, _M_z_beg + _M_ys, _M_z_beg + _M_ye, _M_x_beg + _M_zs,
_M_comp, __move_value(), __move_value(), __move_range(), __move_range());
__cleanup_range()(_M_z_beg + _M_xs, _M_z_beg + _M_xe);
__cleanup_range()(_M_z_beg + _M_ys, _M_z_beg + _M_ye);
}
return nullptr;
}
__task*
process_ranges(__task* __self)
{
_PSTL_ASSERT(_x_orig == _y_orig);
_PSTL_ASSERT(!_split);
auto p = parent_merge(__self);
if (!p)
{ //root merging task
//optimization, just for sort algorithm, //{x} <= {y}
if (!is_partial() && x_less_y()) //we have a solution
{
if (!_x_orig)
{ //we have to move the solution to the origin
move_x_range(); //parallel moving
move_y_range(); //parallel moving
}
return nullptr;
}
//else: if we have data in the origin,
//we have to move data to the buffer for final merging into the origin.
if (_x_orig)
{
move_x_range(); //parallel moving
move_y_range(); //parallel moving
}
// need to merge {x} and {y}.
return merge_ranges(__self);
}
//else: not root merging task (parent_merge() == NULL)
//optimization, just for sort algorithm, //{x} <= {y}
if (!is_partial() && x_less_y())
{
const auto id_range = _M_zs;
p->set_odd(id_range, _x_orig);
return nullptr;
}
//else: we have to revert "_x(y)_orig" flag of the parent merging task
const auto id_range = _M_zs;
p->set_odd(id_range, !_x_orig);
return merge_ranges(__self);
}
//splitting as merge task into 2 of the same level
__task*
split_merging(__task* __self)
{
_PSTL_ASSERT(_x_orig == _y_orig);
const auto __nx = (_M_xe - _M_xs);
const auto __ny = (_M_ye - _M_ys);
_SizeType __xm{};
_SizeType __ym{};
if (__nx < __ny)
{
__ym = _M_ys + __ny / 2;
if (_x_orig)
__xm = std::upper_bound(_M_x_beg + _M_xs, _M_x_beg + _M_xe, *(_M_x_beg + __ym), _M_comp) - _M_x_beg;
else
__xm = std::upper_bound(_M_z_beg + _M_xs, _M_z_beg + _M_xe, *(_M_z_beg + __ym), _M_comp) - _M_z_beg;
}
else
{
__xm = _M_xs + __nx / 2;
if (_y_orig)
__ym = std::lower_bound(_M_x_beg + _M_ys, _M_x_beg + _M_ye, *(_M_x_beg + __xm), _M_comp) - _M_x_beg;
else
__ym = std::lower_bound(_M_z_beg + _M_ys, _M_z_beg + _M_ye, *(_M_z_beg + __xm), _M_comp) - _M_z_beg;
}
auto __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys));
__merge_func __right_func(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _Cleanup(), _M_leaf_merge, _M_nsort,
_M_x_beg, _M_z_beg, _x_orig, _y_orig, _root);
__right_func._split = true;
auto __merge_task = __self->make_additional_child_of(__self->parent(), std::move(__right_func));
__self->spawn(__merge_task);
__self->recycle_as_continuation();
_M_xe = __xm;
_M_ye = __ym;
_split = true;
return __self;
}
};
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename __M_Compare, typename _Cleanup,
typename _LeafMerge>
__task*
__merge_func<_RandomAccessIterator1, _RandomAccessIterator2, __M_Compare, _Cleanup, _LeafMerge>::
operator()(__task* __self)
{
//a. split merge task into 2 of the same level; the special logic,
//without processing(process_ranges) adjacent sub-ranges x and y
if (_split)
return merge_ranges(__self);
//b. General merging of adjacent sub-ranges x and y (with optimization in case of {x} <= {y} )
//1. x and y are in the even buffer
//2. x and y are in the odd buffer
if (_x_orig == _y_orig)
return process_ranges(__self);
//3. x is in even buffer, y is in the odd buffer
//4. x is in odd buffer, y is in the even buffer
if (!parent_merge(__self))
{ //root merge task
if (_x_orig)
move_x_range();
else
move_y_range();
}
else
{
const _SizeType __nx = (_M_xe - _M_xs);
const _SizeType __ny = (_M_ye - _M_ys);
_PSTL_ASSERT(__nx > 0);
_PSTL_ASSERT(__nx > 0);
if (__nx < __ny)
move_x_range();
else
move_y_range();
}
return process_ranges(__self);
}
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _LeafSort>
class __stable_sort_func
{
public:
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
private:
_RandomAccessIterator1 _M_xs, _M_xe, _M_x_beg;
_RandomAccessIterator2 _M_zs, _M_z_beg;
_Compare _M_comp;
_LeafSort _M_leaf_sort;
bool _M_root;
_SizeType _M_nsort; //zero or number of elements to be sorted for partial_sort alforithm
public:
__stable_sort_func(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __zs,
bool __root, _Compare __comp, _LeafSort __leaf_sort, _SizeType __nsort,
_RandomAccessIterator1 __x_beg, _RandomAccessIterator2 __z_beg)
: _M_xs(__xs), _M_xe(__xe), _M_x_beg(__x_beg), _M_zs(__zs), _M_z_beg(__z_beg), _M_comp(__comp),
_M_leaf_sort(__leaf_sort), _M_root(__root), _M_nsort(__nsort)
{
}
__task*
operator()(__task* __self);
};
#define _PSTL_STABLE_SORT_CUT_OFF 500
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _Compare, typename _LeafSort>
__task*
__stable_sort_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, _LeafSort>::operator()(__task* __self)
{
typedef __merge_func<_RandomAccessIterator1, _RandomAccessIterator2, _Compare, __utils::__serial_destroy,
__utils::__serial_move_merge>
_MergeTaskType;
const _SizeType __n = _M_xe - _M_xs;
const _SizeType __nmerge = _M_nsort > 0 ? _M_nsort : __n;
const _SizeType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF;
if (__n <= __sort_cut_off)
{
_M_leaf_sort(_M_xs, _M_xe, _M_comp);
_PSTL_ASSERT(!_M_root);
return nullptr;
}
const _RandomAccessIterator1 __xm = _M_xs + __n / 2;
const _RandomAccessIterator2 __zm = _M_zs + (__xm - _M_xs);
const _RandomAccessIterator2 __ze = _M_zs + __n;
_MergeTaskType __m(_MergeTaskType(_M_xs - _M_x_beg, __xm - _M_x_beg, __xm - _M_x_beg, _M_xe - _M_x_beg,
_M_zs - _M_z_beg, _M_comp, __utils::__serial_destroy(),
__utils::__serial_move_merge(__nmerge), _M_nsort, _M_x_beg, _M_z_beg,
/*x_orig*/ true, /*y_orig*/ true, /*root*/ _M_root));
auto __parent = __self->make_continuation(std::move(__m));
__parent->set_ref_count(2);
auto __right = __self->make_child_of(
__parent, __stable_sort_func(__xm, _M_xe, __zm, false, _M_comp, _M_leaf_sort, _M_nsort, _M_x_beg, _M_z_beg));
__self->spawn(__right);
__self->recycle_as_child_of(__parent);
_M_root = false;
_M_xe = __xm;
return __self;
}
template <class _ExecutionPolicy, typename _RandomAccessIterator, typename _Compare, typename _LeafSort>
void
__parallel_stable_sort(_ExecutionPolicy&&, _RandomAccessIterator __xs, _RandomAccessIterator __xe, _Compare __comp,
_LeafSort __leaf_sort, std::size_t __nsort = 0)
{
tbb::this_task_arena::isolate([=, &__nsort]() {
//sorting based on task tree and parallel merge
typedef typename std::iterator_traits<_RandomAccessIterator>::value_type _ValueType;
typedef typename std::iterator_traits<_RandomAccessIterator>::difference_type _DifferenceType;
const _DifferenceType __n = __xe - __xs;
if (__nsort == __n)
__nsort = 0; // 'partial_sort' becames 'sort'
const _DifferenceType __sort_cut_off = _PSTL_STABLE_SORT_CUT_OFF;
if (__n > __sort_cut_off)
{
__buffer<_ValueType> __buf(__n);
__root_task<__stable_sort_func<_RandomAccessIterator, _ValueType*, _Compare, _LeafSort>> __root{
__xs, __xe, __buf.get(), true, __comp, __leaf_sort, __nsort, __xs, __buf.get()};
__task::spawn_root_and_wait(__root);
return;
}
//serial sort
__leaf_sort(__xs, __xe, __comp);
});
}
//------------------------------------------------------------------------
// parallel_merge
//------------------------------------------------------------------------
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename _Compare, typename _LeafMerge>
class __merge_func_static
{
_RandomAccessIterator1 _M_xs, _M_xe;
_RandomAccessIterator2 _M_ys, _M_ye;
_RandomAccessIterator3 _M_zs;
_Compare _M_comp;
_LeafMerge _M_leaf_merge;
public:
__merge_func_static(_RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe, _RandomAccessIterator2 __ys,
_RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp,
_LeafMerge __leaf_merge)
: _M_xs(__xs), _M_xe(__xe), _M_ys(__ys), _M_ye(__ye), _M_zs(__zs), _M_comp(__comp), _M_leaf_merge(__leaf_merge)
{
}
__task*
operator()(__task* __self);
};
//TODO: consider usage of parallel_for with a custom blocked_range
template <typename _RandomAccessIterator1, typename _RandomAccessIterator2, typename _RandomAccessIterator3,
typename __M_Compare, typename _LeafMerge>
__task*
__merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3, __M_Compare, _LeafMerge>::
operator()(__task* __self)
{
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
const _SizeType __n = (_M_xe - _M_xs) + (_M_ye - _M_ys);
const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
if (__n <= __merge_cut_off)
{
_M_leaf_merge(_M_xs, _M_xe, _M_ys, _M_ye, _M_zs, _M_comp);
return nullptr;
}
_RandomAccessIterator1 __xm;
_RandomAccessIterator2 __ym;
if (_M_xe - _M_xs < _M_ye - _M_ys)
{
__ym = _M_ys + (_M_ye - _M_ys) / 2;
__xm = std::upper_bound(_M_xs, _M_xe, *__ym, _M_comp);
}
else
{
__xm = _M_xs + (_M_xe - _M_xs) / 2;
__ym = std::lower_bound(_M_ys, _M_ye, *__xm, _M_comp);
}
const _RandomAccessIterator3 __zm = _M_zs + ((__xm - _M_xs) + (__ym - _M_ys));
auto __right = __self->make_additional_child_of(
__self->parent(), __merge_func_static(__xm, _M_xe, __ym, _M_ye, __zm, _M_comp, _M_leaf_merge));
__self->spawn(__right);
__self->recycle_as_continuation();
_M_xe = __xm;
_M_ye = __ym;
return __self;
}
template <class _ExecutionPolicy, typename _RandomAccessIterator1, typename _RandomAccessIterator2,
typename _RandomAccessIterator3, typename _Compare, typename _LeafMerge>
void
__parallel_merge(_ExecutionPolicy&&, _RandomAccessIterator1 __xs, _RandomAccessIterator1 __xe,
_RandomAccessIterator2 __ys, _RandomAccessIterator2 __ye, _RandomAccessIterator3 __zs, _Compare __comp,
_LeafMerge __leaf_merge)
{
typedef typename std::iterator_traits<_RandomAccessIterator1>::difference_type _DifferenceType1;
typedef typename std::iterator_traits<_RandomAccessIterator2>::difference_type _DifferenceType2;
typedef typename std::common_type<_DifferenceType1, _DifferenceType2>::type _SizeType;
const _SizeType __n = (__xe - __xs) + (__ye - __ys);
const _SizeType __merge_cut_off = _PSTL_MERGE_CUT_OFF;
if (__n <= __merge_cut_off)
{
// Fall back on serial merge
__leaf_merge(__xs, __xe, __ys, __ye, __zs, __comp);
}
else
{
tbb::this_task_arena::isolate([=]() {
typedef __merge_func_static<_RandomAccessIterator1, _RandomAccessIterator2, _RandomAccessIterator3,
_Compare, _LeafMerge>
_TaskType;
__root_task<_TaskType> __root{__xs, __xe, __ys, __ye, __zs, __comp, __leaf_merge};
__task::spawn_root_and_wait(__root);
});
}
}
//------------------------------------------------------------------------
// parallel_invoke
//------------------------------------------------------------------------
template <class _ExecutionPolicy, typename _F1, typename _F2>
void
__parallel_invoke(_ExecutionPolicy&&, _F1&& __f1, _F2&& __f2)
{
//TODO: a version of tbb::this_task_arena::isolate with variadic arguments pack should be added in the future
tbb::this_task_arena::isolate([&]() { tbb::parallel_invoke(std::forward<_F1>(__f1), std::forward<_F2>(__f2)); });
}
} // namespace __tbb_backend
} // namespace __pstl
#endif /* _PSTL_PARALLEL_BACKEND_TBB_H */