7a2090b04e
Another case where build_fold_addr_expr is harmful. 2020-03-23 Richard Biener <rguenther@suse.de> PR ipa/94245 * ipa-prop.c (ipa_read_jump_function): Build the ADDR_EXRP directly rather than also folding it via build_fold_addr_expr.
5799 lines
166 KiB
C
5799 lines
166 KiB
C
/* Interprocedural analyses.
|
|
Copyright (C) 2005-2020 Free Software Foundation, Inc.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "alloc-pool.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "tree-streamer.h"
|
|
#include "cgraph.h"
|
|
#include "diagnostic.h"
|
|
#include "fold-const.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "calls.h"
|
|
#include "stor-layout.h"
|
|
#include "print-tree.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimplify-me.h"
|
|
#include "gimple-walk.h"
|
|
#include "symbol-summary.h"
|
|
#include "ipa-prop.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-inline.h"
|
|
#include "ipa-fnsummary.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "ipa-utils.h"
|
|
#include "dbgcnt.h"
|
|
#include "domwalk.h"
|
|
#include "builtins.h"
|
|
#include "tree-cfgcleanup.h"
|
|
|
|
/* Function summary where the parameter infos are actually stored. */
|
|
ipa_node_params_t *ipa_node_params_sum = NULL;
|
|
|
|
function_summary <ipcp_transformation *> *ipcp_transformation_sum = NULL;
|
|
|
|
/* Edge summary for IPA-CP edge information. */
|
|
ipa_edge_args_sum_t *ipa_edge_args_sum;
|
|
|
|
/* Traits for a hash table for reusing already existing ipa_bits. */
|
|
|
|
struct ipa_bit_ggc_hash_traits : public ggc_cache_remove <ipa_bits *>
|
|
{
|
|
typedef ipa_bits *value_type;
|
|
typedef ipa_bits *compare_type;
|
|
static hashval_t
|
|
hash (const ipa_bits *p)
|
|
{
|
|
hashval_t t = (hashval_t) p->value.to_shwi ();
|
|
return iterative_hash_host_wide_int (p->mask.to_shwi (), t);
|
|
}
|
|
static bool
|
|
equal (const ipa_bits *a, const ipa_bits *b)
|
|
{
|
|
return a->value == b->value && a->mask == b->mask;
|
|
}
|
|
static const bool empty_zero_p = true;
|
|
static void
|
|
mark_empty (ipa_bits *&p)
|
|
{
|
|
p = NULL;
|
|
}
|
|
static bool
|
|
is_empty (const ipa_bits *p)
|
|
{
|
|
return p == NULL;
|
|
}
|
|
static bool
|
|
is_deleted (const ipa_bits *p)
|
|
{
|
|
return p == reinterpret_cast<const ipa_bits *> (1);
|
|
}
|
|
static void
|
|
mark_deleted (ipa_bits *&p)
|
|
{
|
|
p = reinterpret_cast<ipa_bits *> (1);
|
|
}
|
|
};
|
|
|
|
/* Hash table for avoid repeated allocations of equal ipa_bits. */
|
|
static GTY ((cache)) hash_table<ipa_bit_ggc_hash_traits> *ipa_bits_hash_table;
|
|
|
|
/* Traits for a hash table for reusing value_ranges used for IPA. Note that
|
|
the equiv bitmap is not hashed and is expected to be NULL. */
|
|
|
|
struct ipa_vr_ggc_hash_traits : public ggc_cache_remove <value_range *>
|
|
{
|
|
typedef value_range *value_type;
|
|
typedef value_range *compare_type;
|
|
static hashval_t
|
|
hash (const value_range *p)
|
|
{
|
|
inchash::hash hstate (p->kind ());
|
|
inchash::add_expr (p->min (), hstate);
|
|
inchash::add_expr (p->max (), hstate);
|
|
return hstate.end ();
|
|
}
|
|
static bool
|
|
equal (const value_range *a, const value_range *b)
|
|
{
|
|
return a->equal_p (*b);
|
|
}
|
|
static const bool empty_zero_p = true;
|
|
static void
|
|
mark_empty (value_range *&p)
|
|
{
|
|
p = NULL;
|
|
}
|
|
static bool
|
|
is_empty (const value_range *p)
|
|
{
|
|
return p == NULL;
|
|
}
|
|
static bool
|
|
is_deleted (const value_range *p)
|
|
{
|
|
return p == reinterpret_cast<const value_range *> (1);
|
|
}
|
|
static void
|
|
mark_deleted (value_range *&p)
|
|
{
|
|
p = reinterpret_cast<value_range *> (1);
|
|
}
|
|
};
|
|
|
|
/* Hash table for avoid repeated allocations of equal value_ranges. */
|
|
static GTY ((cache)) hash_table<ipa_vr_ggc_hash_traits> *ipa_vr_hash_table;
|
|
|
|
/* Holders of ipa cgraph hooks: */
|
|
static struct cgraph_node_hook_list *function_insertion_hook_holder;
|
|
|
|
/* Description of a reference to an IPA constant. */
|
|
struct ipa_cst_ref_desc
|
|
{
|
|
/* Edge that corresponds to the statement which took the reference. */
|
|
struct cgraph_edge *cs;
|
|
/* Linked list of duplicates created when call graph edges are cloned. */
|
|
struct ipa_cst_ref_desc *next_duplicate;
|
|
/* Number of references in IPA structures, IPA_UNDESCRIBED_USE if the value
|
|
if out of control. */
|
|
int refcount;
|
|
};
|
|
|
|
/* Allocation pool for reference descriptions. */
|
|
|
|
static object_allocator<ipa_cst_ref_desc> ipa_refdesc_pool
|
|
("IPA-PROP ref descriptions");
|
|
|
|
/* Return true if DECL_FUNCTION_SPECIFIC_OPTIMIZATION of the decl associated
|
|
with NODE should prevent us from analyzing it for the purposes of IPA-CP. */
|
|
|
|
static bool
|
|
ipa_func_spec_opts_forbid_analysis_p (struct cgraph_node *node)
|
|
{
|
|
tree fs_opts = DECL_FUNCTION_SPECIFIC_OPTIMIZATION (node->decl);
|
|
|
|
if (!fs_opts)
|
|
return false;
|
|
return !opt_for_fn (node->decl, optimize) || !opt_for_fn (node->decl, flag_ipa_cp);
|
|
}
|
|
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
|
to INFO. */
|
|
|
|
static int
|
|
ipa_get_param_decl_index_1 (vec<ipa_param_descriptor, va_gc> *descriptors,
|
|
tree ptree)
|
|
{
|
|
int i, count;
|
|
|
|
count = vec_safe_length (descriptors);
|
|
for (i = 0; i < count; i++)
|
|
if ((*descriptors)[i].decl_or_type == ptree)
|
|
return i;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Return index of the formal whose tree is PTREE in function which corresponds
|
|
to INFO. */
|
|
|
|
int
|
|
ipa_get_param_decl_index (class ipa_node_params *info, tree ptree)
|
|
{
|
|
return ipa_get_param_decl_index_1 (info->descriptors, ptree);
|
|
}
|
|
|
|
/* Populate the param_decl field in parameter DESCRIPTORS that correspond to
|
|
NODE. */
|
|
|
|
static void
|
|
ipa_populate_param_decls (struct cgraph_node *node,
|
|
vec<ipa_param_descriptor, va_gc> &descriptors)
|
|
{
|
|
tree fndecl;
|
|
tree fnargs;
|
|
tree parm;
|
|
int param_num;
|
|
|
|
fndecl = node->decl;
|
|
gcc_assert (gimple_has_body_p (fndecl));
|
|
fnargs = DECL_ARGUMENTS (fndecl);
|
|
param_num = 0;
|
|
for (parm = fnargs; parm; parm = DECL_CHAIN (parm))
|
|
{
|
|
descriptors[param_num].decl_or_type = parm;
|
|
unsigned int cost = estimate_move_cost (TREE_TYPE (parm), true);
|
|
descriptors[param_num].move_cost = cost;
|
|
/* Watch overflow, move_cost is a bitfield. */
|
|
gcc_checking_assert (cost == descriptors[param_num].move_cost);
|
|
param_num++;
|
|
}
|
|
}
|
|
|
|
/* Return how many formal parameters FNDECL has. */
|
|
|
|
int
|
|
count_formal_params (tree fndecl)
|
|
{
|
|
tree parm;
|
|
int count = 0;
|
|
gcc_assert (gimple_has_body_p (fndecl));
|
|
|
|
for (parm = DECL_ARGUMENTS (fndecl); parm; parm = DECL_CHAIN (parm))
|
|
count++;
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Return the declaration of Ith formal parameter of the function corresponding
|
|
to INFO. Note there is no setter function as this array is built just once
|
|
using ipa_initialize_node_params. */
|
|
|
|
void
|
|
ipa_dump_param (FILE *file, class ipa_node_params *info, int i)
|
|
{
|
|
fprintf (file, "param #%i", i);
|
|
if ((*info->descriptors)[i].decl_or_type)
|
|
{
|
|
fprintf (file, " ");
|
|
print_generic_expr (file, (*info->descriptors)[i].decl_or_type);
|
|
}
|
|
}
|
|
|
|
/* If necessary, allocate vector of parameter descriptors in info of NODE.
|
|
Return true if they were allocated, false if not. */
|
|
|
|
static bool
|
|
ipa_alloc_node_params (struct cgraph_node *node, int param_count)
|
|
{
|
|
class ipa_node_params *info = IPA_NODE_REF_GET_CREATE (node);
|
|
|
|
if (!info->descriptors && param_count)
|
|
{
|
|
vec_safe_grow_cleared (info->descriptors, param_count);
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Initialize the ipa_node_params structure associated with NODE by counting
|
|
the function parameters, creating the descriptors and populating their
|
|
param_decls. */
|
|
|
|
void
|
|
ipa_initialize_node_params (struct cgraph_node *node)
|
|
{
|
|
class ipa_node_params *info = IPA_NODE_REF_GET_CREATE (node);
|
|
|
|
if (!info->descriptors
|
|
&& ipa_alloc_node_params (node, count_formal_params (node->decl)))
|
|
ipa_populate_param_decls (node, *info->descriptors);
|
|
}
|
|
|
|
/* Print the jump functions associated with call graph edge CS to file F. */
|
|
|
|
static void
|
|
ipa_print_node_jump_functions_for_edge (FILE *f, struct cgraph_edge *cs)
|
|
{
|
|
int i, count;
|
|
|
|
count = ipa_get_cs_argument_count (IPA_EDGE_REF (cs));
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jump_func;
|
|
enum jump_func_type type;
|
|
|
|
jump_func = ipa_get_ith_jump_func (IPA_EDGE_REF (cs), i);
|
|
type = jump_func->type;
|
|
|
|
fprintf (f, " param %d: ", i);
|
|
if (type == IPA_JF_UNKNOWN)
|
|
fprintf (f, "UNKNOWN\n");
|
|
else if (type == IPA_JF_CONST)
|
|
{
|
|
tree val = jump_func->value.constant.value;
|
|
fprintf (f, "CONST: ");
|
|
print_generic_expr (f, val);
|
|
if (TREE_CODE (val) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (val, 0)) == CONST_DECL)
|
|
{
|
|
fprintf (f, " -> ");
|
|
print_generic_expr (f, DECL_INITIAL (TREE_OPERAND (val, 0)));
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
fprintf (f, "PASS THROUGH: ");
|
|
fprintf (f, "%d, op %s",
|
|
jump_func->value.pass_through.formal_id,
|
|
get_tree_code_name(jump_func->value.pass_through.operation));
|
|
if (jump_func->value.pass_through.operation != NOP_EXPR)
|
|
{
|
|
fprintf (f, " ");
|
|
print_generic_expr (f, jump_func->value.pass_through.operand);
|
|
}
|
|
if (jump_func->value.pass_through.agg_preserved)
|
|
fprintf (f, ", agg_preserved");
|
|
fprintf (f, "\n");
|
|
}
|
|
else if (type == IPA_JF_ANCESTOR)
|
|
{
|
|
fprintf (f, "ANCESTOR: ");
|
|
fprintf (f, "%d, offset " HOST_WIDE_INT_PRINT_DEC,
|
|
jump_func->value.ancestor.formal_id,
|
|
jump_func->value.ancestor.offset);
|
|
if (jump_func->value.ancestor.agg_preserved)
|
|
fprintf (f, ", agg_preserved");
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
if (jump_func->agg.items)
|
|
{
|
|
struct ipa_agg_jf_item *item;
|
|
int j;
|
|
|
|
fprintf (f, " Aggregate passed by %s:\n",
|
|
jump_func->agg.by_ref ? "reference" : "value");
|
|
FOR_EACH_VEC_ELT (*jump_func->agg.items, j, item)
|
|
{
|
|
fprintf (f, " offset: " HOST_WIDE_INT_PRINT_DEC ", ",
|
|
item->offset);
|
|
fprintf (f, "type: ");
|
|
print_generic_expr (f, item->type);
|
|
fprintf (f, ", ");
|
|
if (item->jftype == IPA_JF_PASS_THROUGH)
|
|
fprintf (f, "PASS THROUGH: %d,",
|
|
item->value.pass_through.formal_id);
|
|
else if (item->jftype == IPA_JF_LOAD_AGG)
|
|
{
|
|
fprintf (f, "LOAD AGG: %d",
|
|
item->value.pass_through.formal_id);
|
|
fprintf (f, " [offset: " HOST_WIDE_INT_PRINT_DEC ", by %s],",
|
|
item->value.load_agg.offset,
|
|
item->value.load_agg.by_ref ? "reference"
|
|
: "value");
|
|
}
|
|
|
|
if (item->jftype == IPA_JF_PASS_THROUGH
|
|
|| item->jftype == IPA_JF_LOAD_AGG)
|
|
{
|
|
fprintf (f, " op %s",
|
|
get_tree_code_name (item->value.pass_through.operation));
|
|
if (item->value.pass_through.operation != NOP_EXPR)
|
|
{
|
|
fprintf (f, " ");
|
|
print_generic_expr (f, item->value.pass_through.operand);
|
|
}
|
|
}
|
|
else if (item->jftype == IPA_JF_CONST)
|
|
{
|
|
fprintf (f, "CONST: ");
|
|
print_generic_expr (f, item->value.constant);
|
|
}
|
|
else if (item->jftype == IPA_JF_UNKNOWN)
|
|
fprintf (f, "UNKNOWN: " HOST_WIDE_INT_PRINT_DEC " bits",
|
|
tree_to_uhwi (TYPE_SIZE (item->type)));
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
class ipa_polymorphic_call_context *ctx
|
|
= ipa_get_ith_polymorhic_call_context (IPA_EDGE_REF (cs), i);
|
|
if (ctx && !ctx->useless_p ())
|
|
{
|
|
fprintf (f, " Context: ");
|
|
ctx->dump (dump_file);
|
|
}
|
|
|
|
if (jump_func->bits)
|
|
{
|
|
fprintf (f, " value: ");
|
|
print_hex (jump_func->bits->value, f);
|
|
fprintf (f, ", mask: ");
|
|
print_hex (jump_func->bits->mask, f);
|
|
fprintf (f, "\n");
|
|
}
|
|
else
|
|
fprintf (f, " Unknown bits\n");
|
|
|
|
if (jump_func->m_vr)
|
|
{
|
|
fprintf (f, " VR ");
|
|
fprintf (f, "%s[",
|
|
(jump_func->m_vr->kind () == VR_ANTI_RANGE) ? "~" : "");
|
|
print_decs (wi::to_wide (jump_func->m_vr->min ()), f);
|
|
fprintf (f, ", ");
|
|
print_decs (wi::to_wide (jump_func->m_vr->max ()), f);
|
|
fprintf (f, "]\n");
|
|
}
|
|
else
|
|
fprintf (f, " Unknown VR\n");
|
|
}
|
|
}
|
|
|
|
|
|
/* Print the jump functions of all arguments on all call graph edges going from
|
|
NODE to file F. */
|
|
|
|
void
|
|
ipa_print_node_jump_functions (FILE *f, struct cgraph_node *node)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
fprintf (f, " Jump functions of caller %s:\n", node->dump_name ());
|
|
for (cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
|
|
fprintf (f, " callsite %s -> %s : \n",
|
|
node->dump_name (),
|
|
cs->callee->dump_name ());
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
fprintf (f, " no arg info\n");
|
|
else
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
}
|
|
|
|
for (cs = node->indirect_calls; cs; cs = cs->next_callee)
|
|
{
|
|
class cgraph_indirect_call_info *ii;
|
|
|
|
ii = cs->indirect_info;
|
|
if (ii->agg_contents)
|
|
fprintf (f, " indirect %s callsite, calling param %i, "
|
|
"offset " HOST_WIDE_INT_PRINT_DEC ", %s",
|
|
ii->member_ptr ? "member ptr" : "aggregate",
|
|
ii->param_index, ii->offset,
|
|
ii->by_ref ? "by reference" : "by_value");
|
|
else
|
|
fprintf (f, " indirect %s callsite, calling param %i, "
|
|
"offset " HOST_WIDE_INT_PRINT_DEC,
|
|
ii->polymorphic ? "polymorphic" : "simple", ii->param_index,
|
|
ii->offset);
|
|
|
|
if (cs->call_stmt)
|
|
{
|
|
fprintf (f, ", for stmt ");
|
|
print_gimple_stmt (f, cs->call_stmt, 0, TDF_SLIM);
|
|
}
|
|
else
|
|
fprintf (f, "\n");
|
|
if (ii->polymorphic)
|
|
ii->context.dump (f);
|
|
if (!ipa_edge_args_info_available_for_edge_p (cs))
|
|
fprintf (f, " no arg info\n");
|
|
else
|
|
ipa_print_node_jump_functions_for_edge (f, cs);
|
|
}
|
|
}
|
|
|
|
/* Print ipa_jump_func data structures of all nodes in the call graph to F. */
|
|
|
|
void
|
|
ipa_print_all_jump_functions (FILE *f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nJump functions:\n");
|
|
FOR_EACH_FUNCTION (node)
|
|
{
|
|
ipa_print_node_jump_functions (f, node);
|
|
}
|
|
}
|
|
|
|
/* Set jfunc to be a know-really nothing jump function. */
|
|
|
|
static void
|
|
ipa_set_jf_unknown (struct ipa_jump_func *jfunc)
|
|
{
|
|
jfunc->type = IPA_JF_UNKNOWN;
|
|
}
|
|
|
|
/* Set JFUNC to be a copy of another jmp (to be used by jump function
|
|
combination code). The two functions will share their rdesc. */
|
|
|
|
static void
|
|
ipa_set_jf_cst_copy (struct ipa_jump_func *dst,
|
|
struct ipa_jump_func *src)
|
|
|
|
{
|
|
gcc_checking_assert (src->type == IPA_JF_CONST);
|
|
dst->type = IPA_JF_CONST;
|
|
dst->value.constant = src->value.constant;
|
|
}
|
|
|
|
/* Set JFUNC to be a constant jmp function. */
|
|
|
|
static void
|
|
ipa_set_jf_constant (struct ipa_jump_func *jfunc, tree constant,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
jfunc->type = IPA_JF_CONST;
|
|
jfunc->value.constant.value = unshare_expr_without_location (constant);
|
|
|
|
if (TREE_CODE (constant) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (constant, 0)) == FUNCTION_DECL)
|
|
{
|
|
struct ipa_cst_ref_desc *rdesc;
|
|
|
|
rdesc = ipa_refdesc_pool.allocate ();
|
|
rdesc->cs = cs;
|
|
rdesc->next_duplicate = NULL;
|
|
rdesc->refcount = 1;
|
|
jfunc->value.constant.rdesc = rdesc;
|
|
}
|
|
else
|
|
jfunc->value.constant.rdesc = NULL;
|
|
}
|
|
|
|
/* Set JFUNC to be a simple pass-through jump function. */
|
|
static void
|
|
ipa_set_jf_simple_pass_through (struct ipa_jump_func *jfunc, int formal_id,
|
|
bool agg_preserved)
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.operand = NULL_TREE;
|
|
jfunc->value.pass_through.formal_id = formal_id;
|
|
jfunc->value.pass_through.operation = NOP_EXPR;
|
|
jfunc->value.pass_through.agg_preserved = agg_preserved;
|
|
}
|
|
|
|
/* Set JFUNC to be an unary pass through jump function. */
|
|
|
|
static void
|
|
ipa_set_jf_unary_pass_through (struct ipa_jump_func *jfunc, int formal_id,
|
|
enum tree_code operation)
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.operand = NULL_TREE;
|
|
jfunc->value.pass_through.formal_id = formal_id;
|
|
jfunc->value.pass_through.operation = operation;
|
|
jfunc->value.pass_through.agg_preserved = false;
|
|
}
|
|
/* Set JFUNC to be an arithmetic pass through jump function. */
|
|
|
|
static void
|
|
ipa_set_jf_arith_pass_through (struct ipa_jump_func *jfunc, int formal_id,
|
|
tree operand, enum tree_code operation)
|
|
{
|
|
jfunc->type = IPA_JF_PASS_THROUGH;
|
|
jfunc->value.pass_through.operand = unshare_expr_without_location (operand);
|
|
jfunc->value.pass_through.formal_id = formal_id;
|
|
jfunc->value.pass_through.operation = operation;
|
|
jfunc->value.pass_through.agg_preserved = false;
|
|
}
|
|
|
|
/* Set JFUNC to be an ancestor jump function. */
|
|
|
|
static void
|
|
ipa_set_ancestor_jf (struct ipa_jump_func *jfunc, HOST_WIDE_INT offset,
|
|
int formal_id, bool agg_preserved)
|
|
{
|
|
jfunc->type = IPA_JF_ANCESTOR;
|
|
jfunc->value.ancestor.formal_id = formal_id;
|
|
jfunc->value.ancestor.offset = offset;
|
|
jfunc->value.ancestor.agg_preserved = agg_preserved;
|
|
}
|
|
|
|
/* Get IPA BB information about the given BB. FBI is the context of analyzis
|
|
of this function body. */
|
|
|
|
static struct ipa_bb_info *
|
|
ipa_get_bb_info (struct ipa_func_body_info *fbi, basic_block bb)
|
|
{
|
|
gcc_checking_assert (fbi);
|
|
return &fbi->bb_infos[bb->index];
|
|
}
|
|
|
|
/* Structure to be passed in between detect_type_change and
|
|
check_stmt_for_type_change. */
|
|
|
|
struct prop_type_change_info
|
|
{
|
|
/* Offset into the object where there is the virtual method pointer we are
|
|
looking for. */
|
|
HOST_WIDE_INT offset;
|
|
/* The declaration or SSA_NAME pointer of the base that we are checking for
|
|
type change. */
|
|
tree object;
|
|
/* Set to true if dynamic type change has been detected. */
|
|
bool type_maybe_changed;
|
|
};
|
|
|
|
/* Return true if STMT can modify a virtual method table pointer.
|
|
|
|
This function makes special assumptions about both constructors and
|
|
destructors which are all the functions that are allowed to alter the VMT
|
|
pointers. It assumes that destructors begin with assignment into all VMT
|
|
pointers and that constructors essentially look in the following way:
|
|
|
|
1) The very first thing they do is that they call constructors of ancestor
|
|
sub-objects that have them.
|
|
|
|
2) Then VMT pointers of this and all its ancestors is set to new values
|
|
corresponding to the type corresponding to the constructor.
|
|
|
|
3) Only afterwards, other stuff such as constructor of member sub-objects
|
|
and the code written by the user is run. Only this may include calling
|
|
virtual functions, directly or indirectly.
|
|
|
|
There is no way to call a constructor of an ancestor sub-object in any
|
|
other way.
|
|
|
|
This means that we do not have to care whether constructors get the correct
|
|
type information because they will always change it (in fact, if we define
|
|
the type to be given by the VMT pointer, it is undefined).
|
|
|
|
The most important fact to derive from the above is that if, for some
|
|
statement in the section 3, we try to detect whether the dynamic type has
|
|
changed, we can safely ignore all calls as we examine the function body
|
|
backwards until we reach statements in section 2 because these calls cannot
|
|
be ancestor constructors or destructors (if the input is not bogus) and so
|
|
do not change the dynamic type (this holds true only for automatically
|
|
allocated objects but at the moment we devirtualize only these). We then
|
|
must detect that statements in section 2 change the dynamic type and can try
|
|
to derive the new type. That is enough and we can stop, we will never see
|
|
the calls into constructors of sub-objects in this code. Therefore we can
|
|
safely ignore all call statements that we traverse.
|
|
*/
|
|
|
|
static bool
|
|
stmt_may_be_vtbl_ptr_store (gimple *stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
return false;
|
|
if (gimple_clobber_p (stmt))
|
|
return false;
|
|
else if (is_gimple_assign (stmt))
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
|
|
if (!AGGREGATE_TYPE_P (TREE_TYPE (lhs)))
|
|
{
|
|
if (flag_strict_aliasing
|
|
&& !POINTER_TYPE_P (TREE_TYPE (lhs)))
|
|
return false;
|
|
|
|
if (TREE_CODE (lhs) == COMPONENT_REF
|
|
&& !DECL_VIRTUAL_P (TREE_OPERAND (lhs, 1)))
|
|
return false;
|
|
/* In the future we might want to use get_ref_base_and_extent to find
|
|
if there is a field corresponding to the offset and if so, proceed
|
|
almost like if it was a component ref. */
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs and a helper function for detect_type_change
|
|
to check whether a particular statement may modify the virtual table
|
|
pointerIt stores its result into DATA, which points to a
|
|
prop_type_change_info structure. */
|
|
|
|
static bool
|
|
check_stmt_for_type_change (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef, void *data)
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (vdef);
|
|
struct prop_type_change_info *tci = (struct prop_type_change_info *) data;
|
|
|
|
if (stmt_may_be_vtbl_ptr_store (stmt))
|
|
{
|
|
tci->type_maybe_changed = true;
|
|
return true;
|
|
}
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* See if ARG is PARAM_DECl describing instance passed by pointer
|
|
or reference in FUNCTION. Return false if the dynamic type may change
|
|
in between beggining of the function until CALL is invoked.
|
|
|
|
Generally functions are not allowed to change type of such instances,
|
|
but they call destructors. We assume that methods cannot destroy the THIS
|
|
pointer. Also as a special cases, constructor and destructors may change
|
|
type of the THIS pointer. */
|
|
|
|
static bool
|
|
param_type_may_change_p (tree function, tree arg, gimple *call)
|
|
{
|
|
/* Pure functions cannot do any changes on the dynamic type;
|
|
that require writting to memory. */
|
|
if (flags_from_decl_or_type (function) & (ECF_PURE | ECF_CONST))
|
|
return false;
|
|
/* We need to check if we are within inlined consturctor
|
|
or destructor (ideally we would have way to check that the
|
|
inline cdtor is actually working on ARG, but we don't have
|
|
easy tie on this, so punt on all non-pure cdtors.
|
|
We may also record the types of cdtors and once we know type
|
|
of the instance match them.
|
|
|
|
Also code unification optimizations may merge calls from
|
|
different blocks making return values unreliable. So
|
|
do nothing during late optimization. */
|
|
if (DECL_STRUCT_FUNCTION (function)->after_inlining)
|
|
return true;
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& SSA_NAME_IS_DEFAULT_DEF (arg)
|
|
&& TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
|
|
{
|
|
/* Normal (non-THIS) argument. */
|
|
if ((SSA_NAME_VAR (arg) != DECL_ARGUMENTS (function)
|
|
|| TREE_CODE (TREE_TYPE (function)) != METHOD_TYPE)
|
|
/* THIS pointer of an method - here we want to watch constructors
|
|
and destructors as those definitely may change the dynamic
|
|
type. */
|
|
|| (TREE_CODE (TREE_TYPE (function)) == METHOD_TYPE
|
|
&& !DECL_CXX_CONSTRUCTOR_P (function)
|
|
&& !DECL_CXX_DESTRUCTOR_P (function)
|
|
&& (SSA_NAME_VAR (arg) == DECL_ARGUMENTS (function))))
|
|
{
|
|
/* Walk the inline stack and watch out for ctors/dtors. */
|
|
for (tree block = gimple_block (call); block && TREE_CODE (block) == BLOCK;
|
|
block = BLOCK_SUPERCONTEXT (block))
|
|
if (inlined_polymorphic_ctor_dtor_block_p (block, false))
|
|
return true;
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Detect whether the dynamic type of ARG of COMP_TYPE has changed (before
|
|
callsite CALL) by looking for assignments to its virtual table pointer. If
|
|
it is, return true. ARG is the object itself (not a pointer
|
|
to it, unless dereferenced). BASE is the base of the memory access as
|
|
returned by get_ref_base_and_extent, as is the offset.
|
|
|
|
This is helper function for detect_type_change and detect_type_change_ssa
|
|
that does the heavy work which is usually unnecesary. */
|
|
|
|
static bool
|
|
detect_type_change_from_memory_writes (ipa_func_body_info *fbi, tree arg,
|
|
tree base, tree comp_type, gcall *call,
|
|
HOST_WIDE_INT offset)
|
|
{
|
|
struct prop_type_change_info tci;
|
|
ao_ref ao;
|
|
|
|
gcc_checking_assert (DECL_P (arg)
|
|
|| TREE_CODE (arg) == MEM_REF
|
|
|| handled_component_p (arg));
|
|
|
|
comp_type = TYPE_MAIN_VARIANT (comp_type);
|
|
|
|
/* Const calls cannot call virtual methods through VMT and so type changes do
|
|
not matter. */
|
|
if (!flag_devirtualize || !gimple_vuse (call)
|
|
/* Be sure expected_type is polymorphic. */
|
|
|| !comp_type
|
|
|| TREE_CODE (comp_type) != RECORD_TYPE
|
|
|| !TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))
|
|
|| !BINFO_VTABLE (TYPE_BINFO (TYPE_MAIN_VARIANT (comp_type))))
|
|
return true;
|
|
|
|
ao_ref_init (&ao, arg);
|
|
ao.base = base;
|
|
ao.offset = offset;
|
|
ao.size = POINTER_SIZE;
|
|
ao.max_size = ao.size;
|
|
|
|
tci.offset = offset;
|
|
tci.object = get_base_address (arg);
|
|
tci.type_maybe_changed = false;
|
|
|
|
int walked
|
|
= walk_aliased_vdefs (&ao, gimple_vuse (call), check_stmt_for_type_change,
|
|
&tci, NULL, NULL, fbi->aa_walk_budget + 1);
|
|
|
|
if (walked >= 0 && !tci.type_maybe_changed)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Detect whether the dynamic type of ARG of COMP_TYPE may have changed.
|
|
If it is, return true. ARG is the object itself (not a pointer
|
|
to it, unless dereferenced). BASE is the base of the memory access as
|
|
returned by get_ref_base_and_extent, as is the offset. */
|
|
|
|
static bool
|
|
detect_type_change (ipa_func_body_info *fbi, tree arg, tree base,
|
|
tree comp_type, gcall *call,
|
|
HOST_WIDE_INT offset)
|
|
{
|
|
if (!flag_devirtualize)
|
|
return false;
|
|
|
|
if (TREE_CODE (base) == MEM_REF
|
|
&& !param_type_may_change_p (current_function_decl,
|
|
TREE_OPERAND (base, 0),
|
|
call))
|
|
return false;
|
|
return detect_type_change_from_memory_writes (fbi, arg, base, comp_type,
|
|
call, offset);
|
|
}
|
|
|
|
/* Like detect_type_change but ARG is supposed to be a non-dereferenced pointer
|
|
SSA name (its dereference will become the base and the offset is assumed to
|
|
be zero). */
|
|
|
|
static bool
|
|
detect_type_change_ssa (ipa_func_body_info *fbi, tree arg, tree comp_type,
|
|
gcall *call)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (arg) == SSA_NAME);
|
|
if (!flag_devirtualize
|
|
|| !POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return false;
|
|
|
|
if (!param_type_may_change_p (current_function_decl, arg, call))
|
|
return false;
|
|
|
|
arg = build2 (MEM_REF, ptr_type_node, arg,
|
|
build_int_cst (ptr_type_node, 0));
|
|
|
|
return detect_type_change_from_memory_writes (fbi, arg, arg, comp_type,
|
|
call, 0);
|
|
}
|
|
|
|
/* Callback of walk_aliased_vdefs. Flags that it has been invoked to the
|
|
boolean variable pointed to by DATA. */
|
|
|
|
static bool
|
|
mark_modified (ao_ref *ao ATTRIBUTE_UNUSED, tree vdef ATTRIBUTE_UNUSED,
|
|
void *data)
|
|
{
|
|
bool *b = (bool *) data;
|
|
*b = true;
|
|
return true;
|
|
}
|
|
|
|
/* Find the nearest valid aa status for parameter specified by INDEX that
|
|
dominates BB. */
|
|
|
|
static struct ipa_param_aa_status *
|
|
find_dominating_aa_status (struct ipa_func_body_info *fbi, basic_block bb,
|
|
int index)
|
|
{
|
|
while (true)
|
|
{
|
|
bb = get_immediate_dominator (CDI_DOMINATORS, bb);
|
|
if (!bb)
|
|
return NULL;
|
|
struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
|
|
if (!bi->param_aa_statuses.is_empty ()
|
|
&& bi->param_aa_statuses[index].valid)
|
|
return &bi->param_aa_statuses[index];
|
|
}
|
|
}
|
|
|
|
/* Get AA status structure for the given BB and parameter with INDEX. Allocate
|
|
structures and/or intialize the result with a dominating description as
|
|
necessary. */
|
|
|
|
static struct ipa_param_aa_status *
|
|
parm_bb_aa_status_for_bb (struct ipa_func_body_info *fbi, basic_block bb,
|
|
int index)
|
|
{
|
|
gcc_checking_assert (fbi);
|
|
struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
|
|
if (bi->param_aa_statuses.is_empty ())
|
|
bi->param_aa_statuses.safe_grow_cleared (fbi->param_count);
|
|
struct ipa_param_aa_status *paa = &bi->param_aa_statuses[index];
|
|
if (!paa->valid)
|
|
{
|
|
gcc_checking_assert (!paa->parm_modified
|
|
&& !paa->ref_modified
|
|
&& !paa->pt_modified);
|
|
struct ipa_param_aa_status *dom_paa;
|
|
dom_paa = find_dominating_aa_status (fbi, bb, index);
|
|
if (dom_paa)
|
|
*paa = *dom_paa;
|
|
else
|
|
paa->valid = true;
|
|
}
|
|
|
|
return paa;
|
|
}
|
|
|
|
/* Return true if a load from a formal parameter PARM_LOAD is known to retrieve
|
|
a value known not to be modified in this function before reaching the
|
|
statement STMT. FBI holds information about the function we have so far
|
|
gathered but do not survive the summary building stage. */
|
|
|
|
static bool
|
|
parm_preserved_before_stmt_p (struct ipa_func_body_info *fbi, int index,
|
|
gimple *stmt, tree parm_load)
|
|
{
|
|
struct ipa_param_aa_status *paa;
|
|
bool modified = false;
|
|
ao_ref refd;
|
|
|
|
tree base = get_base_address (parm_load);
|
|
gcc_assert (TREE_CODE (base) == PARM_DECL);
|
|
if (TREE_READONLY (base))
|
|
return true;
|
|
|
|
gcc_checking_assert (fbi);
|
|
paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
|
|
if (paa->parm_modified)
|
|
return false;
|
|
|
|
gcc_checking_assert (gimple_vuse (stmt) != NULL_TREE);
|
|
ao_ref_init (&refd, parm_load);
|
|
int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
|
|
&modified, NULL, NULL,
|
|
fbi->aa_walk_budget + 1);
|
|
if (walked < 0)
|
|
{
|
|
modified = true;
|
|
if (fbi)
|
|
fbi->aa_walk_budget = 0;
|
|
}
|
|
else if (fbi)
|
|
fbi->aa_walk_budget -= walked;
|
|
if (paa && modified)
|
|
paa->parm_modified = true;
|
|
return !modified;
|
|
}
|
|
|
|
/* If STMT is an assignment that loads a value from an parameter declaration,
|
|
return the index of the parameter in ipa_node_params which has not been
|
|
modified. Otherwise return -1. */
|
|
|
|
static int
|
|
load_from_unmodified_param (struct ipa_func_body_info *fbi,
|
|
vec<ipa_param_descriptor, va_gc> *descriptors,
|
|
gimple *stmt)
|
|
{
|
|
int index;
|
|
tree op1;
|
|
|
|
if (!gimple_assign_single_p (stmt))
|
|
return -1;
|
|
|
|
op1 = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (op1) != PARM_DECL)
|
|
return -1;
|
|
|
|
index = ipa_get_param_decl_index_1 (descriptors, op1);
|
|
if (index < 0
|
|
|| !parm_preserved_before_stmt_p (fbi, index, stmt, op1))
|
|
return -1;
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Return true if memory reference REF (which must be a load through parameter
|
|
with INDEX) loads data that are known to be unmodified in this function
|
|
before reaching statement STMT. */
|
|
|
|
static bool
|
|
parm_ref_data_preserved_p (struct ipa_func_body_info *fbi,
|
|
int index, gimple *stmt, tree ref)
|
|
{
|
|
struct ipa_param_aa_status *paa;
|
|
bool modified = false;
|
|
ao_ref refd;
|
|
|
|
gcc_checking_assert (fbi);
|
|
paa = parm_bb_aa_status_for_bb (fbi, gimple_bb (stmt), index);
|
|
if (paa->ref_modified)
|
|
return false;
|
|
|
|
gcc_checking_assert (gimple_vuse (stmt));
|
|
ao_ref_init (&refd, ref);
|
|
int walked = walk_aliased_vdefs (&refd, gimple_vuse (stmt), mark_modified,
|
|
&modified, NULL, NULL,
|
|
fbi->aa_walk_budget + 1);
|
|
if (walked < 0)
|
|
{
|
|
modified = true;
|
|
fbi->aa_walk_budget = 0;
|
|
}
|
|
else
|
|
fbi->aa_walk_budget -= walked;
|
|
if (modified)
|
|
paa->ref_modified = true;
|
|
return !modified;
|
|
}
|
|
|
|
/* Return true if the data pointed to by PARM (which is a parameter with INDEX)
|
|
is known to be unmodified in this function before reaching call statement
|
|
CALL into which it is passed. FBI describes the function body. */
|
|
|
|
static bool
|
|
parm_ref_data_pass_through_p (struct ipa_func_body_info *fbi, int index,
|
|
gimple *call, tree parm)
|
|
{
|
|
bool modified = false;
|
|
ao_ref refd;
|
|
|
|
/* It's unnecessary to calculate anything about memory contnets for a const
|
|
function because it is not goin to use it. But do not cache the result
|
|
either. Also, no such calculations for non-pointers. */
|
|
if (!gimple_vuse (call)
|
|
|| !POINTER_TYPE_P (TREE_TYPE (parm)))
|
|
return false;
|
|
|
|
struct ipa_param_aa_status *paa = parm_bb_aa_status_for_bb (fbi,
|
|
gimple_bb (call),
|
|
index);
|
|
if (paa->pt_modified)
|
|
return false;
|
|
|
|
ao_ref_init_from_ptr_and_size (&refd, parm, NULL_TREE);
|
|
int walked = walk_aliased_vdefs (&refd, gimple_vuse (call), mark_modified,
|
|
&modified, NULL, NULL,
|
|
fbi->aa_walk_budget + 1);
|
|
if (walked < 0)
|
|
{
|
|
fbi->aa_walk_budget = 0;
|
|
modified = true;
|
|
}
|
|
else
|
|
fbi->aa_walk_budget -= walked;
|
|
if (modified)
|
|
paa->pt_modified = true;
|
|
return !modified;
|
|
}
|
|
|
|
/* Return true if we can prove that OP is a memory reference loading
|
|
data from an aggregate passed as a parameter.
|
|
|
|
The function works in two modes. If GUARANTEED_UNMODIFIED is NULL, it return
|
|
false if it cannot prove that the value has not been modified before the
|
|
load in STMT. If GUARANTEED_UNMODIFIED is not NULL, it will return true even
|
|
if it cannot prove the value has not been modified, in that case it will
|
|
store false to *GUARANTEED_UNMODIFIED, otherwise it will store true there.
|
|
|
|
INFO and PARMS_AINFO describe parameters of the current function (but the
|
|
latter can be NULL), STMT is the load statement. If function returns true,
|
|
*INDEX_P, *OFFSET_P and *BY_REF is filled with the parameter index, offset
|
|
within the aggregate and whether it is a load from a value passed by
|
|
reference respectively. */
|
|
|
|
bool
|
|
ipa_load_from_parm_agg (struct ipa_func_body_info *fbi,
|
|
vec<ipa_param_descriptor, va_gc> *descriptors,
|
|
gimple *stmt, tree op, int *index_p,
|
|
HOST_WIDE_INT *offset_p, poly_int64 *size_p,
|
|
bool *by_ref_p, bool *guaranteed_unmodified)
|
|
{
|
|
int index;
|
|
HOST_WIDE_INT size;
|
|
bool reverse;
|
|
tree base = get_ref_base_and_extent_hwi (op, offset_p, &size, &reverse);
|
|
|
|
if (!base)
|
|
return false;
|
|
|
|
if (DECL_P (base))
|
|
{
|
|
int index = ipa_get_param_decl_index_1 (descriptors, base);
|
|
if (index >= 0
|
|
&& parm_preserved_before_stmt_p (fbi, index, stmt, op))
|
|
{
|
|
*index_p = index;
|
|
*by_ref_p = false;
|
|
if (size_p)
|
|
*size_p = size;
|
|
if (guaranteed_unmodified)
|
|
*guaranteed_unmodified = true;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (TREE_CODE (base) != MEM_REF
|
|
|| TREE_CODE (TREE_OPERAND (base, 0)) != SSA_NAME
|
|
|| !integer_zerop (TREE_OPERAND (base, 1)))
|
|
return false;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (TREE_OPERAND (base, 0)))
|
|
{
|
|
tree parm = SSA_NAME_VAR (TREE_OPERAND (base, 0));
|
|
index = ipa_get_param_decl_index_1 (descriptors, parm);
|
|
}
|
|
else
|
|
{
|
|
/* This branch catches situations where a pointer parameter is not a
|
|
gimple register, for example:
|
|
|
|
void hip7(S*) (struct S * p)
|
|
{
|
|
void (*<T2e4>) (struct S *) D.1867;
|
|
struct S * p.1;
|
|
|
|
<bb 2>:
|
|
p.1_1 = p;
|
|
D.1867_2 = p.1_1->f;
|
|
D.1867_2 ();
|
|
gdp = &p;
|
|
*/
|
|
|
|
gimple *def = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
|
|
index = load_from_unmodified_param (fbi, descriptors, def);
|
|
}
|
|
|
|
if (index >= 0)
|
|
{
|
|
bool data_preserved = parm_ref_data_preserved_p (fbi, index, stmt, op);
|
|
if (!data_preserved && !guaranteed_unmodified)
|
|
return false;
|
|
|
|
*index_p = index;
|
|
*by_ref_p = true;
|
|
if (size_p)
|
|
*size_p = size;
|
|
if (guaranteed_unmodified)
|
|
*guaranteed_unmodified = data_preserved;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* If STMT is an assignment that loads a value from a parameter declaration,
|
|
or from an aggregate passed as the parameter either by value or reference,
|
|
return the index of the parameter in ipa_node_params. Otherwise return -1.
|
|
|
|
FBI holds gathered information about the function. INFO describes
|
|
parameters of the function, STMT is the assignment statement. If it is a
|
|
memory load from an aggregate, *OFFSET_P is filled with offset within the
|
|
aggregate, and *BY_REF_P specifies whether the aggregate is passed by
|
|
reference. */
|
|
|
|
static int
|
|
load_from_unmodified_param_or_agg (struct ipa_func_body_info *fbi,
|
|
class ipa_node_params *info,
|
|
gimple *stmt,
|
|
HOST_WIDE_INT *offset_p,
|
|
bool *by_ref_p)
|
|
{
|
|
int index = load_from_unmodified_param (fbi, info->descriptors, stmt);
|
|
poly_int64 size;
|
|
|
|
/* Load value from a parameter declaration. */
|
|
if (index >= 0)
|
|
{
|
|
*offset_p = -1;
|
|
return index;
|
|
}
|
|
|
|
if (!gimple_assign_load_p (stmt))
|
|
return -1;
|
|
|
|
tree rhs = gimple_assign_rhs1 (stmt);
|
|
|
|
/* Skip memory reference containing VIEW_CONVERT_EXPR. */
|
|
for (tree t = rhs; handled_component_p (t); t = TREE_OPERAND (t, 0))
|
|
if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
|
|
return -1;
|
|
|
|
/* Skip memory reference containing bit-field. */
|
|
if (TREE_CODE (rhs) == BIT_FIELD_REF
|
|
|| contains_bitfld_component_ref_p (rhs))
|
|
return -1;
|
|
|
|
if (!ipa_load_from_parm_agg (fbi, info->descriptors, stmt, rhs, &index,
|
|
offset_p, &size, by_ref_p))
|
|
return -1;
|
|
|
|
gcc_assert (!maybe_ne (tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (rhs))),
|
|
size));
|
|
if (!*by_ref_p)
|
|
{
|
|
tree param_type = ipa_get_type (info, index);
|
|
|
|
if (!param_type || !AGGREGATE_TYPE_P (param_type))
|
|
return -1;
|
|
}
|
|
else if (TREE_THIS_VOLATILE (rhs))
|
|
return -1;
|
|
|
|
return index;
|
|
}
|
|
|
|
/* Given that an actual argument is an SSA_NAME (given in NAME) and is a result
|
|
of an assignment statement STMT, try to determine whether we are actually
|
|
handling any of the following cases and construct an appropriate jump
|
|
function into JFUNC if so:
|
|
|
|
1) The passed value is loaded from a formal parameter which is not a gimple
|
|
register (most probably because it is addressable, the value has to be
|
|
scalar) and we can guarantee the value has not changed. This case can
|
|
therefore be described by a simple pass-through jump function. For example:
|
|
|
|
foo (int a)
|
|
{
|
|
int a.0;
|
|
|
|
a.0_2 = a;
|
|
bar (a.0_2);
|
|
|
|
2) The passed value can be described by a simple arithmetic pass-through
|
|
jump function. E.g.
|
|
|
|
foo (int a)
|
|
{
|
|
int D.2064;
|
|
|
|
D.2064_4 = a.1(D) + 4;
|
|
bar (D.2064_4);
|
|
|
|
This case can also occur in combination of the previous one, e.g.:
|
|
|
|
foo (int a, int z)
|
|
{
|
|
int a.0;
|
|
int D.2064;
|
|
|
|
a.0_3 = a;
|
|
D.2064_4 = a.0_3 + 4;
|
|
foo (D.2064_4);
|
|
|
|
3) The passed value is an address of an object within another one (which
|
|
also passed by reference). Such situations are described by an ancestor
|
|
jump function and describe situations such as:
|
|
|
|
B::foo() (struct B * const this)
|
|
{
|
|
struct A * D.1845;
|
|
|
|
D.1845_2 = &this_1(D)->D.1748;
|
|
A::bar (D.1845_2);
|
|
|
|
INFO is the structure describing individual parameters access different
|
|
stages of IPA optimizations. PARMS_AINFO contains the information that is
|
|
only needed for intraprocedural analysis. */
|
|
|
|
static void
|
|
compute_complex_assign_jump_func (struct ipa_func_body_info *fbi,
|
|
class ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gcall *call, gimple *stmt, tree name,
|
|
tree param_type)
|
|
{
|
|
HOST_WIDE_INT offset, size;
|
|
tree op1, tc_ssa, base, ssa;
|
|
bool reverse;
|
|
int index;
|
|
|
|
op1 = gimple_assign_rhs1 (stmt);
|
|
|
|
if (TREE_CODE (op1) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (op1))
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (op1));
|
|
else
|
|
index = load_from_unmodified_param (fbi, info->descriptors,
|
|
SSA_NAME_DEF_STMT (op1));
|
|
tc_ssa = op1;
|
|
}
|
|
else
|
|
{
|
|
index = load_from_unmodified_param (fbi, info->descriptors, stmt);
|
|
tc_ssa = gimple_assign_lhs (stmt);
|
|
}
|
|
|
|
if (index >= 0)
|
|
{
|
|
switch (gimple_assign_rhs_class (stmt))
|
|
{
|
|
case GIMPLE_BINARY_RHS:
|
|
{
|
|
tree op2 = gimple_assign_rhs2 (stmt);
|
|
if (!is_gimple_ip_invariant (op2)
|
|
|| ((TREE_CODE_CLASS (gimple_assign_rhs_code (stmt))
|
|
!= tcc_comparison)
|
|
&& !useless_type_conversion_p (TREE_TYPE (name),
|
|
TREE_TYPE (op1))))
|
|
return;
|
|
|
|
ipa_set_jf_arith_pass_through (jfunc, index, op2,
|
|
gimple_assign_rhs_code (stmt));
|
|
break;
|
|
}
|
|
case GIMPLE_SINGLE_RHS:
|
|
{
|
|
bool agg_p = parm_ref_data_pass_through_p (fbi, index, call,
|
|
tc_ssa);
|
|
ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
|
|
break;
|
|
}
|
|
case GIMPLE_UNARY_RHS:
|
|
if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt)))
|
|
ipa_set_jf_unary_pass_through (jfunc, index,
|
|
gimple_assign_rhs_code (stmt));
|
|
default:;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (TREE_CODE (op1) != ADDR_EXPR)
|
|
return;
|
|
op1 = TREE_OPERAND (op1, 0);
|
|
if (TREE_CODE (TREE_TYPE (op1)) != RECORD_TYPE)
|
|
return;
|
|
base = get_ref_base_and_extent_hwi (op1, &offset, &size, &reverse);
|
|
offset_int mem_offset;
|
|
if (!base
|
|
|| TREE_CODE (base) != MEM_REF
|
|
|| !mem_ref_offset (base).is_constant (&mem_offset))
|
|
return;
|
|
offset += mem_offset.to_short_addr () * BITS_PER_UNIT;
|
|
ssa = TREE_OPERAND (base, 0);
|
|
if (TREE_CODE (ssa) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (ssa)
|
|
|| offset < 0)
|
|
return;
|
|
|
|
/* Dynamic types are changed in constructors and destructors. */
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (ssa));
|
|
if (index >= 0 && param_type && POINTER_TYPE_P (param_type))
|
|
ipa_set_ancestor_jf (jfunc, offset, index,
|
|
parm_ref_data_pass_through_p (fbi, index, call, ssa));
|
|
}
|
|
|
|
/* Extract the base, offset and MEM_REF expression from a statement ASSIGN if
|
|
it looks like:
|
|
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
|
|
|
The base of the MEM_REF must be a default definition SSA NAME of a
|
|
parameter. Return NULL_TREE if it looks otherwise. If case of success, the
|
|
whole MEM_REF expression is returned and the offset calculated from any
|
|
handled components and the MEM_REF itself is stored into *OFFSET. The whole
|
|
RHS stripped off the ADDR_EXPR is stored into *OBJ_P. */
|
|
|
|
static tree
|
|
get_ancestor_addr_info (gimple *assign, tree *obj_p, HOST_WIDE_INT *offset)
|
|
{
|
|
HOST_WIDE_INT size;
|
|
tree expr, parm, obj;
|
|
bool reverse;
|
|
|
|
if (!gimple_assign_single_p (assign))
|
|
return NULL_TREE;
|
|
expr = gimple_assign_rhs1 (assign);
|
|
|
|
if (TREE_CODE (expr) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
expr = TREE_OPERAND (expr, 0);
|
|
obj = expr;
|
|
expr = get_ref_base_and_extent_hwi (expr, offset, &size, &reverse);
|
|
|
|
offset_int mem_offset;
|
|
if (!expr
|
|
|| TREE_CODE (expr) != MEM_REF
|
|
|| !mem_ref_offset (expr).is_constant (&mem_offset))
|
|
return NULL_TREE;
|
|
parm = TREE_OPERAND (expr, 0);
|
|
if (TREE_CODE (parm) != SSA_NAME
|
|
|| !SSA_NAME_IS_DEFAULT_DEF (parm)
|
|
|| TREE_CODE (SSA_NAME_VAR (parm)) != PARM_DECL)
|
|
return NULL_TREE;
|
|
|
|
*offset += mem_offset.to_short_addr () * BITS_PER_UNIT;
|
|
*obj_p = obj;
|
|
return expr;
|
|
}
|
|
|
|
|
|
/* Given that an actual argument is an SSA_NAME that is a result of a phi
|
|
statement PHI, try to find out whether NAME is in fact a
|
|
multiple-inheritance typecast from a descendant into an ancestor of a formal
|
|
parameter and thus can be described by an ancestor jump function and if so,
|
|
write the appropriate function into JFUNC.
|
|
|
|
Essentially we want to match the following pattern:
|
|
|
|
if (obj_2(D) != 0B)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 3>:
|
|
iftmp.1_3 = &obj_2(D)->D.1762;
|
|
|
|
<bb 4>:
|
|
# iftmp.1_1 = PHI <iftmp.1_3(3), 0B(2)>
|
|
D.1879_6 = middleman_1 (iftmp.1_1, i_5(D));
|
|
return D.1879_6; */
|
|
|
|
static void
|
|
compute_complex_ancestor_jump_func (struct ipa_func_body_info *fbi,
|
|
class ipa_node_params *info,
|
|
struct ipa_jump_func *jfunc,
|
|
gcall *call, gphi *phi)
|
|
{
|
|
HOST_WIDE_INT offset;
|
|
gimple *assign, *cond;
|
|
basic_block phi_bb, assign_bb, cond_bb;
|
|
tree tmp, parm, expr, obj;
|
|
int index, i;
|
|
|
|
if (gimple_phi_num_args (phi) != 2)
|
|
return;
|
|
|
|
if (integer_zerop (PHI_ARG_DEF (phi, 1)))
|
|
tmp = PHI_ARG_DEF (phi, 0);
|
|
else if (integer_zerop (PHI_ARG_DEF (phi, 0)))
|
|
tmp = PHI_ARG_DEF (phi, 1);
|
|
else
|
|
return;
|
|
if (TREE_CODE (tmp) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (tmp)
|
|
|| !POINTER_TYPE_P (TREE_TYPE (tmp))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (tmp))) != RECORD_TYPE)
|
|
return;
|
|
|
|
assign = SSA_NAME_DEF_STMT (tmp);
|
|
assign_bb = gimple_bb (assign);
|
|
if (!single_pred_p (assign_bb))
|
|
return;
|
|
expr = get_ancestor_addr_info (assign, &obj, &offset);
|
|
if (!expr)
|
|
return;
|
|
parm = TREE_OPERAND (expr, 0);
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (parm));
|
|
if (index < 0)
|
|
return;
|
|
|
|
cond_bb = single_pred (assign_bb);
|
|
cond = last_stmt (cond_bb);
|
|
if (!cond
|
|
|| gimple_code (cond) != GIMPLE_COND
|
|
|| gimple_cond_code (cond) != NE_EXPR
|
|
|| gimple_cond_lhs (cond) != parm
|
|
|| !integer_zerop (gimple_cond_rhs (cond)))
|
|
return;
|
|
|
|
phi_bb = gimple_bb (phi);
|
|
for (i = 0; i < 2; i++)
|
|
{
|
|
basic_block pred = EDGE_PRED (phi_bb, i)->src;
|
|
if (pred != assign_bb && pred != cond_bb)
|
|
return;
|
|
}
|
|
|
|
ipa_set_ancestor_jf (jfunc, offset, index,
|
|
parm_ref_data_pass_through_p (fbi, index, call, parm));
|
|
}
|
|
|
|
/* Inspect the given TYPE and return true iff it has the same structure (the
|
|
same number of fields of the same types) as a C++ member pointer. If
|
|
METHOD_PTR and DELTA are non-NULL, store the trees representing the
|
|
corresponding fields there. */
|
|
|
|
static bool
|
|
type_like_member_ptr_p (tree type, tree *method_ptr, tree *delta)
|
|
{
|
|
tree fld;
|
|
|
|
if (TREE_CODE (type) != RECORD_TYPE)
|
|
return false;
|
|
|
|
fld = TYPE_FIELDS (type);
|
|
if (!fld || !POINTER_TYPE_P (TREE_TYPE (fld))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (fld))) != METHOD_TYPE
|
|
|| !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
|
|
return false;
|
|
|
|
if (method_ptr)
|
|
*method_ptr = fld;
|
|
|
|
fld = DECL_CHAIN (fld);
|
|
if (!fld || INTEGRAL_TYPE_P (fld)
|
|
|| !tree_fits_uhwi_p (DECL_FIELD_OFFSET (fld)))
|
|
return false;
|
|
if (delta)
|
|
*delta = fld;
|
|
|
|
if (DECL_CHAIN (fld))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* If RHS is an SSA_NAME and it is defined by a simple copy assign statement,
|
|
return the rhs of its defining statement, and this statement is stored in
|
|
*RHS_STMT. Otherwise return RHS as it is. */
|
|
|
|
static inline tree
|
|
get_ssa_def_if_simple_copy (tree rhs, gimple **rhs_stmt)
|
|
{
|
|
while (TREE_CODE (rhs) == SSA_NAME && !SSA_NAME_IS_DEFAULT_DEF (rhs))
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (rhs);
|
|
|
|
if (gimple_assign_single_p (def_stmt))
|
|
rhs = gimple_assign_rhs1 (def_stmt);
|
|
else
|
|
break;
|
|
*rhs_stmt = def_stmt;
|
|
}
|
|
return rhs;
|
|
}
|
|
|
|
/* Simple linked list, describing contents of an aggregate before call. */
|
|
|
|
struct ipa_known_agg_contents_list
|
|
{
|
|
/* Offset and size of the described part of the aggregate. */
|
|
HOST_WIDE_INT offset, size;
|
|
|
|
/* Type of the described part of the aggregate. */
|
|
tree type;
|
|
|
|
/* Known constant value or jump function data describing contents. */
|
|
struct ipa_load_agg_data value;
|
|
|
|
/* Pointer to the next structure in the list. */
|
|
struct ipa_known_agg_contents_list *next;
|
|
};
|
|
|
|
/* Add an aggregate content item into a linked list of
|
|
ipa_known_agg_contents_list structure, in which all elements
|
|
are sorted ascendingly by offset. */
|
|
|
|
static inline void
|
|
add_to_agg_contents_list (struct ipa_known_agg_contents_list **plist,
|
|
struct ipa_known_agg_contents_list *item)
|
|
{
|
|
struct ipa_known_agg_contents_list *list = *plist;
|
|
|
|
for (; list; list = list->next)
|
|
{
|
|
if (list->offset >= item->offset)
|
|
break;
|
|
|
|
plist = &list->next;
|
|
}
|
|
|
|
item->next = list;
|
|
*plist = item;
|
|
}
|
|
|
|
/* Check whether a given aggregate content is clobbered by certain element in
|
|
a linked list of ipa_known_agg_contents_list. */
|
|
|
|
static inline bool
|
|
clobber_by_agg_contents_list_p (struct ipa_known_agg_contents_list *list,
|
|
struct ipa_known_agg_contents_list *item)
|
|
{
|
|
for (; list; list = list->next)
|
|
{
|
|
if (list->offset >= item->offset)
|
|
return list->offset < item->offset + item->size;
|
|
|
|
if (list->offset + list->size > item->offset)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Build aggregate jump function from LIST, assuming there are exactly
|
|
VALUE_COUNT entries there and that offset of the passed argument
|
|
is ARG_OFFSET and store it into JFUNC. */
|
|
|
|
static void
|
|
build_agg_jump_func_from_list (struct ipa_known_agg_contents_list *list,
|
|
int value_count, HOST_WIDE_INT arg_offset,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
vec_alloc (jfunc->agg.items, value_count);
|
|
for (; list; list = list->next)
|
|
{
|
|
struct ipa_agg_jf_item item;
|
|
tree operand = list->value.pass_through.operand;
|
|
|
|
if (list->value.pass_through.formal_id >= 0)
|
|
{
|
|
/* Content value is derived from some formal paramerter. */
|
|
if (list->value.offset >= 0)
|
|
item.jftype = IPA_JF_LOAD_AGG;
|
|
else
|
|
item.jftype = IPA_JF_PASS_THROUGH;
|
|
|
|
item.value.load_agg = list->value;
|
|
if (operand)
|
|
item.value.pass_through.operand
|
|
= unshare_expr_without_location (operand);
|
|
}
|
|
else if (operand)
|
|
{
|
|
/* Content value is known constant. */
|
|
item.jftype = IPA_JF_CONST;
|
|
item.value.constant = unshare_expr_without_location (operand);
|
|
}
|
|
else
|
|
continue;
|
|
|
|
item.type = list->type;
|
|
gcc_assert (tree_to_shwi (TYPE_SIZE (list->type)) == list->size);
|
|
|
|
item.offset = list->offset - arg_offset;
|
|
gcc_assert ((item.offset % BITS_PER_UNIT) == 0);
|
|
|
|
jfunc->agg.items->quick_push (item);
|
|
}
|
|
}
|
|
|
|
/* Given an assignment statement STMT, try to collect information into
|
|
AGG_VALUE that will be used to construct jump function for RHS of the
|
|
assignment, from which content value of an aggregate part comes.
|
|
|
|
Besides constant and simple pass-through jump functions, also try to
|
|
identify whether it matches the following pattern that can be described by
|
|
a load-value-from-aggregate jump function, which is a derivative of simple
|
|
pass-through jump function.
|
|
|
|
foo (int *p)
|
|
{
|
|
...
|
|
|
|
*(q_5 + 4) = *(p_3(D) + 28) op 1;
|
|
bar (q_5);
|
|
}
|
|
|
|
Here IPA_LOAD_AGG_DATA data structure is informative enough to describe
|
|
constant, simple pass-through and load-vale-from-aggregate. If value
|
|
is constant, it will be kept in field OPERAND, and field FORMAL_ID is
|
|
set to -1. For simple pass-through and load-value-from-aggregate, field
|
|
FORMAL_ID specifies the related formal parameter index, and field
|
|
OFFSET can be used to distinguish them, -1 means simple pass-through,
|
|
otherwise means load-value-from-aggregate. */
|
|
|
|
static void
|
|
analyze_agg_content_value (struct ipa_func_body_info *fbi,
|
|
struct ipa_load_agg_data *agg_value,
|
|
gimple *stmt)
|
|
{
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
enum tree_code code;
|
|
int index = -1;
|
|
|
|
/* Initialize jump function data for the aggregate part. */
|
|
memset (agg_value, 0, sizeof (*agg_value));
|
|
agg_value->pass_through.operation = NOP_EXPR;
|
|
agg_value->pass_through.formal_id = -1;
|
|
agg_value->offset = -1;
|
|
|
|
if (AGGREGATE_TYPE_P (TREE_TYPE (lhs)) /* TODO: Support aggregate type. */
|
|
|| TREE_THIS_VOLATILE (lhs)
|
|
|| TREE_CODE (lhs) == BIT_FIELD_REF
|
|
|| contains_bitfld_component_ref_p (lhs))
|
|
return;
|
|
|
|
/* Skip SSA copies. */
|
|
while (gimple_assign_rhs_class (stmt) == GIMPLE_SINGLE_RHS)
|
|
{
|
|
if (TREE_CODE (rhs1) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (rhs1))
|
|
break;
|
|
|
|
stmt = SSA_NAME_DEF_STMT (rhs1);
|
|
if (!is_gimple_assign (stmt))
|
|
return;
|
|
|
|
rhs1 = gimple_assign_rhs1 (stmt);
|
|
}
|
|
|
|
code = gimple_assign_rhs_code (stmt);
|
|
switch (gimple_assign_rhs_class (stmt))
|
|
{
|
|
case GIMPLE_SINGLE_RHS:
|
|
if (is_gimple_ip_invariant (rhs1))
|
|
{
|
|
agg_value->pass_through.operand = rhs1;
|
|
return;
|
|
}
|
|
code = NOP_EXPR;
|
|
break;
|
|
|
|
case GIMPLE_UNARY_RHS:
|
|
/* NOTE: A GIMPLE_UNARY_RHS operation might not be tcc_unary
|
|
(truth_not_expr is example), GIMPLE_BINARY_RHS does not imply
|
|
tcc_binary, this subtleness is somewhat misleading.
|
|
|
|
Since tcc_unary is widely used in IPA-CP code to check an operation
|
|
with one operand, here we only allow tc_unary operation to avoid
|
|
possible problem. Then we can use (opclass == tc_unary) or not to
|
|
distinguish unary and binary. */
|
|
if (TREE_CODE_CLASS (code) != tcc_unary || CONVERT_EXPR_CODE_P (code))
|
|
return;
|
|
|
|
rhs1 = get_ssa_def_if_simple_copy (rhs1, &stmt);
|
|
break;
|
|
|
|
case GIMPLE_BINARY_RHS:
|
|
{
|
|
gimple *rhs1_stmt = stmt;
|
|
gimple *rhs2_stmt = stmt;
|
|
tree rhs2 = gimple_assign_rhs2 (stmt);
|
|
|
|
rhs1 = get_ssa_def_if_simple_copy (rhs1, &rhs1_stmt);
|
|
rhs2 = get_ssa_def_if_simple_copy (rhs2, &rhs2_stmt);
|
|
|
|
if (is_gimple_ip_invariant (rhs2))
|
|
{
|
|
agg_value->pass_through.operand = rhs2;
|
|
stmt = rhs1_stmt;
|
|
}
|
|
else if (is_gimple_ip_invariant (rhs1))
|
|
{
|
|
if (TREE_CODE_CLASS (code) == tcc_comparison)
|
|
code = swap_tree_comparison (code);
|
|
else if (!commutative_tree_code (code))
|
|
return;
|
|
|
|
agg_value->pass_through.operand = rhs1;
|
|
stmt = rhs2_stmt;
|
|
rhs1 = rhs2;
|
|
}
|
|
else
|
|
return;
|
|
|
|
if (TREE_CODE_CLASS (code) != tcc_comparison
|
|
&& !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs1)))
|
|
return;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (TREE_CODE (rhs1) != SSA_NAME)
|
|
index = load_from_unmodified_param_or_agg (fbi, fbi->info, stmt,
|
|
&agg_value->offset,
|
|
&agg_value->by_ref);
|
|
else if (SSA_NAME_IS_DEFAULT_DEF (rhs1))
|
|
index = ipa_get_param_decl_index (fbi->info, SSA_NAME_VAR (rhs1));
|
|
|
|
if (index >= 0)
|
|
{
|
|
if (agg_value->offset >= 0)
|
|
agg_value->type = TREE_TYPE (rhs1);
|
|
agg_value->pass_through.formal_id = index;
|
|
agg_value->pass_through.operation = code;
|
|
}
|
|
else
|
|
agg_value->pass_through.operand = NULL_TREE;
|
|
}
|
|
|
|
/* If STMT is a memory store to the object whose address is BASE, extract
|
|
information (offset, size, and value) into CONTENT, and return true,
|
|
otherwise we conservatively assume the whole object is modified with
|
|
unknown content, and return false. CHECK_REF means that access to object
|
|
is expected to be in form of MEM_REF expression. */
|
|
|
|
static bool
|
|
extract_mem_content (struct ipa_func_body_info *fbi,
|
|
gimple *stmt, tree base, bool check_ref,
|
|
struct ipa_known_agg_contents_list *content)
|
|
{
|
|
HOST_WIDE_INT lhs_offset, lhs_size;
|
|
bool reverse;
|
|
|
|
if (!is_gimple_assign (stmt))
|
|
return false;
|
|
|
|
tree lhs = gimple_assign_lhs (stmt);
|
|
tree lhs_base = get_ref_base_and_extent_hwi (lhs, &lhs_offset, &lhs_size,
|
|
&reverse);
|
|
if (!lhs_base)
|
|
return false;
|
|
|
|
if (check_ref)
|
|
{
|
|
if (TREE_CODE (lhs_base) != MEM_REF
|
|
|| TREE_OPERAND (lhs_base, 0) != base
|
|
|| !integer_zerop (TREE_OPERAND (lhs_base, 1)))
|
|
return false;
|
|
}
|
|
else if (lhs_base != base)
|
|
return false;
|
|
|
|
content->offset = lhs_offset;
|
|
content->size = lhs_size;
|
|
content->type = TREE_TYPE (lhs);
|
|
content->next = NULL;
|
|
|
|
analyze_agg_content_value (fbi, &content->value, stmt);
|
|
return true;
|
|
}
|
|
|
|
/* Traverse statements from CALL backwards, scanning whether an aggregate given
|
|
in ARG is filled in constants or values that are derived from caller's
|
|
formal parameter in the way described by some kinds of jump functions. FBI
|
|
is the context of the caller function for interprocedural analysis. ARG can
|
|
either be an aggregate expression or a pointer to an aggregate. ARG_TYPE is
|
|
the type of the aggregate, JFUNC is the jump function for the aggregate. */
|
|
|
|
static void
|
|
determine_known_aggregate_parts (struct ipa_func_body_info *fbi,
|
|
gcall *call, tree arg,
|
|
tree arg_type,
|
|
struct ipa_jump_func *jfunc)
|
|
{
|
|
struct ipa_known_agg_contents_list *list = NULL, *all_list = NULL;
|
|
bitmap visited = NULL;
|
|
int item_count = 0, value_count = 0;
|
|
HOST_WIDE_INT arg_offset, arg_size;
|
|
tree arg_base;
|
|
bool check_ref, by_ref;
|
|
ao_ref r;
|
|
int max_agg_items = opt_for_fn (fbi->node->decl, param_ipa_max_agg_items);
|
|
|
|
if (max_agg_items == 0)
|
|
return;
|
|
|
|
/* The function operates in three stages. First, we prepare check_ref, r,
|
|
arg_base and arg_offset based on what is actually passed as an actual
|
|
argument. */
|
|
|
|
if (POINTER_TYPE_P (arg_type))
|
|
{
|
|
by_ref = true;
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
tree type_size;
|
|
if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (arg_type)))
|
|
|| !POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
return;
|
|
check_ref = true;
|
|
arg_base = arg;
|
|
arg_offset = 0;
|
|
type_size = TYPE_SIZE (TREE_TYPE (arg_type));
|
|
arg_size = tree_to_uhwi (type_size);
|
|
ao_ref_init_from_ptr_and_size (&r, arg_base, NULL_TREE);
|
|
}
|
|
else if (TREE_CODE (arg) == ADDR_EXPR)
|
|
{
|
|
bool reverse;
|
|
|
|
arg = TREE_OPERAND (arg, 0);
|
|
arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset,
|
|
&arg_size, &reverse);
|
|
if (!arg_base)
|
|
return;
|
|
if (DECL_P (arg_base))
|
|
{
|
|
check_ref = false;
|
|
ao_ref_init (&r, arg_base);
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
else
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
bool reverse;
|
|
|
|
gcc_checking_assert (AGGREGATE_TYPE_P (TREE_TYPE (arg)));
|
|
|
|
by_ref = false;
|
|
check_ref = false;
|
|
arg_base = get_ref_base_and_extent_hwi (arg, &arg_offset,
|
|
&arg_size, &reverse);
|
|
if (!arg_base)
|
|
return;
|
|
|
|
ao_ref_init (&r, arg);
|
|
}
|
|
|
|
/* Second stage traverses virtual SSA web backwards starting from the call
|
|
statement, only looks at individual dominating virtual operand (its
|
|
definition dominates the call), as long as it is confident that content
|
|
of the aggregate is affected by definition of the virtual operand, it
|
|
builds a sorted linked list of ipa_agg_jf_list describing that. */
|
|
|
|
for (tree dom_vuse = gimple_vuse (call); dom_vuse;)
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (dom_vuse);
|
|
|
|
if (gimple_code (stmt) == GIMPLE_PHI)
|
|
{
|
|
dom_vuse = get_continuation_for_phi (stmt, &r, true,
|
|
fbi->aa_walk_budget,
|
|
&visited, false, NULL, NULL);
|
|
continue;
|
|
}
|
|
|
|
if (stmt_may_clobber_ref_p_1 (stmt, &r))
|
|
{
|
|
struct ipa_known_agg_contents_list *content
|
|
= XALLOCA (struct ipa_known_agg_contents_list);
|
|
|
|
if (!extract_mem_content (fbi, stmt, arg_base, check_ref, content))
|
|
break;
|
|
|
|
/* Now we get a dominating virtual operand, and need to check
|
|
whether its value is clobbered any other dominating one. */
|
|
if ((content->value.pass_through.formal_id >= 0
|
|
|| content->value.pass_through.operand)
|
|
&& !clobber_by_agg_contents_list_p (all_list, content))
|
|
{
|
|
struct ipa_known_agg_contents_list *copy
|
|
= XALLOCA (struct ipa_known_agg_contents_list);
|
|
|
|
/* Add to the list consisting of only dominating virtual
|
|
operands, whose definitions can finally reach the call. */
|
|
add_to_agg_contents_list (&list, (*copy = *content, copy));
|
|
|
|
if (++value_count == max_agg_items)
|
|
break;
|
|
}
|
|
|
|
/* Add to the list consisting of all dominating virtual operands. */
|
|
add_to_agg_contents_list (&all_list, content);
|
|
|
|
if (++item_count == 2 * max_agg_items)
|
|
break;
|
|
}
|
|
dom_vuse = gimple_vuse (stmt);
|
|
}
|
|
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
|
|
/* Third stage just goes over the list and creates an appropriate vector of
|
|
ipa_agg_jf_item structures out of it, of course only if there are
|
|
any meaningful items to begin with. */
|
|
|
|
if (value_count)
|
|
{
|
|
jfunc->agg.by_ref = by_ref;
|
|
build_agg_jump_func_from_list (list, value_count, arg_offset, jfunc);
|
|
}
|
|
}
|
|
|
|
|
|
/* Return the Ith param type of callee associated with call graph
|
|
edge E. */
|
|
|
|
tree
|
|
ipa_get_callee_param_type (struct cgraph_edge *e, int i)
|
|
{
|
|
int n;
|
|
tree type = (e->callee
|
|
? TREE_TYPE (e->callee->decl)
|
|
: gimple_call_fntype (e->call_stmt));
|
|
tree t = TYPE_ARG_TYPES (type);
|
|
|
|
for (n = 0; n < i; n++)
|
|
{
|
|
if (!t)
|
|
break;
|
|
t = TREE_CHAIN (t);
|
|
}
|
|
if (t)
|
|
return TREE_VALUE (t);
|
|
if (!e->callee)
|
|
return NULL;
|
|
t = DECL_ARGUMENTS (e->callee->decl);
|
|
for (n = 0; n < i; n++)
|
|
{
|
|
if (!t)
|
|
return NULL;
|
|
t = TREE_CHAIN (t);
|
|
}
|
|
if (t)
|
|
return TREE_TYPE (t);
|
|
return NULL;
|
|
}
|
|
|
|
/* Return ipa_bits with VALUE and MASK values, which can be either a newly
|
|
allocated structure or a previously existing one shared with other jump
|
|
functions and/or transformation summaries. */
|
|
|
|
ipa_bits *
|
|
ipa_get_ipa_bits_for_value (const widest_int &value, const widest_int &mask)
|
|
{
|
|
ipa_bits tmp;
|
|
tmp.value = value;
|
|
tmp.mask = mask;
|
|
|
|
ipa_bits **slot = ipa_bits_hash_table->find_slot (&tmp, INSERT);
|
|
if (*slot)
|
|
return *slot;
|
|
|
|
ipa_bits *res = ggc_alloc<ipa_bits> ();
|
|
res->value = value;
|
|
res->mask = mask;
|
|
*slot = res;
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Assign to JF a pointer to ipa_bits structure with VALUE and MASK. Use hash
|
|
table in order to avoid creating multiple same ipa_bits structures. */
|
|
|
|
static void
|
|
ipa_set_jfunc_bits (ipa_jump_func *jf, const widest_int &value,
|
|
const widest_int &mask)
|
|
{
|
|
jf->bits = ipa_get_ipa_bits_for_value (value, mask);
|
|
}
|
|
|
|
/* Return a pointer to a value_range just like *TMP, but either find it in
|
|
ipa_vr_hash_table or allocate it in GC memory. TMP->equiv must be NULL. */
|
|
|
|
static value_range *
|
|
ipa_get_value_range (value_range *tmp)
|
|
{
|
|
value_range **slot = ipa_vr_hash_table->find_slot (tmp, INSERT);
|
|
if (*slot)
|
|
return *slot;
|
|
|
|
value_range *vr = ggc_alloc<value_range> ();
|
|
*vr = *tmp;
|
|
*slot = vr;
|
|
|
|
return vr;
|
|
}
|
|
|
|
/* Return a pointer to a value range consisting of TYPE, MIN, MAX and an empty
|
|
equiv set. Use hash table in order to avoid creating multiple same copies of
|
|
value_ranges. */
|
|
|
|
static value_range *
|
|
ipa_get_value_range (enum value_range_kind kind, tree min, tree max)
|
|
{
|
|
value_range tmp (min, max, kind);
|
|
return ipa_get_value_range (&tmp);
|
|
}
|
|
|
|
/* Assign to JF a pointer to a value_range structure with TYPE, MIN and MAX and
|
|
a NULL equiv bitmap. Use hash table in order to avoid creating multiple
|
|
same value_range structures. */
|
|
|
|
static void
|
|
ipa_set_jfunc_vr (ipa_jump_func *jf, enum value_range_kind type,
|
|
tree min, tree max)
|
|
{
|
|
jf->m_vr = ipa_get_value_range (type, min, max);
|
|
}
|
|
|
|
/* Assign to JF a pointer to a value_range just like TMP but either fetch a
|
|
copy from ipa_vr_hash_table or allocate a new on in GC memory. */
|
|
|
|
static void
|
|
ipa_set_jfunc_vr (ipa_jump_func *jf, value_range *tmp)
|
|
{
|
|
jf->m_vr = ipa_get_value_range (tmp);
|
|
}
|
|
|
|
/* Compute jump function for all arguments of callsite CS and insert the
|
|
information in the jump_functions array in the ipa_edge_args corresponding
|
|
to this callsite. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions_for_edge (struct ipa_func_body_info *fbi,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
class ipa_node_params *info = IPA_NODE_REF (cs->caller);
|
|
class ipa_edge_args *args = IPA_EDGE_REF_GET_CREATE (cs);
|
|
gcall *call = cs->call_stmt;
|
|
int n, arg_num = gimple_call_num_args (call);
|
|
bool useful_context = false;
|
|
|
|
if (arg_num == 0 || args->jump_functions)
|
|
return;
|
|
vec_safe_grow_cleared (args->jump_functions, arg_num);
|
|
if (flag_devirtualize)
|
|
vec_safe_grow_cleared (args->polymorphic_call_contexts, arg_num);
|
|
|
|
if (gimple_call_internal_p (call))
|
|
return;
|
|
if (ipa_func_spec_opts_forbid_analysis_p (cs->caller))
|
|
return;
|
|
|
|
for (n = 0; n < arg_num; n++)
|
|
{
|
|
struct ipa_jump_func *jfunc = ipa_get_ith_jump_func (args, n);
|
|
tree arg = gimple_call_arg (call, n);
|
|
tree param_type = ipa_get_callee_param_type (cs, n);
|
|
if (flag_devirtualize && POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
tree instance;
|
|
class ipa_polymorphic_call_context context (cs->caller->decl,
|
|
arg, cs->call_stmt,
|
|
&instance);
|
|
context.get_dynamic_type (instance, arg, NULL, cs->call_stmt,
|
|
&fbi->aa_walk_budget);
|
|
*ipa_get_ith_polymorhic_call_context (args, n) = context;
|
|
if (!context.useless_p ())
|
|
useful_context = true;
|
|
}
|
|
|
|
if (POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
bool addr_nonzero = false;
|
|
bool strict_overflow = false;
|
|
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& param_type
|
|
&& get_ptr_nonnull (arg))
|
|
addr_nonzero = true;
|
|
else if (tree_single_nonzero_warnv_p (arg, &strict_overflow))
|
|
addr_nonzero = true;
|
|
|
|
if (addr_nonzero)
|
|
{
|
|
tree z = build_int_cst (TREE_TYPE (arg), 0);
|
|
ipa_set_jfunc_vr (jfunc, VR_ANTI_RANGE, z, z);
|
|
}
|
|
else
|
|
gcc_assert (!jfunc->m_vr);
|
|
}
|
|
else
|
|
{
|
|
wide_int min, max;
|
|
value_range_kind kind;
|
|
if (TREE_CODE (arg) == SSA_NAME
|
|
&& param_type
|
|
&& (kind = get_range_info (arg, &min, &max))
|
|
&& (kind == VR_RANGE || kind == VR_ANTI_RANGE))
|
|
{
|
|
value_range resvr;
|
|
value_range tmpvr (wide_int_to_tree (TREE_TYPE (arg), min),
|
|
wide_int_to_tree (TREE_TYPE (arg), max),
|
|
kind);
|
|
range_fold_unary_expr (&resvr, NOP_EXPR, param_type,
|
|
&tmpvr, TREE_TYPE (arg));
|
|
if (!resvr.undefined_p () && !resvr.varying_p ())
|
|
ipa_set_jfunc_vr (jfunc, &resvr);
|
|
else
|
|
gcc_assert (!jfunc->m_vr);
|
|
}
|
|
else
|
|
gcc_assert (!jfunc->m_vr);
|
|
}
|
|
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (arg))
|
|
&& (TREE_CODE (arg) == SSA_NAME || TREE_CODE (arg) == INTEGER_CST))
|
|
{
|
|
if (TREE_CODE (arg) == SSA_NAME)
|
|
ipa_set_jfunc_bits (jfunc, 0,
|
|
widest_int::from (get_nonzero_bits (arg),
|
|
TYPE_SIGN (TREE_TYPE (arg))));
|
|
else
|
|
ipa_set_jfunc_bits (jfunc, wi::to_widest (arg), 0);
|
|
}
|
|
else if (POINTER_TYPE_P (TREE_TYPE (arg)))
|
|
{
|
|
unsigned HOST_WIDE_INT bitpos;
|
|
unsigned align;
|
|
|
|
get_pointer_alignment_1 (arg, &align, &bitpos);
|
|
widest_int mask = wi::bit_and_not
|
|
(wi::mask<widest_int> (TYPE_PRECISION (TREE_TYPE (arg)), false),
|
|
align / BITS_PER_UNIT - 1);
|
|
widest_int value = bitpos / BITS_PER_UNIT;
|
|
ipa_set_jfunc_bits (jfunc, value, mask);
|
|
}
|
|
else
|
|
gcc_assert (!jfunc->bits);
|
|
|
|
if (is_gimple_ip_invariant (arg)
|
|
|| (VAR_P (arg)
|
|
&& is_global_var (arg)
|
|
&& TREE_READONLY (arg)))
|
|
ipa_set_jf_constant (jfunc, arg, cs);
|
|
else if (!is_gimple_reg_type (TREE_TYPE (arg))
|
|
&& TREE_CODE (arg) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, arg);
|
|
|
|
gcc_assert (index >=0);
|
|
/* Aggregate passed by value, check for pass-through, otherwise we
|
|
will attempt to fill in aggregate contents later in this
|
|
for cycle. */
|
|
if (parm_preserved_before_stmt_p (fbi, index, call, arg))
|
|
{
|
|
ipa_set_jf_simple_pass_through (jfunc, index, false);
|
|
continue;
|
|
}
|
|
}
|
|
else if (TREE_CODE (arg) == SSA_NAME)
|
|
{
|
|
if (SSA_NAME_IS_DEFAULT_DEF (arg))
|
|
{
|
|
int index = ipa_get_param_decl_index (info, SSA_NAME_VAR (arg));
|
|
if (index >= 0)
|
|
{
|
|
bool agg_p;
|
|
agg_p = parm_ref_data_pass_through_p (fbi, index, call, arg);
|
|
ipa_set_jf_simple_pass_through (jfunc, index, agg_p);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (arg);
|
|
if (is_gimple_assign (stmt))
|
|
compute_complex_assign_jump_func (fbi, info, jfunc,
|
|
call, stmt, arg, param_type);
|
|
else if (gimple_code (stmt) == GIMPLE_PHI)
|
|
compute_complex_ancestor_jump_func (fbi, info, jfunc,
|
|
call,
|
|
as_a <gphi *> (stmt));
|
|
}
|
|
}
|
|
|
|
/* If ARG is pointer, we cannot use its type to determine the type of aggregate
|
|
passed (because type conversions are ignored in gimple). Usually we can
|
|
safely get type from function declaration, but in case of K&R prototypes or
|
|
variadic functions we can try our luck with type of the pointer passed.
|
|
TODO: Since we look for actual initialization of the memory object, we may better
|
|
work out the type based on the memory stores we find. */
|
|
if (!param_type)
|
|
param_type = TREE_TYPE (arg);
|
|
|
|
if ((jfunc->type != IPA_JF_PASS_THROUGH
|
|
|| !ipa_get_jf_pass_through_agg_preserved (jfunc))
|
|
&& (jfunc->type != IPA_JF_ANCESTOR
|
|
|| !ipa_get_jf_ancestor_agg_preserved (jfunc))
|
|
&& (AGGREGATE_TYPE_P (TREE_TYPE (arg))
|
|
|| POINTER_TYPE_P (param_type)))
|
|
determine_known_aggregate_parts (fbi, call, arg, param_type, jfunc);
|
|
}
|
|
if (!useful_context)
|
|
vec_free (args->polymorphic_call_contexts);
|
|
}
|
|
|
|
/* Compute jump functions for all edges - both direct and indirect - outgoing
|
|
from BB. */
|
|
|
|
static void
|
|
ipa_compute_jump_functions_for_bb (struct ipa_func_body_info *fbi, basic_block bb)
|
|
{
|
|
struct ipa_bb_info *bi = ipa_get_bb_info (fbi, bb);
|
|
int i;
|
|
struct cgraph_edge *cs;
|
|
|
|
FOR_EACH_VEC_ELT_REVERSE (bi->cg_edges, i, cs)
|
|
{
|
|
struct cgraph_node *callee = cs->callee;
|
|
|
|
if (callee)
|
|
{
|
|
callee = callee->ultimate_alias_target ();
|
|
/* We do not need to bother analyzing calls to unknown functions
|
|
unless they may become known during lto/whopr. */
|
|
if (!callee->definition && !flag_lto)
|
|
continue;
|
|
}
|
|
ipa_compute_jump_functions_for_edge (fbi, cs);
|
|
}
|
|
}
|
|
|
|
/* If STMT looks like a statement loading a value from a member pointer formal
|
|
parameter, return that parameter and store the offset of the field to
|
|
*OFFSET_P, if it is non-NULL. Otherwise return NULL (but *OFFSET_P still
|
|
might be clobbered). If USE_DELTA, then we look for a use of the delta
|
|
field rather than the pfn. */
|
|
|
|
static tree
|
|
ipa_get_stmt_member_ptr_load_param (gimple *stmt, bool use_delta,
|
|
HOST_WIDE_INT *offset_p)
|
|
{
|
|
tree rhs, rec, ref_field, ref_offset, fld, ptr_field, delta_field;
|
|
|
|
if (!gimple_assign_single_p (stmt))
|
|
return NULL_TREE;
|
|
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
if (TREE_CODE (rhs) == COMPONENT_REF)
|
|
{
|
|
ref_field = TREE_OPERAND (rhs, 1);
|
|
rhs = TREE_OPERAND (rhs, 0);
|
|
}
|
|
else
|
|
ref_field = NULL_TREE;
|
|
if (TREE_CODE (rhs) != MEM_REF)
|
|
return NULL_TREE;
|
|
rec = TREE_OPERAND (rhs, 0);
|
|
if (TREE_CODE (rec) != ADDR_EXPR)
|
|
return NULL_TREE;
|
|
rec = TREE_OPERAND (rec, 0);
|
|
if (TREE_CODE (rec) != PARM_DECL
|
|
|| !type_like_member_ptr_p (TREE_TYPE (rec), &ptr_field, &delta_field))
|
|
return NULL_TREE;
|
|
ref_offset = TREE_OPERAND (rhs, 1);
|
|
|
|
if (use_delta)
|
|
fld = delta_field;
|
|
else
|
|
fld = ptr_field;
|
|
if (offset_p)
|
|
*offset_p = int_bit_position (fld);
|
|
|
|
if (ref_field)
|
|
{
|
|
if (integer_nonzerop (ref_offset))
|
|
return NULL_TREE;
|
|
return ref_field == fld ? rec : NULL_TREE;
|
|
}
|
|
else
|
|
return tree_int_cst_equal (byte_position (fld), ref_offset) ? rec
|
|
: NULL_TREE;
|
|
}
|
|
|
|
/* Returns true iff T is an SSA_NAME defined by a statement. */
|
|
|
|
static bool
|
|
ipa_is_ssa_with_stmt_def (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME
|
|
&& !SSA_NAME_IS_DEFAULT_DEF (t))
|
|
return true;
|
|
else
|
|
return false;
|
|
}
|
|
|
|
/* Find the indirect call graph edge corresponding to STMT and mark it as a
|
|
call to a parameter number PARAM_INDEX. NODE is the caller. Return the
|
|
indirect call graph edge.
|
|
If POLYMORPHIC is true record is as a destination of polymorphic call. */
|
|
|
|
static struct cgraph_edge *
|
|
ipa_note_param_call (struct cgraph_node *node, int param_index,
|
|
gcall *stmt, bool polymorphic)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
|
|
cs = node->get_edge (stmt);
|
|
cs->indirect_info->param_index = param_index;
|
|
cs->indirect_info->agg_contents = 0;
|
|
cs->indirect_info->member_ptr = 0;
|
|
cs->indirect_info->guaranteed_unmodified = 0;
|
|
ipa_set_param_used_by_indirect_call (IPA_NODE_REF (node),
|
|
param_index, true);
|
|
if (cs->indirect_info->polymorphic || polymorphic)
|
|
ipa_set_param_used_by_polymorphic_call
|
|
(IPA_NODE_REF (node), param_index, true);
|
|
return cs;
|
|
}
|
|
|
|
/* Analyze the CALL and examine uses of formal parameters of the caller NODE
|
|
(described by INFO). PARMS_AINFO is a pointer to a vector containing
|
|
intermediate information about each formal parameter. Currently it checks
|
|
whether the call calls a pointer that is a formal parameter and if so, the
|
|
parameter is marked with the called flag and an indirect call graph edge
|
|
describing the call is created. This is very simple for ordinary pointers
|
|
represented in SSA but not-so-nice when it comes to member pointers. The
|
|
ugly part of this function does nothing more than trying to match the
|
|
pattern of such a call. An example of such a pattern is the gimple dump
|
|
below, the call is on the last line:
|
|
|
|
<bb 2>:
|
|
f$__delta_5 = f.__delta;
|
|
f$__pfn_24 = f.__pfn;
|
|
|
|
or
|
|
<bb 2>:
|
|
f$__delta_5 = MEM[(struct *)&f];
|
|
f$__pfn_24 = MEM[(struct *)&f + 4B];
|
|
|
|
and a few lines below:
|
|
|
|
<bb 5>
|
|
D.2496_3 = (int) f$__pfn_24;
|
|
D.2497_4 = D.2496_3 & 1;
|
|
if (D.2497_4 != 0)
|
|
goto <bb 3>;
|
|
else
|
|
goto <bb 4>;
|
|
|
|
<bb 6>:
|
|
D.2500_7 = (unsigned int) f$__delta_5;
|
|
D.2501_8 = &S + D.2500_7;
|
|
D.2502_9 = (int (*__vtbl_ptr_type) (void) * *) D.2501_8;
|
|
D.2503_10 = *D.2502_9;
|
|
D.2504_12 = f$__pfn_24 + -1;
|
|
D.2505_13 = (unsigned int) D.2504_12;
|
|
D.2506_14 = D.2503_10 + D.2505_13;
|
|
D.2507_15 = *D.2506_14;
|
|
iftmp.11_16 = (String:: *) D.2507_15;
|
|
|
|
<bb 7>:
|
|
# iftmp.11_1 = PHI <iftmp.11_16(3), f$__pfn_24(2)>
|
|
D.2500_19 = (unsigned int) f$__delta_5;
|
|
D.2508_20 = &S + D.2500_19;
|
|
D.2493_21 = iftmp.11_1 (D.2508_20, 4);
|
|
|
|
Such patterns are results of simple calls to a member pointer:
|
|
|
|
int doprinting (int (MyString::* f)(int) const)
|
|
{
|
|
MyString S ("somestring");
|
|
|
|
return (S.*f)(4);
|
|
}
|
|
|
|
Moreover, the function also looks for called pointers loaded from aggregates
|
|
passed by value or reference. */
|
|
|
|
static void
|
|
ipa_analyze_indirect_call_uses (struct ipa_func_body_info *fbi, gcall *call,
|
|
tree target)
|
|
{
|
|
class ipa_node_params *info = fbi->info;
|
|
HOST_WIDE_INT offset;
|
|
bool by_ref;
|
|
|
|
if (SSA_NAME_IS_DEFAULT_DEF (target))
|
|
{
|
|
tree var = SSA_NAME_VAR (target);
|
|
int index = ipa_get_param_decl_index (info, var);
|
|
if (index >= 0)
|
|
ipa_note_param_call (fbi->node, index, call, false);
|
|
return;
|
|
}
|
|
|
|
int index;
|
|
gimple *def = SSA_NAME_DEF_STMT (target);
|
|
bool guaranteed_unmodified;
|
|
if (gimple_assign_single_p (def)
|
|
&& ipa_load_from_parm_agg (fbi, info->descriptors, def,
|
|
gimple_assign_rhs1 (def), &index, &offset,
|
|
NULL, &by_ref, &guaranteed_unmodified))
|
|
{
|
|
struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
|
|
call, false);
|
|
cs->indirect_info->offset = offset;
|
|
cs->indirect_info->agg_contents = 1;
|
|
cs->indirect_info->by_ref = by_ref;
|
|
cs->indirect_info->guaranteed_unmodified = guaranteed_unmodified;
|
|
return;
|
|
}
|
|
|
|
/* Now we need to try to match the complex pattern of calling a member
|
|
pointer. */
|
|
if (gimple_code (def) != GIMPLE_PHI
|
|
|| gimple_phi_num_args (def) != 2
|
|
|| !POINTER_TYPE_P (TREE_TYPE (target))
|
|
|| TREE_CODE (TREE_TYPE (TREE_TYPE (target))) != METHOD_TYPE)
|
|
return;
|
|
|
|
/* First, we need to check whether one of these is a load from a member
|
|
pointer that is a parameter to this function. */
|
|
tree n1 = PHI_ARG_DEF (def, 0);
|
|
tree n2 = PHI_ARG_DEF (def, 1);
|
|
if (!ipa_is_ssa_with_stmt_def (n1) || !ipa_is_ssa_with_stmt_def (n2))
|
|
return;
|
|
gimple *d1 = SSA_NAME_DEF_STMT (n1);
|
|
gimple *d2 = SSA_NAME_DEF_STMT (n2);
|
|
|
|
tree rec;
|
|
basic_block bb, virt_bb;
|
|
basic_block join = gimple_bb (def);
|
|
if ((rec = ipa_get_stmt_member_ptr_load_param (d1, false, &offset)))
|
|
{
|
|
if (ipa_get_stmt_member_ptr_load_param (d2, false, NULL))
|
|
return;
|
|
|
|
bb = EDGE_PRED (join, 0)->src;
|
|
virt_bb = gimple_bb (d2);
|
|
}
|
|
else if ((rec = ipa_get_stmt_member_ptr_load_param (d2, false, &offset)))
|
|
{
|
|
bb = EDGE_PRED (join, 1)->src;
|
|
virt_bb = gimple_bb (d1);
|
|
}
|
|
else
|
|
return;
|
|
|
|
/* Second, we need to check that the basic blocks are laid out in the way
|
|
corresponding to the pattern. */
|
|
|
|
if (!single_pred_p (virt_bb) || !single_succ_p (virt_bb)
|
|
|| single_pred (virt_bb) != bb
|
|
|| single_succ (virt_bb) != join)
|
|
return;
|
|
|
|
/* Third, let's see that the branching is done depending on the least
|
|
significant bit of the pfn. */
|
|
|
|
gimple *branch = last_stmt (bb);
|
|
if (!branch || gimple_code (branch) != GIMPLE_COND)
|
|
return;
|
|
|
|
if ((gimple_cond_code (branch) != NE_EXPR
|
|
&& gimple_cond_code (branch) != EQ_EXPR)
|
|
|| !integer_zerop (gimple_cond_rhs (branch)))
|
|
return;
|
|
|
|
tree cond = gimple_cond_lhs (branch);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
if (!is_gimple_assign (def)
|
|
|| gimple_assign_rhs_code (def) != BIT_AND_EXPR
|
|
|| !integer_onep (gimple_assign_rhs2 (def)))
|
|
return;
|
|
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
|
|
if (is_gimple_assign (def)
|
|
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def)))
|
|
{
|
|
cond = gimple_assign_rhs1 (def);
|
|
if (!ipa_is_ssa_with_stmt_def (cond))
|
|
return;
|
|
def = SSA_NAME_DEF_STMT (cond);
|
|
}
|
|
|
|
tree rec2;
|
|
rec2 = ipa_get_stmt_member_ptr_load_param (def,
|
|
(TARGET_PTRMEMFUNC_VBIT_LOCATION
|
|
== ptrmemfunc_vbit_in_delta),
|
|
NULL);
|
|
if (rec != rec2)
|
|
return;
|
|
|
|
index = ipa_get_param_decl_index (info, rec);
|
|
if (index >= 0
|
|
&& parm_preserved_before_stmt_p (fbi, index, call, rec))
|
|
{
|
|
struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
|
|
call, false);
|
|
cs->indirect_info->offset = offset;
|
|
cs->indirect_info->agg_contents = 1;
|
|
cs->indirect_info->member_ptr = 1;
|
|
cs->indirect_info->guaranteed_unmodified = 1;
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
/* Analyze a CALL to an OBJ_TYPE_REF which is passed in TARGET and if the
|
|
object referenced in the expression is a formal parameter of the caller
|
|
FBI->node (described by FBI->info), create a call note for the
|
|
statement. */
|
|
|
|
static void
|
|
ipa_analyze_virtual_call_uses (struct ipa_func_body_info *fbi,
|
|
gcall *call, tree target)
|
|
{
|
|
tree obj = OBJ_TYPE_REF_OBJECT (target);
|
|
int index;
|
|
HOST_WIDE_INT anc_offset;
|
|
|
|
if (!flag_devirtualize)
|
|
return;
|
|
|
|
if (TREE_CODE (obj) != SSA_NAME)
|
|
return;
|
|
|
|
class ipa_node_params *info = fbi->info;
|
|
if (SSA_NAME_IS_DEFAULT_DEF (obj))
|
|
{
|
|
if (TREE_CODE (SSA_NAME_VAR (obj)) != PARM_DECL)
|
|
return;
|
|
|
|
anc_offset = 0;
|
|
index = ipa_get_param_decl_index (info, SSA_NAME_VAR (obj));
|
|
gcc_assert (index >= 0);
|
|
if (detect_type_change_ssa (fbi, obj, obj_type_ref_class (target),
|
|
call))
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
gimple *stmt = SSA_NAME_DEF_STMT (obj);
|
|
tree expr;
|
|
|
|
expr = get_ancestor_addr_info (stmt, &obj, &anc_offset);
|
|
if (!expr)
|
|
return;
|
|
index = ipa_get_param_decl_index (info,
|
|
SSA_NAME_VAR (TREE_OPERAND (expr, 0)));
|
|
gcc_assert (index >= 0);
|
|
if (detect_type_change (fbi, obj, expr, obj_type_ref_class (target),
|
|
call, anc_offset))
|
|
return;
|
|
}
|
|
|
|
struct cgraph_edge *cs = ipa_note_param_call (fbi->node, index,
|
|
call, true);
|
|
class cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
ii->offset = anc_offset;
|
|
ii->otr_token = tree_to_uhwi (OBJ_TYPE_REF_TOKEN (target));
|
|
ii->otr_type = obj_type_ref_class (target);
|
|
ii->polymorphic = 1;
|
|
}
|
|
|
|
/* Analyze a call statement CALL whether and how it utilizes formal parameters
|
|
of the caller (described by INFO). PARMS_AINFO is a pointer to a vector
|
|
containing intermediate information about each formal parameter. */
|
|
|
|
static void
|
|
ipa_analyze_call_uses (struct ipa_func_body_info *fbi, gcall *call)
|
|
{
|
|
tree target = gimple_call_fn (call);
|
|
|
|
if (!target
|
|
|| (TREE_CODE (target) != SSA_NAME
|
|
&& !virtual_method_call_p (target)))
|
|
return;
|
|
|
|
struct cgraph_edge *cs = fbi->node->get_edge (call);
|
|
/* If we previously turned the call into a direct call, there is
|
|
no need to analyze. */
|
|
if (cs && !cs->indirect_unknown_callee)
|
|
return;
|
|
|
|
if (cs->indirect_info->polymorphic && flag_devirtualize)
|
|
{
|
|
tree instance;
|
|
tree target = gimple_call_fn (call);
|
|
ipa_polymorphic_call_context context (current_function_decl,
|
|
target, call, &instance);
|
|
|
|
gcc_checking_assert (cs->indirect_info->otr_type
|
|
== obj_type_ref_class (target));
|
|
gcc_checking_assert (cs->indirect_info->otr_token
|
|
== tree_to_shwi (OBJ_TYPE_REF_TOKEN (target)));
|
|
|
|
cs->indirect_info->vptr_changed
|
|
= !context.get_dynamic_type (instance,
|
|
OBJ_TYPE_REF_OBJECT (target),
|
|
obj_type_ref_class (target), call,
|
|
&fbi->aa_walk_budget);
|
|
cs->indirect_info->context = context;
|
|
}
|
|
|
|
if (TREE_CODE (target) == SSA_NAME)
|
|
ipa_analyze_indirect_call_uses (fbi, call, target);
|
|
else if (virtual_method_call_p (target))
|
|
ipa_analyze_virtual_call_uses (fbi, call, target);
|
|
}
|
|
|
|
|
|
/* Analyze the call statement STMT with respect to formal parameters (described
|
|
in INFO) of caller given by FBI->NODE. Currently it only checks whether
|
|
formal parameters are called. */
|
|
|
|
static void
|
|
ipa_analyze_stmt_uses (struct ipa_func_body_info *fbi, gimple *stmt)
|
|
{
|
|
if (is_gimple_call (stmt))
|
|
ipa_analyze_call_uses (fbi, as_a <gcall *> (stmt));
|
|
}
|
|
|
|
/* Callback of walk_stmt_load_store_addr_ops for the visit_load.
|
|
If OP is a parameter declaration, mark it as used in the info structure
|
|
passed in DATA. */
|
|
|
|
static bool
|
|
visit_ref_for_mod_analysis (gimple *, tree op, tree, void *data)
|
|
{
|
|
class ipa_node_params *info = (class ipa_node_params *) data;
|
|
|
|
op = get_base_address (op);
|
|
if (op
|
|
&& TREE_CODE (op) == PARM_DECL)
|
|
{
|
|
int index = ipa_get_param_decl_index (info, op);
|
|
gcc_assert (index >= 0);
|
|
ipa_set_param_used (info, index, true);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Scan the statements in BB and inspect the uses of formal parameters. Store
|
|
the findings in various structures of the associated ipa_node_params
|
|
structure, such as parameter flags, notes etc. FBI holds various data about
|
|
the function being analyzed. */
|
|
|
|
static void
|
|
ipa_analyze_params_uses_in_bb (struct ipa_func_body_info *fbi, basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
|
|
if (is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
ipa_analyze_stmt_uses (fbi, stmt);
|
|
walk_stmt_load_store_addr_ops (stmt, fbi->info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
walk_stmt_load_store_addr_ops (gsi_stmt (gsi), fbi->info,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis,
|
|
visit_ref_for_mod_analysis);
|
|
}
|
|
|
|
/* Calculate controlled uses of parameters of NODE. */
|
|
|
|
static void
|
|
ipa_analyze_controlled_uses (struct cgraph_node *node)
|
|
{
|
|
class ipa_node_params *info = IPA_NODE_REF (node);
|
|
|
|
for (int i = 0; i < ipa_get_param_count (info); i++)
|
|
{
|
|
tree parm = ipa_get_param (info, i);
|
|
int controlled_uses = 0;
|
|
|
|
/* For SSA regs see if parameter is used. For non-SSA we compute
|
|
the flag during modification analysis. */
|
|
if (is_gimple_reg (parm))
|
|
{
|
|
tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl),
|
|
parm);
|
|
if (ddef && !has_zero_uses (ddef))
|
|
{
|
|
imm_use_iterator imm_iter;
|
|
use_operand_p use_p;
|
|
|
|
ipa_set_param_used (info, i, true);
|
|
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ddef)
|
|
if (!is_gimple_call (USE_STMT (use_p)))
|
|
{
|
|
if (!is_gimple_debug (USE_STMT (use_p)))
|
|
{
|
|
controlled_uses = IPA_UNDESCRIBED_USE;
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
controlled_uses++;
|
|
}
|
|
else
|
|
controlled_uses = 0;
|
|
}
|
|
else
|
|
controlled_uses = IPA_UNDESCRIBED_USE;
|
|
ipa_set_controlled_uses (info, i, controlled_uses);
|
|
}
|
|
}
|
|
|
|
/* Free stuff in BI. */
|
|
|
|
static void
|
|
free_ipa_bb_info (struct ipa_bb_info *bi)
|
|
{
|
|
bi->cg_edges.release ();
|
|
bi->param_aa_statuses.release ();
|
|
}
|
|
|
|
/* Dominator walker driving the analysis. */
|
|
|
|
class analysis_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
analysis_dom_walker (struct ipa_func_body_info *fbi)
|
|
: dom_walker (CDI_DOMINATORS), m_fbi (fbi) {}
|
|
|
|
virtual edge before_dom_children (basic_block);
|
|
|
|
private:
|
|
struct ipa_func_body_info *m_fbi;
|
|
};
|
|
|
|
edge
|
|
analysis_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
ipa_analyze_params_uses_in_bb (m_fbi, bb);
|
|
ipa_compute_jump_functions_for_bb (m_fbi, bb);
|
|
return NULL;
|
|
}
|
|
|
|
/* Release body info FBI. */
|
|
|
|
void
|
|
ipa_release_body_info (struct ipa_func_body_info *fbi)
|
|
{
|
|
int i;
|
|
struct ipa_bb_info *bi;
|
|
|
|
FOR_EACH_VEC_ELT (fbi->bb_infos, i, bi)
|
|
free_ipa_bb_info (bi);
|
|
fbi->bb_infos.release ();
|
|
}
|
|
|
|
/* Initialize the array describing properties of formal parameters
|
|
of NODE, analyze their uses and compute jump functions associated
|
|
with actual arguments of calls from within NODE. */
|
|
|
|
void
|
|
ipa_analyze_node (struct cgraph_node *node)
|
|
{
|
|
struct ipa_func_body_info fbi;
|
|
class ipa_node_params *info;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
info = IPA_NODE_REF_GET_CREATE (node);
|
|
|
|
if (info->analysis_done)
|
|
return;
|
|
info->analysis_done = 1;
|
|
|
|
if (ipa_func_spec_opts_forbid_analysis_p (node))
|
|
{
|
|
for (int i = 0; i < ipa_get_param_count (info); i++)
|
|
{
|
|
ipa_set_param_used (info, i, true);
|
|
ipa_set_controlled_uses (info, i, IPA_UNDESCRIBED_USE);
|
|
}
|
|
return;
|
|
}
|
|
|
|
struct function *func = DECL_STRUCT_FUNCTION (node->decl);
|
|
push_cfun (func);
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
ipa_initialize_node_params (node);
|
|
ipa_analyze_controlled_uses (node);
|
|
|
|
fbi.node = node;
|
|
fbi.info = IPA_NODE_REF (node);
|
|
fbi.bb_infos = vNULL;
|
|
fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
|
|
fbi.param_count = ipa_get_param_count (info);
|
|
fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);
|
|
|
|
for (struct cgraph_edge *cs = node->callees; cs; cs = cs->next_callee)
|
|
{
|
|
ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
|
|
bi->cg_edges.safe_push (cs);
|
|
}
|
|
|
|
for (struct cgraph_edge *cs = node->indirect_calls; cs; cs = cs->next_callee)
|
|
{
|
|
ipa_bb_info *bi = ipa_get_bb_info (&fbi, gimple_bb (cs->call_stmt));
|
|
bi->cg_edges.safe_push (cs);
|
|
}
|
|
|
|
analysis_dom_walker (&fbi).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
ipa_release_body_info (&fbi);
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
pop_cfun ();
|
|
}
|
|
|
|
/* Update the jump functions associated with call graph edge E when the call
|
|
graph edge CS is being inlined, assuming that E->caller is already (possibly
|
|
indirectly) inlined into CS->callee and that E has not been inlined. */
|
|
|
|
static void
|
|
update_jump_functions_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_edge *e)
|
|
{
|
|
class ipa_edge_args *top = IPA_EDGE_REF (cs);
|
|
class ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
if (!args)
|
|
return;
|
|
int count = ipa_get_cs_argument_count (args);
|
|
int i;
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *dst = ipa_get_ith_jump_func (args, i);
|
|
class ipa_polymorphic_call_context *dst_ctx
|
|
= ipa_get_ith_polymorhic_call_context (args, i);
|
|
|
|
if (dst->agg.items)
|
|
{
|
|
struct ipa_agg_jf_item *item;
|
|
int j;
|
|
|
|
FOR_EACH_VEC_ELT (*dst->agg.items, j, item)
|
|
{
|
|
int dst_fid;
|
|
struct ipa_jump_func *src;
|
|
|
|
if (item->jftype != IPA_JF_PASS_THROUGH
|
|
&& item->jftype != IPA_JF_LOAD_AGG)
|
|
continue;
|
|
|
|
dst_fid = item->value.pass_through.formal_id;
|
|
if (!top || dst_fid >= ipa_get_cs_argument_count (top))
|
|
{
|
|
item->jftype = IPA_JF_UNKNOWN;
|
|
continue;
|
|
}
|
|
|
|
item->value.pass_through.formal_id = -1;
|
|
src = ipa_get_ith_jump_func (top, dst_fid);
|
|
if (src->type == IPA_JF_CONST)
|
|
{
|
|
if (item->jftype == IPA_JF_PASS_THROUGH
|
|
&& item->value.pass_through.operation == NOP_EXPR)
|
|
{
|
|
item->jftype = IPA_JF_CONST;
|
|
item->value.constant = src->value.constant.value;
|
|
continue;
|
|
}
|
|
}
|
|
else if (src->type == IPA_JF_PASS_THROUGH
|
|
&& src->value.pass_through.operation == NOP_EXPR)
|
|
{
|
|
if (item->jftype == IPA_JF_PASS_THROUGH
|
|
|| !item->value.load_agg.by_ref
|
|
|| src->value.pass_through.agg_preserved)
|
|
item->value.pass_through.formal_id
|
|
= src->value.pass_through.formal_id;
|
|
}
|
|
else if (src->type == IPA_JF_ANCESTOR)
|
|
{
|
|
if (item->jftype == IPA_JF_PASS_THROUGH)
|
|
{
|
|
if (!src->value.ancestor.offset)
|
|
item->value.pass_through.formal_id
|
|
= src->value.ancestor.formal_id;
|
|
}
|
|
else if (src->value.ancestor.agg_preserved)
|
|
{
|
|
gcc_checking_assert (item->value.load_agg.by_ref);
|
|
|
|
item->value.pass_through.formal_id
|
|
= src->value.ancestor.formal_id;
|
|
item->value.load_agg.offset
|
|
+= src->value.ancestor.offset;
|
|
}
|
|
}
|
|
|
|
if (item->value.pass_through.formal_id < 0)
|
|
item->jftype = IPA_JF_UNKNOWN;
|
|
}
|
|
}
|
|
|
|
if (!top)
|
|
{
|
|
ipa_set_jf_unknown (dst);
|
|
continue;
|
|
}
|
|
|
|
if (dst->type == IPA_JF_ANCESTOR)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
int dst_fid = dst->value.ancestor.formal_id;
|
|
class ipa_polymorphic_call_context *src_ctx
|
|
= ipa_get_ith_polymorhic_call_context (top, dst_fid);
|
|
|
|
/* Variable number of arguments can cause havoc if we try to access
|
|
one that does not exist in the inlined edge. So make sure we
|
|
don't. */
|
|
if (dst_fid >= ipa_get_cs_argument_count (top))
|
|
{
|
|
ipa_set_jf_unknown (dst);
|
|
continue;
|
|
}
|
|
|
|
src = ipa_get_ith_jump_func (top, dst_fid);
|
|
|
|
if (src_ctx && !src_ctx->useless_p ())
|
|
{
|
|
class ipa_polymorphic_call_context ctx = *src_ctx;
|
|
|
|
/* TODO: Make type preserved safe WRT contexts. */
|
|
if (!ipa_get_jf_ancestor_type_preserved (dst))
|
|
ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
|
|
ctx.offset_by (dst->value.ancestor.offset);
|
|
if (!ctx.useless_p ())
|
|
{
|
|
if (!dst_ctx)
|
|
{
|
|
vec_safe_grow_cleared (args->polymorphic_call_contexts,
|
|
count);
|
|
dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
|
|
}
|
|
|
|
dst_ctx->combine_with (ctx);
|
|
}
|
|
}
|
|
|
|
/* Parameter and argument in ancestor jump function must be pointer
|
|
type, which means access to aggregate must be by-reference. */
|
|
gcc_assert (!src->agg.items || src->agg.by_ref);
|
|
|
|
if (src->agg.items && dst->value.ancestor.agg_preserved)
|
|
{
|
|
struct ipa_agg_jf_item *item;
|
|
int j;
|
|
|
|
/* Currently we do not produce clobber aggregate jump functions,
|
|
replace with merging when we do. */
|
|
gcc_assert (!dst->agg.items);
|
|
|
|
dst->agg.items = vec_safe_copy (src->agg.items);
|
|
dst->agg.by_ref = src->agg.by_ref;
|
|
FOR_EACH_VEC_SAFE_ELT (dst->agg.items, j, item)
|
|
item->offset -= dst->value.ancestor.offset;
|
|
}
|
|
|
|
if (src->type == IPA_JF_PASS_THROUGH
|
|
&& src->value.pass_through.operation == NOP_EXPR)
|
|
{
|
|
dst->value.ancestor.formal_id = src->value.pass_through.formal_id;
|
|
dst->value.ancestor.agg_preserved &=
|
|
src->value.pass_through.agg_preserved;
|
|
}
|
|
else if (src->type == IPA_JF_ANCESTOR)
|
|
{
|
|
dst->value.ancestor.formal_id = src->value.ancestor.formal_id;
|
|
dst->value.ancestor.offset += src->value.ancestor.offset;
|
|
dst->value.ancestor.agg_preserved &=
|
|
src->value.ancestor.agg_preserved;
|
|
}
|
|
else
|
|
ipa_set_jf_unknown (dst);
|
|
}
|
|
else if (dst->type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
struct ipa_jump_func *src;
|
|
/* We must check range due to calls with variable number of arguments
|
|
and we cannot combine jump functions with operations. */
|
|
if (dst->value.pass_through.operation == NOP_EXPR
|
|
&& (top && dst->value.pass_through.formal_id
|
|
< ipa_get_cs_argument_count (top)))
|
|
{
|
|
int dst_fid = dst->value.pass_through.formal_id;
|
|
src = ipa_get_ith_jump_func (top, dst_fid);
|
|
bool dst_agg_p = ipa_get_jf_pass_through_agg_preserved (dst);
|
|
class ipa_polymorphic_call_context *src_ctx
|
|
= ipa_get_ith_polymorhic_call_context (top, dst_fid);
|
|
|
|
if (src_ctx && !src_ctx->useless_p ())
|
|
{
|
|
class ipa_polymorphic_call_context ctx = *src_ctx;
|
|
|
|
/* TODO: Make type preserved safe WRT contexts. */
|
|
if (!ipa_get_jf_pass_through_type_preserved (dst))
|
|
ctx.possible_dynamic_type_change (e->in_polymorphic_cdtor);
|
|
if (!ctx.useless_p ())
|
|
{
|
|
if (!dst_ctx)
|
|
{
|
|
vec_safe_grow_cleared (args->polymorphic_call_contexts,
|
|
count);
|
|
dst_ctx = ipa_get_ith_polymorhic_call_context (args, i);
|
|
}
|
|
dst_ctx->combine_with (ctx);
|
|
}
|
|
}
|
|
switch (src->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
ipa_set_jf_unknown (dst);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
ipa_set_jf_cst_copy (dst, src);
|
|
break;
|
|
|
|
case IPA_JF_PASS_THROUGH:
|
|
{
|
|
int formal_id = ipa_get_jf_pass_through_formal_id (src);
|
|
enum tree_code operation;
|
|
operation = ipa_get_jf_pass_through_operation (src);
|
|
|
|
if (operation == NOP_EXPR)
|
|
{
|
|
bool agg_p;
|
|
agg_p = dst_agg_p
|
|
&& ipa_get_jf_pass_through_agg_preserved (src);
|
|
ipa_set_jf_simple_pass_through (dst, formal_id, agg_p);
|
|
}
|
|
else if (TREE_CODE_CLASS (operation) == tcc_unary)
|
|
ipa_set_jf_unary_pass_through (dst, formal_id, operation);
|
|
else
|
|
{
|
|
tree operand = ipa_get_jf_pass_through_operand (src);
|
|
ipa_set_jf_arith_pass_through (dst, formal_id, operand,
|
|
operation);
|
|
}
|
|
break;
|
|
}
|
|
case IPA_JF_ANCESTOR:
|
|
{
|
|
bool agg_p;
|
|
agg_p = dst_agg_p
|
|
&& ipa_get_jf_ancestor_agg_preserved (src);
|
|
ipa_set_ancestor_jf (dst,
|
|
ipa_get_jf_ancestor_offset (src),
|
|
ipa_get_jf_ancestor_formal_id (src),
|
|
agg_p);
|
|
break;
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
if (src->agg.items
|
|
&& (dst_agg_p || !src->agg.by_ref))
|
|
{
|
|
/* Currently we do not produce clobber aggregate jump
|
|
functions, replace with merging when we do. */
|
|
gcc_assert (!dst->agg.items);
|
|
|
|
dst->agg.by_ref = src->agg.by_ref;
|
|
dst->agg.items = vec_safe_copy (src->agg.items);
|
|
}
|
|
}
|
|
else
|
|
ipa_set_jf_unknown (dst);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If TARGET is an addr_expr of a function declaration, make it the
|
|
(SPECULATIVE)destination of an indirect edge IE and return the edge.
|
|
Otherwise, return NULL. */
|
|
|
|
struct cgraph_edge *
|
|
ipa_make_edge_direct_to_target (struct cgraph_edge *ie, tree target,
|
|
bool speculative)
|
|
{
|
|
struct cgraph_node *callee;
|
|
bool unreachable = false;
|
|
|
|
if (TREE_CODE (target) == ADDR_EXPR)
|
|
target = TREE_OPERAND (target, 0);
|
|
if (TREE_CODE (target) != FUNCTION_DECL)
|
|
{
|
|
target = canonicalize_constructor_val (target, NULL);
|
|
if (!target || TREE_CODE (target) != FUNCTION_DECL)
|
|
{
|
|
/* Member pointer call that goes through a VMT lookup. */
|
|
if (ie->indirect_info->member_ptr
|
|
/* Or if target is not an invariant expression and we do not
|
|
know if it will evaulate to function at runtime.
|
|
This can happen when folding through &VAR, where &VAR
|
|
is IP invariant, but VAR itself is not.
|
|
|
|
TODO: Revisit this when GCC 5 is branched. It seems that
|
|
member_ptr check is not needed and that we may try to fold
|
|
the expression and see if VAR is readonly. */
|
|
|| !is_gimple_ip_invariant (target))
|
|
{
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
|
|
"discovered direct call non-invariant %s\n",
|
|
ie->caller->dump_name ());
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
|
|
"discovered direct call to non-function in %s, "
|
|
"making it __builtin_unreachable\n",
|
|
ie->caller->dump_name ());
|
|
}
|
|
|
|
target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
callee = cgraph_node::get_create (target);
|
|
unreachable = true;
|
|
}
|
|
else
|
|
callee = cgraph_node::get (target);
|
|
}
|
|
else
|
|
callee = cgraph_node::get (target);
|
|
|
|
/* Because may-edges are not explicitely represented and vtable may be external,
|
|
we may create the first reference to the object in the unit. */
|
|
if (!callee || callee->inlined_to)
|
|
{
|
|
|
|
/* We are better to ensure we can refer to it.
|
|
In the case of static functions we are out of luck, since we already
|
|
removed its body. In the case of public functions we may or may
|
|
not introduce the reference. */
|
|
if (!canonicalize_constructor_val (target, NULL)
|
|
|| !TREE_PUBLIC (target))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "ipa-prop: Discovered call to a known target "
|
|
"(%s -> %s) but cannot refer to it. Giving up.\n",
|
|
ie->caller->dump_name (),
|
|
ie->callee->dump_name ());
|
|
return NULL;
|
|
}
|
|
callee = cgraph_node::get_create (target);
|
|
}
|
|
|
|
/* If the edge is already speculated. */
|
|
if (speculative && ie->speculative)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
cgraph_edge *e2 = ie->speculative_call_for_target (callee);
|
|
if (!e2)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "ipa-prop: Discovered call to a "
|
|
"speculative target (%s -> %s) but the call is "
|
|
"already speculated to different target. "
|
|
"Giving up.\n",
|
|
ie->caller->dump_name (), callee->dump_name ());
|
|
}
|
|
else
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file,
|
|
"ipa-prop: Discovered call to a speculative target "
|
|
"(%s -> %s) this agree with previous speculation.\n",
|
|
ie->caller->dump_name (), callee->dump_name ());
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
if (!dbg_cnt (devirt))
|
|
return NULL;
|
|
|
|
ipa_check_create_node_params ();
|
|
|
|
/* We cannot make edges to inline clones. It is bug that someone removed
|
|
the cgraph node too early. */
|
|
gcc_assert (!callee->inlined_to);
|
|
|
|
if (dump_file && !unreachable)
|
|
{
|
|
fprintf (dump_file, "ipa-prop: Discovered %s call to a %s target "
|
|
"(%s -> %s), for stmt ",
|
|
ie->indirect_info->polymorphic ? "a virtual" : "an indirect",
|
|
speculative ? "speculative" : "known",
|
|
ie->caller->dump_name (),
|
|
callee->dump_name ());
|
|
if (ie->call_stmt)
|
|
print_gimple_stmt (dump_file, ie->call_stmt, 2, TDF_SLIM);
|
|
else
|
|
fprintf (dump_file, "with uid %i\n", ie->lto_stmt_uid);
|
|
}
|
|
if (dump_enabled_p ())
|
|
{
|
|
dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, ie->call_stmt,
|
|
"converting indirect call in %s to direct call to %s\n",
|
|
ie->caller->dump_name (), callee->dump_name ());
|
|
}
|
|
if (!speculative)
|
|
{
|
|
struct cgraph_edge *orig = ie;
|
|
ie = cgraph_edge::make_direct (ie, callee);
|
|
/* If we resolved speculative edge the cost is already up to date
|
|
for direct call (adjusted by inline_edge_duplication_hook). */
|
|
if (ie == orig)
|
|
{
|
|
ipa_call_summary *es = ipa_call_summaries->get (ie);
|
|
es->call_stmt_size -= (eni_size_weights.indirect_call_cost
|
|
- eni_size_weights.call_cost);
|
|
es->call_stmt_time -= (eni_time_weights.indirect_call_cost
|
|
- eni_time_weights.call_cost);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (!callee->can_be_discarded_p ())
|
|
{
|
|
cgraph_node *alias;
|
|
alias = dyn_cast<cgraph_node *> (callee->noninterposable_alias ());
|
|
if (alias)
|
|
callee = alias;
|
|
}
|
|
/* make_speculative will update ie's cost to direct call cost. */
|
|
ie = ie->make_speculative
|
|
(callee, ie->count.apply_scale (8, 10));
|
|
}
|
|
|
|
return ie;
|
|
}
|
|
|
|
/* Attempt to locate an interprocedural constant at a given REQ_OFFSET in
|
|
CONSTRUCTOR and return it. Return NULL if the search fails for some
|
|
reason. */
|
|
|
|
static tree
|
|
find_constructor_constant_at_offset (tree constructor, HOST_WIDE_INT req_offset)
|
|
{
|
|
tree type = TREE_TYPE (constructor);
|
|
if (TREE_CODE (type) != ARRAY_TYPE
|
|
&& TREE_CODE (type) != RECORD_TYPE)
|
|
return NULL;
|
|
|
|
unsigned ix;
|
|
tree index, val;
|
|
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (constructor), ix, index, val)
|
|
{
|
|
HOST_WIDE_INT elt_offset;
|
|
if (TREE_CODE (type) == ARRAY_TYPE)
|
|
{
|
|
offset_int off;
|
|
tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (type));
|
|
gcc_assert (TREE_CODE (unit_size) == INTEGER_CST);
|
|
|
|
if (index)
|
|
{
|
|
if (TREE_CODE (index) == RANGE_EXPR)
|
|
off = wi::to_offset (TREE_OPERAND (index, 0));
|
|
else
|
|
off = wi::to_offset (index);
|
|
if (TYPE_DOMAIN (type) && TYPE_MIN_VALUE (TYPE_DOMAIN (type)))
|
|
{
|
|
tree low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
|
|
gcc_assert (TREE_CODE (unit_size) == INTEGER_CST);
|
|
off = wi::sext (off - wi::to_offset (low_bound),
|
|
TYPE_PRECISION (TREE_TYPE (index)));
|
|
}
|
|
off *= wi::to_offset (unit_size);
|
|
/* ??? Handle more than just the first index of a
|
|
RANGE_EXPR. */
|
|
}
|
|
else
|
|
off = wi::to_offset (unit_size) * ix;
|
|
|
|
off = wi::lshift (off, LOG2_BITS_PER_UNIT);
|
|
if (!wi::fits_shwi_p (off) || wi::neg_p (off))
|
|
continue;
|
|
elt_offset = off.to_shwi ();
|
|
}
|
|
else if (TREE_CODE (type) == RECORD_TYPE)
|
|
{
|
|
gcc_checking_assert (index && TREE_CODE (index) == FIELD_DECL);
|
|
if (DECL_BIT_FIELD (index))
|
|
continue;
|
|
elt_offset = int_bit_position (index);
|
|
}
|
|
else
|
|
gcc_unreachable ();
|
|
|
|
if (elt_offset > req_offset)
|
|
return NULL;
|
|
|
|
if (TREE_CODE (val) == CONSTRUCTOR)
|
|
return find_constructor_constant_at_offset (val,
|
|
req_offset - elt_offset);
|
|
|
|
if (elt_offset == req_offset
|
|
&& is_gimple_reg_type (TREE_TYPE (val))
|
|
&& is_gimple_ip_invariant (val))
|
|
return val;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Check whether SCALAR could be used to look up an aggregate interprocedural
|
|
invariant from a static constructor and if so, return it. Otherwise return
|
|
NULL. */
|
|
|
|
static tree
|
|
ipa_find_agg_cst_from_init (tree scalar, HOST_WIDE_INT offset, bool by_ref)
|
|
{
|
|
if (by_ref)
|
|
{
|
|
if (TREE_CODE (scalar) != ADDR_EXPR)
|
|
return NULL;
|
|
scalar = TREE_OPERAND (scalar, 0);
|
|
}
|
|
|
|
if (!VAR_P (scalar)
|
|
|| !is_global_var (scalar)
|
|
|| !TREE_READONLY (scalar)
|
|
|| !DECL_INITIAL (scalar)
|
|
|| TREE_CODE (DECL_INITIAL (scalar)) != CONSTRUCTOR)
|
|
return NULL;
|
|
|
|
return find_constructor_constant_at_offset (DECL_INITIAL (scalar), offset);
|
|
}
|
|
|
|
/* Retrieve value from AGG, a set of known offset/value for an aggregate or
|
|
static initializer of SCALAR (which can be NULL) for the given OFFSET or
|
|
return NULL if there is none. BY_REF specifies whether the value has to be
|
|
passed by reference or by value. If FROM_GLOBAL_CONSTANT is non-NULL, then
|
|
the boolean it points to is set to true if the value comes from an
|
|
initializer of a constant. */
|
|
|
|
tree
|
|
ipa_find_agg_cst_for_param (struct ipa_agg_value_set *agg, tree scalar,
|
|
HOST_WIDE_INT offset, bool by_ref,
|
|
bool *from_global_constant)
|
|
{
|
|
struct ipa_agg_value *item;
|
|
int i;
|
|
|
|
if (scalar)
|
|
{
|
|
tree res = ipa_find_agg_cst_from_init (scalar, offset, by_ref);
|
|
if (res)
|
|
{
|
|
if (from_global_constant)
|
|
*from_global_constant = true;
|
|
return res;
|
|
}
|
|
}
|
|
|
|
if (!agg
|
|
|| by_ref != agg->by_ref)
|
|
return NULL;
|
|
|
|
FOR_EACH_VEC_ELT (agg->items, i, item)
|
|
if (item->offset == offset)
|
|
{
|
|
/* Currently we do not have clobber values, return NULL for them once
|
|
we do. */
|
|
gcc_checking_assert (is_gimple_ip_invariant (item->value));
|
|
if (from_global_constant)
|
|
*from_global_constant = false;
|
|
return item->value;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Remove a reference to SYMBOL from the list of references of a node given by
|
|
reference description RDESC. Return true if the reference has been
|
|
successfully found and removed. */
|
|
|
|
static bool
|
|
remove_described_reference (symtab_node *symbol, struct ipa_cst_ref_desc *rdesc)
|
|
{
|
|
struct ipa_ref *to_del;
|
|
struct cgraph_edge *origin;
|
|
|
|
origin = rdesc->cs;
|
|
if (!origin)
|
|
return false;
|
|
to_del = origin->caller->find_reference (symbol, origin->call_stmt,
|
|
origin->lto_stmt_uid);
|
|
if (!to_del)
|
|
return false;
|
|
|
|
to_del->remove_reference ();
|
|
if (dump_file)
|
|
fprintf (dump_file, "ipa-prop: Removed a reference from %s to %s.\n",
|
|
origin->caller->dump_name (), symbol->dump_name ());
|
|
return true;
|
|
}
|
|
|
|
/* If JFUNC has a reference description with refcount different from
|
|
IPA_UNDESCRIBED_USE, return the reference description, otherwise return
|
|
NULL. JFUNC must be a constant jump function. */
|
|
|
|
static struct ipa_cst_ref_desc *
|
|
jfunc_rdesc_usable (struct ipa_jump_func *jfunc)
|
|
{
|
|
struct ipa_cst_ref_desc *rdesc = ipa_get_jf_constant_rdesc (jfunc);
|
|
if (rdesc && rdesc->refcount != IPA_UNDESCRIBED_USE)
|
|
return rdesc;
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* If the value of constant jump function JFUNC is an address of a function
|
|
declaration, return the associated call graph node. Otherwise return
|
|
NULL. */
|
|
|
|
static cgraph_node *
|
|
cgraph_node_for_jfunc (struct ipa_jump_func *jfunc)
|
|
{
|
|
gcc_checking_assert (jfunc->type == IPA_JF_CONST);
|
|
tree cst = ipa_get_jf_constant (jfunc);
|
|
if (TREE_CODE (cst) != ADDR_EXPR
|
|
|| TREE_CODE (TREE_OPERAND (cst, 0)) != FUNCTION_DECL)
|
|
return NULL;
|
|
|
|
return cgraph_node::get (TREE_OPERAND (cst, 0));
|
|
}
|
|
|
|
|
|
/* If JFUNC is a constant jump function with a usable rdesc, decrement its
|
|
refcount and if it hits zero, remove reference to SYMBOL from the caller of
|
|
the edge specified in the rdesc. Return false if either the symbol or the
|
|
reference could not be found, otherwise return true. */
|
|
|
|
static bool
|
|
try_decrement_rdesc_refcount (struct ipa_jump_func *jfunc)
|
|
{
|
|
struct ipa_cst_ref_desc *rdesc;
|
|
if (jfunc->type == IPA_JF_CONST
|
|
&& (rdesc = jfunc_rdesc_usable (jfunc))
|
|
&& --rdesc->refcount == 0)
|
|
{
|
|
symtab_node *symbol = cgraph_node_for_jfunc (jfunc);
|
|
if (!symbol)
|
|
return false;
|
|
|
|
return remove_described_reference (symbol, rdesc);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a simple
|
|
call or a call of a member function pointer and where the destination is a
|
|
pointer formal parameter described by jump function JFUNC. TARGET_TYPE is
|
|
the type of the parameter to which the result of JFUNC is passed. If it can
|
|
be determined, return the newly direct edge, otherwise return NULL.
|
|
NEW_ROOT and NEW_ROOT_INFO is the node and its info that JFUNC lattices are
|
|
relative to. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_simple_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc, tree target_type,
|
|
struct cgraph_node *new_root,
|
|
class ipa_node_params *new_root_info)
|
|
{
|
|
struct cgraph_edge *cs;
|
|
tree target;
|
|
bool agg_contents = ie->indirect_info->agg_contents;
|
|
tree scalar = ipa_value_from_jfunc (new_root_info, jfunc, target_type);
|
|
if (agg_contents)
|
|
{
|
|
bool from_global_constant;
|
|
ipa_agg_value_set agg = ipa_agg_value_set_from_jfunc (new_root_info,
|
|
new_root,
|
|
&jfunc->agg);
|
|
target = ipa_find_agg_cst_for_param (&agg, scalar,
|
|
ie->indirect_info->offset,
|
|
ie->indirect_info->by_ref,
|
|
&from_global_constant);
|
|
agg.release ();
|
|
if (target
|
|
&& !from_global_constant
|
|
&& !ie->indirect_info->guaranteed_unmodified)
|
|
return NULL;
|
|
}
|
|
else
|
|
target = scalar;
|
|
if (!target)
|
|
return NULL;
|
|
cs = ipa_make_edge_direct_to_target (ie, target);
|
|
|
|
if (cs && !agg_contents)
|
|
{
|
|
bool ok;
|
|
gcc_checking_assert (cs->callee
|
|
&& (cs != ie
|
|
|| jfunc->type != IPA_JF_CONST
|
|
|| !cgraph_node_for_jfunc (jfunc)
|
|
|| cs->callee == cgraph_node_for_jfunc (jfunc)));
|
|
ok = try_decrement_rdesc_refcount (jfunc);
|
|
gcc_checking_assert (ok);
|
|
}
|
|
|
|
return cs;
|
|
}
|
|
|
|
/* Return the target to be used in cases of impossible devirtualization. IE
|
|
and target (the latter can be NULL) are dumped when dumping is enabled. */
|
|
|
|
tree
|
|
ipa_impossible_devirt_target (struct cgraph_edge *ie, tree target)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
if (target)
|
|
fprintf (dump_file,
|
|
"Type inconsistent devirtualization: %s->%s\n",
|
|
ie->caller->dump_name (),
|
|
IDENTIFIER_POINTER (DECL_ASSEMBLER_NAME (target)));
|
|
else
|
|
fprintf (dump_file,
|
|
"No devirtualization target in %s\n",
|
|
ie->caller->dump_name ());
|
|
}
|
|
tree new_target = builtin_decl_implicit (BUILT_IN_UNREACHABLE);
|
|
cgraph_node::get_create (new_target);
|
|
return new_target;
|
|
}
|
|
|
|
/* Try to find a destination for indirect edge IE that corresponds to a virtual
|
|
call based on a formal parameter which is described by jump function JFUNC
|
|
and if it can be determined, make it direct and return the direct edge.
|
|
Otherwise, return NULL. CTX describes the polymorphic context that the
|
|
parameter the call is based on brings along with it. NEW_ROOT and
|
|
NEW_ROOT_INFO is the node and its info that JFUNC lattices are relative
|
|
to. */
|
|
|
|
static struct cgraph_edge *
|
|
try_make_edge_direct_virtual_call (struct cgraph_edge *ie,
|
|
struct ipa_jump_func *jfunc,
|
|
class ipa_polymorphic_call_context ctx,
|
|
struct cgraph_node *new_root,
|
|
class ipa_node_params *new_root_info)
|
|
{
|
|
tree target = NULL;
|
|
bool speculative = false;
|
|
|
|
if (!opt_for_fn (ie->caller->decl, flag_devirtualize))
|
|
return NULL;
|
|
|
|
gcc_assert (!ie->indirect_info->by_ref);
|
|
|
|
/* Try to do lookup via known virtual table pointer value. */
|
|
if (!ie->indirect_info->vptr_changed
|
|
|| opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively))
|
|
{
|
|
tree vtable;
|
|
unsigned HOST_WIDE_INT offset;
|
|
tree scalar = (jfunc->type == IPA_JF_CONST) ? ipa_get_jf_constant (jfunc)
|
|
: NULL;
|
|
ipa_agg_value_set agg = ipa_agg_value_set_from_jfunc (new_root_info,
|
|
new_root,
|
|
&jfunc->agg);
|
|
tree t = ipa_find_agg_cst_for_param (&agg, scalar,
|
|
ie->indirect_info->offset,
|
|
true);
|
|
agg.release ();
|
|
if (t && vtable_pointer_value_to_vtable (t, &vtable, &offset))
|
|
{
|
|
bool can_refer;
|
|
t = gimple_get_virt_method_for_vtable (ie->indirect_info->otr_token,
|
|
vtable, offset, &can_refer);
|
|
if (can_refer)
|
|
{
|
|
if (!t
|
|
|| fndecl_built_in_p (t, BUILT_IN_UNREACHABLE)
|
|
|| !possible_polymorphic_call_target_p
|
|
(ie, cgraph_node::get (t)))
|
|
{
|
|
/* Do not speculate builtin_unreachable, it is stupid! */
|
|
if (!ie->indirect_info->vptr_changed)
|
|
target = ipa_impossible_devirt_target (ie, target);
|
|
else
|
|
target = NULL;
|
|
}
|
|
else
|
|
{
|
|
target = t;
|
|
speculative = ie->indirect_info->vptr_changed;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
ipa_polymorphic_call_context ie_context (ie);
|
|
vec <cgraph_node *>targets;
|
|
bool final;
|
|
|
|
ctx.offset_by (ie->indirect_info->offset);
|
|
if (ie->indirect_info->vptr_changed)
|
|
ctx.possible_dynamic_type_change (ie->in_polymorphic_cdtor,
|
|
ie->indirect_info->otr_type);
|
|
ctx.combine_with (ie_context, ie->indirect_info->otr_type);
|
|
targets = possible_polymorphic_call_targets
|
|
(ie->indirect_info->otr_type,
|
|
ie->indirect_info->otr_token,
|
|
ctx, &final);
|
|
if (final && targets.length () <= 1)
|
|
{
|
|
speculative = false;
|
|
if (targets.length () == 1)
|
|
target = targets[0]->decl;
|
|
else
|
|
target = ipa_impossible_devirt_target (ie, NULL_TREE);
|
|
}
|
|
else if (!target && opt_for_fn (ie->caller->decl, flag_devirtualize_speculatively)
|
|
&& !ie->speculative && ie->maybe_hot_p ())
|
|
{
|
|
cgraph_node *n;
|
|
n = try_speculative_devirtualization (ie->indirect_info->otr_type,
|
|
ie->indirect_info->otr_token,
|
|
ie->indirect_info->context);
|
|
if (n)
|
|
{
|
|
target = n->decl;
|
|
speculative = true;
|
|
}
|
|
}
|
|
|
|
if (target)
|
|
{
|
|
if (!possible_polymorphic_call_target_p
|
|
(ie, cgraph_node::get_create (target)))
|
|
{
|
|
if (speculative)
|
|
return NULL;
|
|
target = ipa_impossible_devirt_target (ie, target);
|
|
}
|
|
return ipa_make_edge_direct_to_target (ie, target, speculative);
|
|
}
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
/* Update the param called notes associated with NODE when CS is being inlined,
|
|
assuming NODE is (potentially indirectly) inlined into CS->callee.
|
|
Moreover, if the callee is discovered to be constant, create a new cgraph
|
|
edge for it. Newly discovered indirect edges will be added to *NEW_EDGES,
|
|
unless NEW_EDGES is NULL. Return true iff a new edge(s) were created. */
|
|
|
|
static bool
|
|
update_indirect_edges_after_inlining (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
vec<cgraph_edge *> *new_edges)
|
|
{
|
|
class ipa_edge_args *top;
|
|
struct cgraph_edge *ie, *next_ie, *new_direct_edge;
|
|
struct cgraph_node *new_root;
|
|
class ipa_node_params *new_root_info, *inlined_node_info;
|
|
bool res = false;
|
|
|
|
ipa_check_create_edge_args ();
|
|
top = IPA_EDGE_REF (cs);
|
|
new_root = cs->caller->inlined_to
|
|
? cs->caller->inlined_to : cs->caller;
|
|
new_root_info = IPA_NODE_REF (new_root);
|
|
inlined_node_info = IPA_NODE_REF (cs->callee->function_symbol ());
|
|
|
|
for (ie = node->indirect_calls; ie; ie = next_ie)
|
|
{
|
|
class cgraph_indirect_call_info *ici = ie->indirect_info;
|
|
struct ipa_jump_func *jfunc;
|
|
int param_index;
|
|
|
|
next_ie = ie->next_callee;
|
|
|
|
if (ici->param_index == -1)
|
|
continue;
|
|
|
|
/* We must check range due to calls with variable number of arguments: */
|
|
if (!top || ici->param_index >= ipa_get_cs_argument_count (top))
|
|
{
|
|
ici->param_index = -1;
|
|
continue;
|
|
}
|
|
|
|
param_index = ici->param_index;
|
|
jfunc = ipa_get_ith_jump_func (top, param_index);
|
|
cgraph_node *spec_target = NULL;
|
|
|
|
/* FIXME: This may need updating for multiple calls. */
|
|
if (ie->speculative)
|
|
spec_target = ie->first_speculative_call_target ()->callee;
|
|
|
|
if (!opt_for_fn (node->decl, flag_indirect_inlining))
|
|
new_direct_edge = NULL;
|
|
else if (ici->polymorphic)
|
|
{
|
|
ipa_polymorphic_call_context ctx;
|
|
ctx = ipa_context_from_jfunc (new_root_info, cs, param_index, jfunc);
|
|
new_direct_edge = try_make_edge_direct_virtual_call (ie, jfunc, ctx,
|
|
new_root,
|
|
new_root_info);
|
|
}
|
|
else
|
|
{
|
|
tree target_type = ipa_get_type (inlined_node_info, param_index);
|
|
new_direct_edge = try_make_edge_direct_simple_call (ie, jfunc,
|
|
target_type,
|
|
new_root,
|
|
new_root_info);
|
|
}
|
|
|
|
/* If speculation was removed, then we need to do nothing. */
|
|
if (new_direct_edge && new_direct_edge != ie
|
|
&& new_direct_edge->callee == spec_target)
|
|
{
|
|
new_direct_edge->indirect_inlining_edge = 1;
|
|
top = IPA_EDGE_REF (cs);
|
|
res = true;
|
|
if (!new_direct_edge->speculative)
|
|
continue;
|
|
}
|
|
else if (new_direct_edge)
|
|
{
|
|
new_direct_edge->indirect_inlining_edge = 1;
|
|
if (new_edges)
|
|
{
|
|
new_edges->safe_push (new_direct_edge);
|
|
res = true;
|
|
}
|
|
top = IPA_EDGE_REF (cs);
|
|
/* If speculative edge was introduced we still need to update
|
|
call info of the indirect edge. */
|
|
if (!new_direct_edge->speculative)
|
|
continue;
|
|
}
|
|
if (jfunc->type == IPA_JF_PASS_THROUGH
|
|
&& ipa_get_jf_pass_through_operation (jfunc) == NOP_EXPR)
|
|
{
|
|
if (ici->agg_contents
|
|
&& !ipa_get_jf_pass_through_agg_preserved (jfunc)
|
|
&& !ici->polymorphic)
|
|
ici->param_index = -1;
|
|
else
|
|
{
|
|
ici->param_index = ipa_get_jf_pass_through_formal_id (jfunc);
|
|
if (ici->polymorphic
|
|
&& !ipa_get_jf_pass_through_type_preserved (jfunc))
|
|
ici->vptr_changed = true;
|
|
ipa_set_param_used_by_indirect_call (new_root_info,
|
|
ici->param_index, true);
|
|
if (ici->polymorphic)
|
|
ipa_set_param_used_by_polymorphic_call (new_root_info,
|
|
ici->param_index, true);
|
|
}
|
|
}
|
|
else if (jfunc->type == IPA_JF_ANCESTOR)
|
|
{
|
|
if (ici->agg_contents
|
|
&& !ipa_get_jf_ancestor_agg_preserved (jfunc)
|
|
&& !ici->polymorphic)
|
|
ici->param_index = -1;
|
|
else
|
|
{
|
|
ici->param_index = ipa_get_jf_ancestor_formal_id (jfunc);
|
|
ici->offset += ipa_get_jf_ancestor_offset (jfunc);
|
|
if (ici->polymorphic
|
|
&& !ipa_get_jf_ancestor_type_preserved (jfunc))
|
|
ici->vptr_changed = true;
|
|
ipa_set_param_used_by_indirect_call (new_root_info,
|
|
ici->param_index, true);
|
|
if (ici->polymorphic)
|
|
ipa_set_param_used_by_polymorphic_call (new_root_info,
|
|
ici->param_index, true);
|
|
}
|
|
}
|
|
else
|
|
/* Either we can find a destination for this edge now or never. */
|
|
ici->param_index = -1;
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Recursively traverse subtree of NODE (including node) made of inlined
|
|
cgraph_edges when CS has been inlined and invoke
|
|
update_indirect_edges_after_inlining on all nodes and
|
|
update_jump_functions_after_inlining on all non-inlined edges that lead out
|
|
of this subtree. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were
|
|
created. */
|
|
|
|
static bool
|
|
propagate_info_to_inlined_callees (struct cgraph_edge *cs,
|
|
struct cgraph_node *node,
|
|
vec<cgraph_edge *> *new_edges)
|
|
{
|
|
struct cgraph_edge *e;
|
|
bool res;
|
|
|
|
res = update_indirect_edges_after_inlining (cs, node, new_edges);
|
|
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
if (!e->inline_failed)
|
|
res |= propagate_info_to_inlined_callees (cs, e->callee, new_edges);
|
|
else
|
|
update_jump_functions_after_inlining (cs, e);
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
update_jump_functions_after_inlining (cs, e);
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Combine two controlled uses counts as done during inlining. */
|
|
|
|
static int
|
|
combine_controlled_uses_counters (int c, int d)
|
|
{
|
|
if (c == IPA_UNDESCRIBED_USE || d == IPA_UNDESCRIBED_USE)
|
|
return IPA_UNDESCRIBED_USE;
|
|
else
|
|
return c + d - 1;
|
|
}
|
|
|
|
/* Propagate number of controlled users from CS->caleee to the new root of the
|
|
tree of inlined nodes. */
|
|
|
|
static void
|
|
propagate_controlled_uses (struct cgraph_edge *cs)
|
|
{
|
|
class ipa_edge_args *args = IPA_EDGE_REF (cs);
|
|
if (!args)
|
|
return;
|
|
struct cgraph_node *new_root = cs->caller->inlined_to
|
|
? cs->caller->inlined_to : cs->caller;
|
|
class ipa_node_params *new_root_info = IPA_NODE_REF (new_root);
|
|
class ipa_node_params *old_root_info = IPA_NODE_REF (cs->callee);
|
|
int count, i;
|
|
|
|
if (!old_root_info)
|
|
return;
|
|
|
|
count = MIN (ipa_get_cs_argument_count (args),
|
|
ipa_get_param_count (old_root_info));
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
|
|
struct ipa_cst_ref_desc *rdesc;
|
|
|
|
if (jf->type == IPA_JF_PASS_THROUGH)
|
|
{
|
|
int src_idx, c, d;
|
|
src_idx = ipa_get_jf_pass_through_formal_id (jf);
|
|
c = ipa_get_controlled_uses (new_root_info, src_idx);
|
|
d = ipa_get_controlled_uses (old_root_info, i);
|
|
|
|
gcc_checking_assert (ipa_get_jf_pass_through_operation (jf)
|
|
== NOP_EXPR || c == IPA_UNDESCRIBED_USE);
|
|
c = combine_controlled_uses_counters (c, d);
|
|
ipa_set_controlled_uses (new_root_info, src_idx, c);
|
|
if (c == 0 && new_root_info->ipcp_orig_node)
|
|
{
|
|
struct cgraph_node *n;
|
|
struct ipa_ref *ref;
|
|
tree t = new_root_info->known_csts[src_idx];
|
|
|
|
if (t && TREE_CODE (t) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (t, 0)) == FUNCTION_DECL
|
|
&& (n = cgraph_node::get (TREE_OPERAND (t, 0)))
|
|
&& (ref = new_root->find_reference (n, NULL, 0)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "ipa-prop: Removing cloning-created "
|
|
"reference from %s to %s.\n",
|
|
new_root->dump_name (),
|
|
n->dump_name ());
|
|
ref->remove_reference ();
|
|
}
|
|
}
|
|
}
|
|
else if (jf->type == IPA_JF_CONST
|
|
&& (rdesc = jfunc_rdesc_usable (jf)))
|
|
{
|
|
int d = ipa_get_controlled_uses (old_root_info, i);
|
|
int c = rdesc->refcount;
|
|
rdesc->refcount = combine_controlled_uses_counters (c, d);
|
|
if (rdesc->refcount == 0)
|
|
{
|
|
tree cst = ipa_get_jf_constant (jf);
|
|
struct cgraph_node *n;
|
|
gcc_checking_assert (TREE_CODE (cst) == ADDR_EXPR
|
|
&& TREE_CODE (TREE_OPERAND (cst, 0))
|
|
== FUNCTION_DECL);
|
|
n = cgraph_node::get (TREE_OPERAND (cst, 0));
|
|
if (n)
|
|
{
|
|
struct cgraph_node *clone;
|
|
bool ok;
|
|
ok = remove_described_reference (n, rdesc);
|
|
gcc_checking_assert (ok);
|
|
|
|
clone = cs->caller;
|
|
while (clone->inlined_to
|
|
&& clone->ipcp_clone
|
|
&& clone != rdesc->cs->caller)
|
|
{
|
|
struct ipa_ref *ref;
|
|
ref = clone->find_reference (n, NULL, 0);
|
|
if (ref)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "ipa-prop: Removing "
|
|
"cloning-created reference "
|
|
"from %s to %s.\n",
|
|
clone->dump_name (),
|
|
n->dump_name ());
|
|
ref->remove_reference ();
|
|
}
|
|
clone = clone->callers->caller;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (i = ipa_get_param_count (old_root_info);
|
|
i < ipa_get_cs_argument_count (args);
|
|
i++)
|
|
{
|
|
struct ipa_jump_func *jf = ipa_get_ith_jump_func (args, i);
|
|
|
|
if (jf->type == IPA_JF_CONST)
|
|
{
|
|
struct ipa_cst_ref_desc *rdesc = jfunc_rdesc_usable (jf);
|
|
if (rdesc)
|
|
rdesc->refcount = IPA_UNDESCRIBED_USE;
|
|
}
|
|
else if (jf->type == IPA_JF_PASS_THROUGH)
|
|
ipa_set_controlled_uses (new_root_info,
|
|
jf->value.pass_through.formal_id,
|
|
IPA_UNDESCRIBED_USE);
|
|
}
|
|
}
|
|
|
|
/* Update jump functions and call note functions on inlining the call site CS.
|
|
CS is expected to lead to a node already cloned by
|
|
cgraph_clone_inline_nodes. Newly discovered indirect edges will be added to
|
|
*NEW_EDGES, unless NEW_EDGES is NULL. Return true iff a new edge(s) were +
|
|
created. */
|
|
|
|
bool
|
|
ipa_propagate_indirect_call_infos (struct cgraph_edge *cs,
|
|
vec<cgraph_edge *> *new_edges)
|
|
{
|
|
bool changed;
|
|
/* Do nothing if the preparation phase has not been carried out yet
|
|
(i.e. during early inlining). */
|
|
if (!ipa_node_params_sum)
|
|
return false;
|
|
gcc_assert (ipa_edge_args_sum);
|
|
|
|
propagate_controlled_uses (cs);
|
|
changed = propagate_info_to_inlined_callees (cs, cs->callee, new_edges);
|
|
ipa_node_params_sum->remove (cs->callee);
|
|
|
|
class ipa_edge_args *args = IPA_EDGE_REF (cs);
|
|
if (args)
|
|
{
|
|
bool ok = true;
|
|
if (args->jump_functions)
|
|
{
|
|
struct ipa_jump_func *jf;
|
|
int i;
|
|
FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
|
|
if (jf->type == IPA_JF_CONST
|
|
&& ipa_get_jf_constant_rdesc (jf))
|
|
{
|
|
ok = false;
|
|
break;
|
|
}
|
|
}
|
|
if (ok)
|
|
ipa_edge_args_sum->remove (cs);
|
|
}
|
|
if (ipcp_transformation_sum)
|
|
ipcp_transformation_sum->remove (cs->callee);
|
|
|
|
return changed;
|
|
}
|
|
|
|
/* Ensure that array of edge arguments infos is big enough to accommodate a
|
|
structure for all edges and reallocates it if not. Also, allocate
|
|
associated hash tables is they do not already exist. */
|
|
|
|
void
|
|
ipa_check_create_edge_args (void)
|
|
{
|
|
if (!ipa_edge_args_sum)
|
|
ipa_edge_args_sum
|
|
= (new (ggc_alloc_no_dtor<ipa_edge_args_sum_t> ())
|
|
ipa_edge_args_sum_t (symtab, true));
|
|
if (!ipa_bits_hash_table)
|
|
ipa_bits_hash_table = hash_table<ipa_bit_ggc_hash_traits>::create_ggc (37);
|
|
if (!ipa_vr_hash_table)
|
|
ipa_vr_hash_table = hash_table<ipa_vr_ggc_hash_traits>::create_ggc (37);
|
|
}
|
|
|
|
/* Free all ipa_edge structures. */
|
|
|
|
void
|
|
ipa_free_all_edge_args (void)
|
|
{
|
|
if (!ipa_edge_args_sum)
|
|
return;
|
|
|
|
ggc_delete (ipa_edge_args_sum);
|
|
ipa_edge_args_sum = NULL;
|
|
}
|
|
|
|
/* Free all ipa_node_params structures. */
|
|
|
|
void
|
|
ipa_free_all_node_params (void)
|
|
{
|
|
ggc_delete (ipa_node_params_sum);
|
|
ipa_node_params_sum = NULL;
|
|
}
|
|
|
|
/* Initialize IPA CP transformation summary and also allocate any necessary hash
|
|
tables if they do not already exist. */
|
|
|
|
void
|
|
ipcp_transformation_initialize (void)
|
|
{
|
|
if (!ipa_bits_hash_table)
|
|
ipa_bits_hash_table = hash_table<ipa_bit_ggc_hash_traits>::create_ggc (37);
|
|
if (!ipa_vr_hash_table)
|
|
ipa_vr_hash_table = hash_table<ipa_vr_ggc_hash_traits>::create_ggc (37);
|
|
if (ipcp_transformation_sum == NULL)
|
|
ipcp_transformation_sum = ipcp_transformation_t::create_ggc (symtab);
|
|
}
|
|
|
|
/* Release the IPA CP transformation summary. */
|
|
|
|
void
|
|
ipcp_free_transformation_sum (void)
|
|
{
|
|
if (!ipcp_transformation_sum)
|
|
return;
|
|
|
|
ipcp_transformation_sum->~function_summary<ipcp_transformation *> ();
|
|
ggc_free (ipcp_transformation_sum);
|
|
ipcp_transformation_sum = NULL;
|
|
}
|
|
|
|
/* Set the aggregate replacements of NODE to be AGGVALS. */
|
|
|
|
void
|
|
ipa_set_node_agg_value_chain (struct cgraph_node *node,
|
|
struct ipa_agg_replacement_value *aggvals)
|
|
{
|
|
ipcp_transformation_initialize ();
|
|
ipcp_transformation *s = ipcp_transformation_sum->get_create (node);
|
|
s->agg_values = aggvals;
|
|
}
|
|
|
|
/* Hook that is called by cgraph.c when an edge is removed. Adjust reference
|
|
count data structures accordingly. */
|
|
|
|
void
|
|
ipa_edge_args_sum_t::remove (cgraph_edge *cs, ipa_edge_args *args)
|
|
{
|
|
if (args->jump_functions)
|
|
{
|
|
struct ipa_jump_func *jf;
|
|
int i;
|
|
FOR_EACH_VEC_ELT (*args->jump_functions, i, jf)
|
|
{
|
|
struct ipa_cst_ref_desc *rdesc;
|
|
try_decrement_rdesc_refcount (jf);
|
|
if (jf->type == IPA_JF_CONST
|
|
&& (rdesc = ipa_get_jf_constant_rdesc (jf))
|
|
&& rdesc->cs == cs)
|
|
rdesc->cs = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Method invoked when an edge is duplicated. Copy ipa_edge_args and adjust
|
|
reference count data strucutres accordingly. */
|
|
|
|
void
|
|
ipa_edge_args_sum_t::duplicate (cgraph_edge *src, cgraph_edge *dst,
|
|
ipa_edge_args *old_args, ipa_edge_args *new_args)
|
|
{
|
|
unsigned int i;
|
|
|
|
new_args->jump_functions = vec_safe_copy (old_args->jump_functions);
|
|
if (old_args->polymorphic_call_contexts)
|
|
new_args->polymorphic_call_contexts
|
|
= vec_safe_copy (old_args->polymorphic_call_contexts);
|
|
|
|
for (i = 0; i < vec_safe_length (old_args->jump_functions); i++)
|
|
{
|
|
struct ipa_jump_func *src_jf = ipa_get_ith_jump_func (old_args, i);
|
|
struct ipa_jump_func *dst_jf = ipa_get_ith_jump_func (new_args, i);
|
|
|
|
dst_jf->agg.items = vec_safe_copy (dst_jf->agg.items);
|
|
|
|
if (src_jf->type == IPA_JF_CONST)
|
|
{
|
|
struct ipa_cst_ref_desc *src_rdesc = jfunc_rdesc_usable (src_jf);
|
|
|
|
if (!src_rdesc)
|
|
dst_jf->value.constant.rdesc = NULL;
|
|
else if (src->caller == dst->caller)
|
|
{
|
|
struct ipa_ref *ref;
|
|
symtab_node *n = cgraph_node_for_jfunc (src_jf);
|
|
gcc_checking_assert (n);
|
|
ref = src->caller->find_reference (n, src->call_stmt,
|
|
src->lto_stmt_uid);
|
|
gcc_checking_assert (ref);
|
|
dst->caller->clone_reference (ref, ref->stmt);
|
|
|
|
struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
|
|
dst_rdesc->cs = dst;
|
|
dst_rdesc->refcount = src_rdesc->refcount;
|
|
dst_rdesc->next_duplicate = NULL;
|
|
dst_jf->value.constant.rdesc = dst_rdesc;
|
|
}
|
|
else if (src_rdesc->cs == src)
|
|
{
|
|
struct ipa_cst_ref_desc *dst_rdesc = ipa_refdesc_pool.allocate ();
|
|
dst_rdesc->cs = dst;
|
|
dst_rdesc->refcount = src_rdesc->refcount;
|
|
dst_rdesc->next_duplicate = src_rdesc->next_duplicate;
|
|
src_rdesc->next_duplicate = dst_rdesc;
|
|
dst_jf->value.constant.rdesc = dst_rdesc;
|
|
}
|
|
else
|
|
{
|
|
struct ipa_cst_ref_desc *dst_rdesc;
|
|
/* This can happen during inlining, when a JFUNC can refer to a
|
|
reference taken in a function up in the tree of inline clones.
|
|
We need to find the duplicate that refers to our tree of
|
|
inline clones. */
|
|
|
|
gcc_assert (dst->caller->inlined_to);
|
|
for (dst_rdesc = src_rdesc->next_duplicate;
|
|
dst_rdesc;
|
|
dst_rdesc = dst_rdesc->next_duplicate)
|
|
{
|
|
struct cgraph_node *top;
|
|
top = dst_rdesc->cs->caller->inlined_to
|
|
? dst_rdesc->cs->caller->inlined_to
|
|
: dst_rdesc->cs->caller;
|
|
if (dst->caller->inlined_to == top)
|
|
break;
|
|
}
|
|
gcc_assert (dst_rdesc);
|
|
dst_jf->value.constant.rdesc = dst_rdesc;
|
|
}
|
|
}
|
|
else if (dst_jf->type == IPA_JF_PASS_THROUGH
|
|
&& src->caller == dst->caller)
|
|
{
|
|
struct cgraph_node *inline_root = dst->caller->inlined_to
|
|
? dst->caller->inlined_to : dst->caller;
|
|
class ipa_node_params *root_info = IPA_NODE_REF (inline_root);
|
|
int idx = ipa_get_jf_pass_through_formal_id (dst_jf);
|
|
|
|
int c = ipa_get_controlled_uses (root_info, idx);
|
|
if (c != IPA_UNDESCRIBED_USE)
|
|
{
|
|
c++;
|
|
ipa_set_controlled_uses (root_info, idx, c);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Analyze newly added function into callgraph. */
|
|
|
|
static void
|
|
ipa_add_new_function (cgraph_node *node, void *data ATTRIBUTE_UNUSED)
|
|
{
|
|
if (node->has_gimple_body_p ())
|
|
ipa_analyze_node (node);
|
|
}
|
|
|
|
/* Hook that is called by summary when a node is duplicated. */
|
|
|
|
void
|
|
ipa_node_params_t::duplicate(cgraph_node *src, cgraph_node *dst,
|
|
ipa_node_params *old_info,
|
|
ipa_node_params *new_info)
|
|
{
|
|
ipa_agg_replacement_value *old_av, *new_av;
|
|
|
|
new_info->descriptors = vec_safe_copy (old_info->descriptors);
|
|
new_info->lattices = NULL;
|
|
new_info->ipcp_orig_node = old_info->ipcp_orig_node;
|
|
new_info->known_csts = old_info->known_csts.copy ();
|
|
new_info->known_contexts = old_info->known_contexts.copy ();
|
|
|
|
new_info->analysis_done = old_info->analysis_done;
|
|
new_info->node_enqueued = old_info->node_enqueued;
|
|
new_info->versionable = old_info->versionable;
|
|
|
|
old_av = ipa_get_agg_replacements_for_node (src);
|
|
if (old_av)
|
|
{
|
|
new_av = NULL;
|
|
while (old_av)
|
|
{
|
|
struct ipa_agg_replacement_value *v;
|
|
|
|
v = ggc_alloc<ipa_agg_replacement_value> ();
|
|
memcpy (v, old_av, sizeof (*v));
|
|
v->next = new_av;
|
|
new_av = v;
|
|
old_av = old_av->next;
|
|
}
|
|
ipa_set_node_agg_value_chain (dst, new_av);
|
|
}
|
|
}
|
|
|
|
/* Duplication of ipcp transformation summaries. */
|
|
|
|
void
|
|
ipcp_transformation_t::duplicate(cgraph_node *, cgraph_node *dst,
|
|
ipcp_transformation *src_trans,
|
|
ipcp_transformation *dst_trans)
|
|
{
|
|
/* Avoid redundant work of duplicating vectors we will never use. */
|
|
if (dst->inlined_to)
|
|
return;
|
|
dst_trans->bits = vec_safe_copy (src_trans->bits);
|
|
dst_trans->m_vr = vec_safe_copy (src_trans->m_vr);
|
|
ipa_agg_replacement_value *agg = src_trans->agg_values,
|
|
**aggptr = &dst_trans->agg_values;
|
|
while (agg)
|
|
{
|
|
*aggptr = ggc_alloc<ipa_agg_replacement_value> ();
|
|
**aggptr = *agg;
|
|
agg = agg->next;
|
|
aggptr = &(*aggptr)->next;
|
|
}
|
|
}
|
|
|
|
/* Register our cgraph hooks if they are not already there. */
|
|
|
|
void
|
|
ipa_register_cgraph_hooks (void)
|
|
{
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
|
|
function_insertion_hook_holder =
|
|
symtab->add_cgraph_insertion_hook (&ipa_add_new_function, NULL);
|
|
}
|
|
|
|
/* Unregister our cgraph hooks if they are not already there. */
|
|
|
|
static void
|
|
ipa_unregister_cgraph_hooks (void)
|
|
{
|
|
symtab->remove_cgraph_insertion_hook (function_insertion_hook_holder);
|
|
function_insertion_hook_holder = NULL;
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after ipa-cp. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_ipa_cp (void)
|
|
{
|
|
if (!optimize && !in_lto_p)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipcp_sources_pool.release ();
|
|
ipcp_cst_values_pool.release ();
|
|
ipcp_poly_ctx_values_pool.release ();
|
|
ipcp_agg_lattice_pool.release ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
ipa_refdesc_pool.release ();
|
|
}
|
|
}
|
|
|
|
/* Free all ipa_node_params and all ipa_edge_args structures if they are no
|
|
longer needed after indirect inlining. */
|
|
|
|
void
|
|
ipa_free_all_structures_after_iinln (void)
|
|
{
|
|
ipa_free_all_edge_args ();
|
|
ipa_free_all_node_params ();
|
|
ipa_unregister_cgraph_hooks ();
|
|
ipcp_sources_pool.release ();
|
|
ipcp_cst_values_pool.release ();
|
|
ipcp_poly_ctx_values_pool.release ();
|
|
ipcp_agg_lattice_pool.release ();
|
|
ipa_refdesc_pool.release ();
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_node_params (FILE *f, struct cgraph_node *node)
|
|
{
|
|
int i, count;
|
|
class ipa_node_params *info;
|
|
|
|
if (!node->definition)
|
|
return;
|
|
info = IPA_NODE_REF (node);
|
|
fprintf (f, " function %s parameter descriptors:\n", node->dump_name ());
|
|
if (!info)
|
|
{
|
|
fprintf (f, " no params return\n");
|
|
return;
|
|
}
|
|
count = ipa_get_param_count (info);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
int c;
|
|
|
|
fprintf (f, " ");
|
|
ipa_dump_param (f, info, i);
|
|
if (ipa_is_param_used (info, i))
|
|
fprintf (f, " used");
|
|
if (ipa_is_param_used_by_ipa_predicates (info, i))
|
|
fprintf (f, " used_by_ipa_predicates");
|
|
if (ipa_is_param_used_by_indirect_call (info, i))
|
|
fprintf (f, " used_by_indirect_call");
|
|
if (ipa_is_param_used_by_polymorphic_call (info, i))
|
|
fprintf (f, " used_by_polymorphic_call");
|
|
c = ipa_get_controlled_uses (info, i);
|
|
if (c == IPA_UNDESCRIBED_USE)
|
|
fprintf (f, " undescribed_use");
|
|
else
|
|
fprintf (f, " controlled_uses=%i", c);
|
|
fprintf (f, "\n");
|
|
}
|
|
}
|
|
|
|
/* Print ipa_tree_map data structures of all functions in the
|
|
callgraph to F. */
|
|
|
|
void
|
|
ipa_print_all_params (FILE * f)
|
|
{
|
|
struct cgraph_node *node;
|
|
|
|
fprintf (f, "\nFunction parameters:\n");
|
|
FOR_EACH_FUNCTION (node)
|
|
ipa_print_node_params (f, node);
|
|
}
|
|
|
|
/* Dump the AV linked list. */
|
|
|
|
void
|
|
ipa_dump_agg_replacement_values (FILE *f, struct ipa_agg_replacement_value *av)
|
|
{
|
|
bool comma = false;
|
|
fprintf (f, " Aggregate replacements:");
|
|
for (; av; av = av->next)
|
|
{
|
|
fprintf (f, "%s %i[" HOST_WIDE_INT_PRINT_DEC "]=", comma ? "," : "",
|
|
av->index, av->offset);
|
|
print_generic_expr (f, av->value);
|
|
comma = true;
|
|
}
|
|
fprintf (f, "\n");
|
|
}
|
|
|
|
/* Stream out jump function JUMP_FUNC to OB. */
|
|
|
|
static void
|
|
ipa_write_jump_function (struct output_block *ob,
|
|
struct ipa_jump_func *jump_func)
|
|
{
|
|
struct ipa_agg_jf_item *item;
|
|
struct bitpack_d bp;
|
|
int i, count;
|
|
int flag = 0;
|
|
|
|
/* ADDR_EXPRs are very comon IP invariants; save some streamer data
|
|
as well as WPA memory by handling them specially. */
|
|
if (jump_func->type == IPA_JF_CONST
|
|
&& TREE_CODE (jump_func->value.constant.value) == ADDR_EXPR)
|
|
flag = 1;
|
|
|
|
streamer_write_uhwi (ob, jump_func->type * 2 + flag);
|
|
switch (jump_func->type)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_CONST:
|
|
gcc_assert (
|
|
EXPR_LOCATION (jump_func->value.constant.value) == UNKNOWN_LOCATION);
|
|
stream_write_tree (ob,
|
|
flag
|
|
? TREE_OPERAND (jump_func->value.constant.value, 0)
|
|
: jump_func->value.constant.value, true);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.operation);
|
|
if (jump_func->value.pass_through.operation == NOP_EXPR)
|
|
{
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, jump_func->value.pass_through.agg_preserved, 1);
|
|
streamer_write_bitpack (&bp);
|
|
}
|
|
else if (TREE_CODE_CLASS (jump_func->value.pass_through.operation)
|
|
== tcc_unary)
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
|
|
else
|
|
{
|
|
stream_write_tree (ob, jump_func->value.pass_through.operand, true);
|
|
streamer_write_uhwi (ob, jump_func->value.pass_through.formal_id);
|
|
}
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.offset);
|
|
streamer_write_uhwi (ob, jump_func->value.ancestor.formal_id);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, jump_func->value.ancestor.agg_preserved, 1);
|
|
streamer_write_bitpack (&bp);
|
|
break;
|
|
default:
|
|
fatal_error (UNKNOWN_LOCATION, "invalid jump function in LTO stream");
|
|
}
|
|
|
|
count = vec_safe_length (jump_func->agg.items);
|
|
streamer_write_uhwi (ob, count);
|
|
if (count)
|
|
{
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, jump_func->agg.by_ref, 1);
|
|
streamer_write_bitpack (&bp);
|
|
}
|
|
|
|
FOR_EACH_VEC_SAFE_ELT (jump_func->agg.items, i, item)
|
|
{
|
|
stream_write_tree (ob, item->type, true);
|
|
streamer_write_uhwi (ob, item->offset);
|
|
streamer_write_uhwi (ob, item->jftype);
|
|
switch (item->jftype)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_CONST:
|
|
stream_write_tree (ob, item->value.constant, true);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
case IPA_JF_LOAD_AGG:
|
|
streamer_write_uhwi (ob, item->value.pass_through.operation);
|
|
streamer_write_uhwi (ob, item->value.pass_through.formal_id);
|
|
if (TREE_CODE_CLASS (item->value.pass_through.operation)
|
|
!= tcc_unary)
|
|
stream_write_tree (ob, item->value.pass_through.operand, true);
|
|
if (item->jftype == IPA_JF_LOAD_AGG)
|
|
{
|
|
stream_write_tree (ob, item->value.load_agg.type, true);
|
|
streamer_write_uhwi (ob, item->value.load_agg.offset);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, item->value.load_agg.by_ref, 1);
|
|
streamer_write_bitpack (&bp);
|
|
}
|
|
break;
|
|
default:
|
|
fatal_error (UNKNOWN_LOCATION,
|
|
"invalid jump function in LTO stream");
|
|
}
|
|
}
|
|
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, !!jump_func->bits, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (jump_func->bits)
|
|
{
|
|
streamer_write_widest_int (ob, jump_func->bits->value);
|
|
streamer_write_widest_int (ob, jump_func->bits->mask);
|
|
}
|
|
bp_pack_value (&bp, !!jump_func->m_vr, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (jump_func->m_vr)
|
|
{
|
|
streamer_write_enum (ob->main_stream, value_rang_type,
|
|
VR_LAST, jump_func->m_vr->kind ());
|
|
stream_write_tree (ob, jump_func->m_vr->min (), true);
|
|
stream_write_tree (ob, jump_func->m_vr->max (), true);
|
|
}
|
|
}
|
|
|
|
/* Read in jump function JUMP_FUNC from IB. */
|
|
|
|
static void
|
|
ipa_read_jump_function (class lto_input_block *ib,
|
|
struct ipa_jump_func *jump_func,
|
|
struct cgraph_edge *cs,
|
|
class data_in *data_in,
|
|
bool prevails)
|
|
{
|
|
enum jump_func_type jftype;
|
|
enum tree_code operation;
|
|
int i, count;
|
|
int val = streamer_read_uhwi (ib);
|
|
bool flag = val & 1;
|
|
|
|
jftype = (enum jump_func_type) (val / 2);
|
|
switch (jftype)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
ipa_set_jf_unknown (jump_func);
|
|
break;
|
|
case IPA_JF_CONST:
|
|
{
|
|
tree t = stream_read_tree (ib, data_in);
|
|
if (flag && prevails)
|
|
t = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (t)), t);
|
|
ipa_set_jf_constant (jump_func, t, cs);
|
|
}
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
operation = (enum tree_code) streamer_read_uhwi (ib);
|
|
if (operation == NOP_EXPR)
|
|
{
|
|
int formal_id = streamer_read_uhwi (ib);
|
|
struct bitpack_d bp = streamer_read_bitpack (ib);
|
|
bool agg_preserved = bp_unpack_value (&bp, 1);
|
|
ipa_set_jf_simple_pass_through (jump_func, formal_id, agg_preserved);
|
|
}
|
|
else if (TREE_CODE_CLASS (operation) == tcc_unary)
|
|
{
|
|
int formal_id = streamer_read_uhwi (ib);
|
|
ipa_set_jf_unary_pass_through (jump_func, formal_id, operation);
|
|
}
|
|
else
|
|
{
|
|
tree operand = stream_read_tree (ib, data_in);
|
|
int formal_id = streamer_read_uhwi (ib);
|
|
ipa_set_jf_arith_pass_through (jump_func, formal_id, operand,
|
|
operation);
|
|
}
|
|
break;
|
|
case IPA_JF_ANCESTOR:
|
|
{
|
|
HOST_WIDE_INT offset = streamer_read_uhwi (ib);
|
|
int formal_id = streamer_read_uhwi (ib);
|
|
struct bitpack_d bp = streamer_read_bitpack (ib);
|
|
bool agg_preserved = bp_unpack_value (&bp, 1);
|
|
ipa_set_ancestor_jf (jump_func, offset, formal_id, agg_preserved);
|
|
break;
|
|
}
|
|
default:
|
|
fatal_error (UNKNOWN_LOCATION, "invalid jump function in LTO stream");
|
|
}
|
|
|
|
count = streamer_read_uhwi (ib);
|
|
if (prevails)
|
|
vec_alloc (jump_func->agg.items, count);
|
|
if (count)
|
|
{
|
|
struct bitpack_d bp = streamer_read_bitpack (ib);
|
|
jump_func->agg.by_ref = bp_unpack_value (&bp, 1);
|
|
}
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct ipa_agg_jf_item item;
|
|
item.type = stream_read_tree (ib, data_in);
|
|
item.offset = streamer_read_uhwi (ib);
|
|
item.jftype = (enum jump_func_type) streamer_read_uhwi (ib);
|
|
|
|
switch (item.jftype)
|
|
{
|
|
case IPA_JF_UNKNOWN:
|
|
break;
|
|
case IPA_JF_CONST:
|
|
item.value.constant = stream_read_tree (ib, data_in);
|
|
break;
|
|
case IPA_JF_PASS_THROUGH:
|
|
case IPA_JF_LOAD_AGG:
|
|
operation = (enum tree_code) streamer_read_uhwi (ib);
|
|
item.value.pass_through.operation = operation;
|
|
item.value.pass_through.formal_id = streamer_read_uhwi (ib);
|
|
if (TREE_CODE_CLASS (operation) == tcc_unary)
|
|
item.value.pass_through.operand = NULL_TREE;
|
|
else
|
|
item.value.pass_through.operand = stream_read_tree (ib, data_in);
|
|
if (item.jftype == IPA_JF_LOAD_AGG)
|
|
{
|
|
struct bitpack_d bp;
|
|
item.value.load_agg.type = stream_read_tree (ib, data_in);
|
|
item.value.load_agg.offset = streamer_read_uhwi (ib);
|
|
bp = streamer_read_bitpack (ib);
|
|
item.value.load_agg.by_ref = bp_unpack_value (&bp, 1);
|
|
}
|
|
break;
|
|
default:
|
|
fatal_error (UNKNOWN_LOCATION,
|
|
"invalid jump function in LTO stream");
|
|
}
|
|
if (prevails)
|
|
jump_func->agg.items->quick_push (item);
|
|
}
|
|
|
|
struct bitpack_d bp = streamer_read_bitpack (ib);
|
|
bool bits_known = bp_unpack_value (&bp, 1);
|
|
if (bits_known)
|
|
{
|
|
widest_int value = streamer_read_widest_int (ib);
|
|
widest_int mask = streamer_read_widest_int (ib);
|
|
if (prevails)
|
|
ipa_set_jfunc_bits (jump_func, value, mask);
|
|
}
|
|
else
|
|
jump_func->bits = NULL;
|
|
|
|
struct bitpack_d vr_bp = streamer_read_bitpack (ib);
|
|
bool vr_known = bp_unpack_value (&vr_bp, 1);
|
|
if (vr_known)
|
|
{
|
|
enum value_range_kind type = streamer_read_enum (ib, value_range_kind,
|
|
VR_LAST);
|
|
tree min = stream_read_tree (ib, data_in);
|
|
tree max = stream_read_tree (ib, data_in);
|
|
if (prevails)
|
|
ipa_set_jfunc_vr (jump_func, type, min, max);
|
|
}
|
|
else
|
|
jump_func->m_vr = NULL;
|
|
}
|
|
|
|
/* Stream out parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining to OB. */
|
|
|
|
static void
|
|
ipa_write_indirect_edge_info (struct output_block *ob,
|
|
struct cgraph_edge *cs)
|
|
{
|
|
class cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
streamer_write_hwi (ob, ii->param_index);
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, ii->polymorphic, 1);
|
|
bp_pack_value (&bp, ii->agg_contents, 1);
|
|
bp_pack_value (&bp, ii->member_ptr, 1);
|
|
bp_pack_value (&bp, ii->by_ref, 1);
|
|
bp_pack_value (&bp, ii->guaranteed_unmodified, 1);
|
|
bp_pack_value (&bp, ii->vptr_changed, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (ii->agg_contents || ii->polymorphic)
|
|
streamer_write_hwi (ob, ii->offset);
|
|
else
|
|
gcc_assert (ii->offset == 0);
|
|
|
|
if (ii->polymorphic)
|
|
{
|
|
streamer_write_hwi (ob, ii->otr_token);
|
|
stream_write_tree (ob, ii->otr_type, true);
|
|
ii->context.stream_out (ob);
|
|
}
|
|
}
|
|
|
|
/* Read in parts of cgraph_indirect_call_info corresponding to CS that are
|
|
relevant to indirect inlining from IB. */
|
|
|
|
static void
|
|
ipa_read_indirect_edge_info (class lto_input_block *ib,
|
|
class data_in *data_in,
|
|
struct cgraph_edge *cs,
|
|
class ipa_node_params *info)
|
|
{
|
|
class cgraph_indirect_call_info *ii = cs->indirect_info;
|
|
struct bitpack_d bp;
|
|
|
|
ii->param_index = (int) streamer_read_hwi (ib);
|
|
bp = streamer_read_bitpack (ib);
|
|
ii->polymorphic = bp_unpack_value (&bp, 1);
|
|
ii->agg_contents = bp_unpack_value (&bp, 1);
|
|
ii->member_ptr = bp_unpack_value (&bp, 1);
|
|
ii->by_ref = bp_unpack_value (&bp, 1);
|
|
ii->guaranteed_unmodified = bp_unpack_value (&bp, 1);
|
|
ii->vptr_changed = bp_unpack_value (&bp, 1);
|
|
if (ii->agg_contents || ii->polymorphic)
|
|
ii->offset = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
|
else
|
|
ii->offset = 0;
|
|
if (ii->polymorphic)
|
|
{
|
|
ii->otr_token = (HOST_WIDE_INT) streamer_read_hwi (ib);
|
|
ii->otr_type = stream_read_tree (ib, data_in);
|
|
ii->context.stream_in (ib, data_in);
|
|
}
|
|
if (info && ii->param_index >= 0)
|
|
{
|
|
if (ii->polymorphic)
|
|
ipa_set_param_used_by_polymorphic_call (info,
|
|
ii->param_index , true);
|
|
ipa_set_param_used_by_indirect_call (info,
|
|
ii->param_index, true);
|
|
}
|
|
}
|
|
|
|
/* Stream out NODE info to OB. */
|
|
|
|
static void
|
|
ipa_write_node_info (struct output_block *ob, struct cgraph_node *node)
|
|
{
|
|
int node_ref;
|
|
lto_symtab_encoder_t encoder;
|
|
class ipa_node_params *info = IPA_NODE_REF (node);
|
|
int j;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
|
|
encoder = ob->decl_state->symtab_node_encoder;
|
|
node_ref = lto_symtab_encoder_encode (encoder, node);
|
|
streamer_write_uhwi (ob, node_ref);
|
|
|
|
streamer_write_uhwi (ob, ipa_get_param_count (info));
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
streamer_write_uhwi (ob, ipa_get_param_move_cost (info, j));
|
|
bp = bitpack_create (ob->main_stream);
|
|
gcc_assert (info->analysis_done
|
|
|| ipa_get_param_count (info) == 0);
|
|
gcc_assert (!info->node_enqueued);
|
|
gcc_assert (!info->ipcp_orig_node);
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
bp_pack_value (&bp, ipa_is_param_used (info, j), 1);
|
|
streamer_write_bitpack (&bp);
|
|
for (j = 0; j < ipa_get_param_count (info); j++)
|
|
{
|
|
streamer_write_hwi (ob, ipa_get_controlled_uses (info, j));
|
|
stream_write_tree (ob, ipa_get_type (info, j), true);
|
|
}
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
{
|
|
class ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
|
|
if (!args)
|
|
{
|
|
streamer_write_uhwi (ob, 0);
|
|
continue;
|
|
}
|
|
|
|
streamer_write_uhwi (ob,
|
|
ipa_get_cs_argument_count (args) * 2
|
|
+ (args->polymorphic_call_contexts != NULL));
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
|
{
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
|
if (args->polymorphic_call_contexts != NULL)
|
|
ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
|
|
}
|
|
}
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
class ipa_edge_args *args = IPA_EDGE_REF (e);
|
|
if (!args)
|
|
streamer_write_uhwi (ob, 0);
|
|
else
|
|
{
|
|
streamer_write_uhwi (ob,
|
|
ipa_get_cs_argument_count (args) * 2
|
|
+ (args->polymorphic_call_contexts != NULL));
|
|
for (j = 0; j < ipa_get_cs_argument_count (args); j++)
|
|
{
|
|
ipa_write_jump_function (ob, ipa_get_ith_jump_func (args, j));
|
|
if (args->polymorphic_call_contexts != NULL)
|
|
ipa_get_ith_polymorhic_call_context (args, j)->stream_out (ob);
|
|
}
|
|
}
|
|
ipa_write_indirect_edge_info (ob, e);
|
|
}
|
|
}
|
|
|
|
/* Stream in edge E from IB. */
|
|
|
|
static void
|
|
ipa_read_edge_info (class lto_input_block *ib,
|
|
class data_in *data_in,
|
|
struct cgraph_edge *e, bool prevails)
|
|
{
|
|
int count = streamer_read_uhwi (ib);
|
|
bool contexts_computed = count & 1;
|
|
|
|
count /= 2;
|
|
if (!count)
|
|
return;
|
|
if (prevails && e->possibly_call_in_translation_unit_p ())
|
|
{
|
|
class ipa_edge_args *args = IPA_EDGE_REF_GET_CREATE (e);
|
|
vec_safe_grow_cleared (args->jump_functions, count);
|
|
if (contexts_computed)
|
|
vec_safe_grow_cleared (args->polymorphic_call_contexts, count);
|
|
for (int k = 0; k < count; k++)
|
|
{
|
|
ipa_read_jump_function (ib, ipa_get_ith_jump_func (args, k), e,
|
|
data_in, prevails);
|
|
if (contexts_computed)
|
|
ipa_get_ith_polymorhic_call_context (args, k)->stream_in
|
|
(ib, data_in);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (int k = 0; k < count; k++)
|
|
{
|
|
struct ipa_jump_func dummy;
|
|
ipa_read_jump_function (ib, &dummy, e,
|
|
data_in, prevails);
|
|
if (contexts_computed)
|
|
{
|
|
class ipa_polymorphic_call_context ctx;
|
|
ctx.stream_in (ib, data_in);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Stream in NODE info from IB. */
|
|
|
|
static void
|
|
ipa_read_node_info (class lto_input_block *ib, struct cgraph_node *node,
|
|
class data_in *data_in)
|
|
{
|
|
int k;
|
|
struct cgraph_edge *e;
|
|
struct bitpack_d bp;
|
|
bool prevails = node->prevailing_p ();
|
|
class ipa_node_params *info = prevails
|
|
? IPA_NODE_REF_GET_CREATE (node) : NULL;
|
|
|
|
int param_count = streamer_read_uhwi (ib);
|
|
if (prevails)
|
|
{
|
|
ipa_alloc_node_params (node, param_count);
|
|
for (k = 0; k < param_count; k++)
|
|
(*info->descriptors)[k].move_cost = streamer_read_uhwi (ib);
|
|
if (ipa_get_param_count (info) != 0)
|
|
info->analysis_done = true;
|
|
info->node_enqueued = false;
|
|
}
|
|
else
|
|
for (k = 0; k < param_count; k++)
|
|
streamer_read_uhwi (ib);
|
|
|
|
bp = streamer_read_bitpack (ib);
|
|
for (k = 0; k < param_count; k++)
|
|
{
|
|
bool used = bp_unpack_value (&bp, 1);
|
|
|
|
if (prevails)
|
|
ipa_set_param_used (info, k, used);
|
|
}
|
|
for (k = 0; k < param_count; k++)
|
|
{
|
|
int nuses = streamer_read_hwi (ib);
|
|
tree type = stream_read_tree (ib, data_in);
|
|
|
|
if (prevails)
|
|
{
|
|
ipa_set_controlled_uses (info, k, nuses);
|
|
(*info->descriptors)[k].decl_or_type = type;
|
|
}
|
|
}
|
|
for (e = node->callees; e; e = e->next_callee)
|
|
ipa_read_edge_info (ib, data_in, e, prevails);
|
|
for (e = node->indirect_calls; e; e = e->next_callee)
|
|
{
|
|
ipa_read_edge_info (ib, data_in, e, prevails);
|
|
ipa_read_indirect_edge_info (ib, data_in, e, info);
|
|
}
|
|
}
|
|
|
|
/* Write jump functions for nodes in SET. */
|
|
|
|
void
|
|
ipa_prop_write_jump_functions (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct output_block *ob;
|
|
unsigned int count = 0;
|
|
lto_symtab_encoder_iterator lsei;
|
|
lto_symtab_encoder_t encoder;
|
|
|
|
if (!ipa_node_params_sum || !ipa_edge_args_sum)
|
|
return;
|
|
|
|
ob = create_output_block (LTO_section_jump_functions);
|
|
encoder = ob->decl_state->symtab_node_encoder;
|
|
ob->symbol = NULL;
|
|
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
|
|
lsei_next_function_in_partition (&lsei))
|
|
{
|
|
node = lsei_cgraph_node (lsei);
|
|
if (node->has_gimple_body_p ()
|
|
&& IPA_NODE_REF (node) != NULL)
|
|
count++;
|
|
}
|
|
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
/* Process all of the functions. */
|
|
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
|
|
lsei_next_function_in_partition (&lsei))
|
|
{
|
|
node = lsei_cgraph_node (lsei);
|
|
if (node->has_gimple_body_p ()
|
|
&& IPA_NODE_REF (node) != NULL)
|
|
ipa_write_node_info (ob, node);
|
|
}
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
|
produce_asm (ob, NULL);
|
|
destroy_output_block (ob);
|
|
}
|
|
|
|
/* Read section in file FILE_DATA of length LEN with data DATA. */
|
|
|
|
static void
|
|
ipa_prop_read_section (struct lto_file_decl_data *file_data, const char *data,
|
|
size_t len)
|
|
{
|
|
const struct lto_function_header *header =
|
|
(const struct lto_function_header *) data;
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
|
const int string_offset = main_offset + header->main_size;
|
|
class data_in *data_in;
|
|
unsigned int i;
|
|
unsigned int count;
|
|
|
|
lto_input_block ib_main ((const char *) data + main_offset,
|
|
header->main_size, file_data->mode_table);
|
|
|
|
data_in =
|
|
lto_data_in_create (file_data, (const char *) data + string_offset,
|
|
header->string_size, vNULL);
|
|
count = streamer_read_uhwi (&ib_main);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
unsigned int index;
|
|
struct cgraph_node *node;
|
|
lto_symtab_encoder_t encoder;
|
|
|
|
index = streamer_read_uhwi (&ib_main);
|
|
encoder = file_data->symtab_node_encoder;
|
|
node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
|
|
index));
|
|
gcc_assert (node->definition);
|
|
ipa_read_node_info (&ib_main, node, data_in);
|
|
}
|
|
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
|
|
len);
|
|
lto_data_in_delete (data_in);
|
|
}
|
|
|
|
/* Read ipcp jump functions. */
|
|
|
|
void
|
|
ipa_prop_read_jump_functions (void)
|
|
{
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
|
struct lto_file_decl_data *file_data;
|
|
unsigned int j = 0;
|
|
|
|
ipa_check_create_node_params ();
|
|
ipa_check_create_edge_args ();
|
|
ipa_register_cgraph_hooks ();
|
|
|
|
while ((file_data = file_data_vec[j++]))
|
|
{
|
|
size_t len;
|
|
const char *data
|
|
= lto_get_summary_section_data (file_data, LTO_section_jump_functions,
|
|
&len);
|
|
if (data)
|
|
ipa_prop_read_section (file_data, data, len);
|
|
}
|
|
}
|
|
|
|
void
|
|
write_ipcp_transformation_info (output_block *ob, cgraph_node *node)
|
|
{
|
|
int node_ref;
|
|
unsigned int count = 0;
|
|
lto_symtab_encoder_t encoder;
|
|
struct ipa_agg_replacement_value *aggvals, *av;
|
|
|
|
aggvals = ipa_get_agg_replacements_for_node (node);
|
|
encoder = ob->decl_state->symtab_node_encoder;
|
|
node_ref = lto_symtab_encoder_encode (encoder, node);
|
|
streamer_write_uhwi (ob, node_ref);
|
|
|
|
for (av = aggvals; av; av = av->next)
|
|
count++;
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
for (av = aggvals; av; av = av->next)
|
|
{
|
|
struct bitpack_d bp;
|
|
|
|
streamer_write_uhwi (ob, av->offset);
|
|
streamer_write_uhwi (ob, av->index);
|
|
stream_write_tree (ob, av->value, true);
|
|
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, av->by_ref, 1);
|
|
streamer_write_bitpack (&bp);
|
|
}
|
|
|
|
ipcp_transformation *ts = ipcp_get_transformation_summary (node);
|
|
if (ts && vec_safe_length (ts->m_vr) > 0)
|
|
{
|
|
count = ts->m_vr->length ();
|
|
streamer_write_uhwi (ob, count);
|
|
for (unsigned i = 0; i < count; ++i)
|
|
{
|
|
struct bitpack_d bp;
|
|
ipa_vr *parm_vr = &(*ts->m_vr)[i];
|
|
bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, parm_vr->known, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (parm_vr->known)
|
|
{
|
|
streamer_write_enum (ob->main_stream, value_rang_type,
|
|
VR_LAST, parm_vr->type);
|
|
streamer_write_wide_int (ob, parm_vr->min);
|
|
streamer_write_wide_int (ob, parm_vr->max);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
streamer_write_uhwi (ob, 0);
|
|
|
|
if (ts && vec_safe_length (ts->bits) > 0)
|
|
{
|
|
count = ts->bits->length ();
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
for (unsigned i = 0; i < count; ++i)
|
|
{
|
|
const ipa_bits *bits_jfunc = (*ts->bits)[i];
|
|
struct bitpack_d bp = bitpack_create (ob->main_stream);
|
|
bp_pack_value (&bp, !!bits_jfunc, 1);
|
|
streamer_write_bitpack (&bp);
|
|
if (bits_jfunc)
|
|
{
|
|
streamer_write_widest_int (ob, bits_jfunc->value);
|
|
streamer_write_widest_int (ob, bits_jfunc->mask);
|
|
}
|
|
}
|
|
}
|
|
else
|
|
streamer_write_uhwi (ob, 0);
|
|
}
|
|
|
|
/* Stream in the aggregate value replacement chain for NODE from IB. */
|
|
|
|
static void
|
|
read_ipcp_transformation_info (lto_input_block *ib, cgraph_node *node,
|
|
data_in *data_in)
|
|
{
|
|
struct ipa_agg_replacement_value *aggvals = NULL;
|
|
unsigned int count, i;
|
|
|
|
count = streamer_read_uhwi (ib);
|
|
for (i = 0; i <count; i++)
|
|
{
|
|
struct ipa_agg_replacement_value *av;
|
|
struct bitpack_d bp;
|
|
|
|
av = ggc_alloc<ipa_agg_replacement_value> ();
|
|
av->offset = streamer_read_uhwi (ib);
|
|
av->index = streamer_read_uhwi (ib);
|
|
av->value = stream_read_tree (ib, data_in);
|
|
bp = streamer_read_bitpack (ib);
|
|
av->by_ref = bp_unpack_value (&bp, 1);
|
|
av->next = aggvals;
|
|
aggvals = av;
|
|
}
|
|
ipa_set_node_agg_value_chain (node, aggvals);
|
|
|
|
count = streamer_read_uhwi (ib);
|
|
if (count > 0)
|
|
{
|
|
ipcp_transformation_initialize ();
|
|
ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
|
|
vec_safe_grow_cleared (ts->m_vr, count);
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
ipa_vr *parm_vr;
|
|
parm_vr = &(*ts->m_vr)[i];
|
|
struct bitpack_d bp;
|
|
bp = streamer_read_bitpack (ib);
|
|
parm_vr->known = bp_unpack_value (&bp, 1);
|
|
if (parm_vr->known)
|
|
{
|
|
parm_vr->type = streamer_read_enum (ib, value_range_kind,
|
|
VR_LAST);
|
|
parm_vr->min = streamer_read_wide_int (ib);
|
|
parm_vr->max = streamer_read_wide_int (ib);
|
|
}
|
|
}
|
|
}
|
|
count = streamer_read_uhwi (ib);
|
|
if (count > 0)
|
|
{
|
|
ipcp_transformation_initialize ();
|
|
ipcp_transformation *ts = ipcp_transformation_sum->get_create (node);
|
|
vec_safe_grow_cleared (ts->bits, count);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
struct bitpack_d bp = streamer_read_bitpack (ib);
|
|
bool known = bp_unpack_value (&bp, 1);
|
|
if (known)
|
|
{
|
|
const widest_int value = streamer_read_widest_int (ib);
|
|
const widest_int mask = streamer_read_widest_int (ib);
|
|
ipa_bits *bits
|
|
= ipa_get_ipa_bits_for_value (value, mask);
|
|
(*ts->bits)[i] = bits;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Write all aggregate replacement for nodes in set. */
|
|
|
|
void
|
|
ipcp_write_transformation_summaries (void)
|
|
{
|
|
struct cgraph_node *node;
|
|
struct output_block *ob;
|
|
unsigned int count = 0;
|
|
lto_symtab_encoder_iterator lsei;
|
|
lto_symtab_encoder_t encoder;
|
|
|
|
ob = create_output_block (LTO_section_ipcp_transform);
|
|
encoder = ob->decl_state->symtab_node_encoder;
|
|
ob->symbol = NULL;
|
|
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
|
|
lsei_next_function_in_partition (&lsei))
|
|
{
|
|
node = lsei_cgraph_node (lsei);
|
|
if (node->has_gimple_body_p ())
|
|
count++;
|
|
}
|
|
|
|
streamer_write_uhwi (ob, count);
|
|
|
|
for (lsei = lsei_start_function_in_partition (encoder); !lsei_end_p (lsei);
|
|
lsei_next_function_in_partition (&lsei))
|
|
{
|
|
node = lsei_cgraph_node (lsei);
|
|
if (node->has_gimple_body_p ())
|
|
write_ipcp_transformation_info (ob, node);
|
|
}
|
|
streamer_write_char_stream (ob->main_stream, 0);
|
|
produce_asm (ob, NULL);
|
|
destroy_output_block (ob);
|
|
}
|
|
|
|
/* Read replacements section in file FILE_DATA of length LEN with data
|
|
DATA. */
|
|
|
|
static void
|
|
read_replacements_section (struct lto_file_decl_data *file_data,
|
|
const char *data,
|
|
size_t len)
|
|
{
|
|
const struct lto_function_header *header =
|
|
(const struct lto_function_header *) data;
|
|
const int cfg_offset = sizeof (struct lto_function_header);
|
|
const int main_offset = cfg_offset + header->cfg_size;
|
|
const int string_offset = main_offset + header->main_size;
|
|
class data_in *data_in;
|
|
unsigned int i;
|
|
unsigned int count;
|
|
|
|
lto_input_block ib_main ((const char *) data + main_offset,
|
|
header->main_size, file_data->mode_table);
|
|
|
|
data_in = lto_data_in_create (file_data, (const char *) data + string_offset,
|
|
header->string_size, vNULL);
|
|
count = streamer_read_uhwi (&ib_main);
|
|
|
|
for (i = 0; i < count; i++)
|
|
{
|
|
unsigned int index;
|
|
struct cgraph_node *node;
|
|
lto_symtab_encoder_t encoder;
|
|
|
|
index = streamer_read_uhwi (&ib_main);
|
|
encoder = file_data->symtab_node_encoder;
|
|
node = dyn_cast<cgraph_node *> (lto_symtab_encoder_deref (encoder,
|
|
index));
|
|
gcc_assert (node->definition);
|
|
read_ipcp_transformation_info (&ib_main, node, data_in);
|
|
}
|
|
lto_free_section_data (file_data, LTO_section_jump_functions, NULL, data,
|
|
len);
|
|
lto_data_in_delete (data_in);
|
|
}
|
|
|
|
/* Read IPA-CP aggregate replacements. */
|
|
|
|
void
|
|
ipcp_read_transformation_summaries (void)
|
|
{
|
|
struct lto_file_decl_data **file_data_vec = lto_get_file_decl_data ();
|
|
struct lto_file_decl_data *file_data;
|
|
unsigned int j = 0;
|
|
|
|
while ((file_data = file_data_vec[j++]))
|
|
{
|
|
size_t len;
|
|
const char *data
|
|
= lto_get_summary_section_data (file_data, LTO_section_ipcp_transform,
|
|
&len);
|
|
if (data)
|
|
read_replacements_section (file_data, data, len);
|
|
}
|
|
}
|
|
|
|
/* Adjust the aggregate replacements in AGGVAL to reflect parameters skipped in
|
|
NODE. */
|
|
|
|
static void
|
|
adjust_agg_replacement_values (struct cgraph_node *node,
|
|
struct ipa_agg_replacement_value *aggval)
|
|
{
|
|
struct ipa_agg_replacement_value *v;
|
|
|
|
if (!node->clone.param_adjustments)
|
|
return;
|
|
|
|
auto_vec<int, 16> new_indices;
|
|
node->clone.param_adjustments->get_updated_indices (&new_indices);
|
|
for (v = aggval; v; v = v->next)
|
|
{
|
|
gcc_checking_assert (v->index >= 0);
|
|
|
|
if ((unsigned) v->index < new_indices.length ())
|
|
v->index = new_indices[v->index];
|
|
else
|
|
/* This can happen if we know about a constant passed by reference by
|
|
an argument which is never actually used for anything, let alone
|
|
loading that constant. */
|
|
v->index = -1;
|
|
}
|
|
}
|
|
|
|
/* Dominator walker driving the ipcp modification phase. */
|
|
|
|
class ipcp_modif_dom_walker : public dom_walker
|
|
{
|
|
public:
|
|
ipcp_modif_dom_walker (struct ipa_func_body_info *fbi,
|
|
vec<ipa_param_descriptor, va_gc> *descs,
|
|
struct ipa_agg_replacement_value *av,
|
|
bool *sc, bool *cc)
|
|
: dom_walker (CDI_DOMINATORS), m_fbi (fbi), m_descriptors (descs),
|
|
m_aggval (av), m_something_changed (sc), m_cfg_changed (cc) {}
|
|
|
|
virtual edge before_dom_children (basic_block);
|
|
|
|
private:
|
|
struct ipa_func_body_info *m_fbi;
|
|
vec<ipa_param_descriptor, va_gc> *m_descriptors;
|
|
struct ipa_agg_replacement_value *m_aggval;
|
|
bool *m_something_changed, *m_cfg_changed;
|
|
};
|
|
|
|
edge
|
|
ipcp_modif_dom_walker::before_dom_children (basic_block bb)
|
|
{
|
|
gimple_stmt_iterator gsi;
|
|
for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
struct ipa_agg_replacement_value *v;
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
tree rhs, val, t;
|
|
HOST_WIDE_INT offset;
|
|
poly_int64 size;
|
|
int index;
|
|
bool by_ref, vce;
|
|
|
|
if (!gimple_assign_load_p (stmt))
|
|
continue;
|
|
rhs = gimple_assign_rhs1 (stmt);
|
|
if (!is_gimple_reg_type (TREE_TYPE (rhs)))
|
|
continue;
|
|
|
|
vce = false;
|
|
t = rhs;
|
|
while (handled_component_p (t))
|
|
{
|
|
/* V_C_E can do things like convert an array of integers to one
|
|
bigger integer and similar things we do not handle below. */
|
|
if (TREE_CODE (t) == VIEW_CONVERT_EXPR)
|
|
{
|
|
vce = true;
|
|
break;
|
|
}
|
|
t = TREE_OPERAND (t, 0);
|
|
}
|
|
if (vce)
|
|
continue;
|
|
|
|
if (!ipa_load_from_parm_agg (m_fbi, m_descriptors, stmt, rhs, &index,
|
|
&offset, &size, &by_ref))
|
|
continue;
|
|
for (v = m_aggval; v; v = v->next)
|
|
if (v->index == index
|
|
&& v->offset == offset)
|
|
break;
|
|
if (!v
|
|
|| v->by_ref != by_ref
|
|
|| maybe_ne (tree_to_poly_int64 (TYPE_SIZE (TREE_TYPE (v->value))),
|
|
size))
|
|
continue;
|
|
|
|
gcc_checking_assert (is_gimple_ip_invariant (v->value));
|
|
if (!useless_type_conversion_p (TREE_TYPE (rhs), TREE_TYPE (v->value)))
|
|
{
|
|
if (fold_convertible_p (TREE_TYPE (rhs), v->value))
|
|
val = fold_build1 (NOP_EXPR, TREE_TYPE (rhs), v->value);
|
|
else if (TYPE_SIZE (TREE_TYPE (rhs))
|
|
== TYPE_SIZE (TREE_TYPE (v->value)))
|
|
val = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (rhs), v->value);
|
|
else
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, " const ");
|
|
print_generic_expr (dump_file, v->value);
|
|
fprintf (dump_file, " can't be converted to type of ");
|
|
print_generic_expr (dump_file, rhs);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
continue;
|
|
}
|
|
}
|
|
else
|
|
val = v->value;
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Modifying stmt:\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
}
|
|
gimple_assign_set_rhs_from_tree (&gsi, val);
|
|
update_stmt (stmt);
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "into:\n ");
|
|
print_gimple_stmt (dump_file, stmt, 0);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
*m_something_changed = true;
|
|
if (maybe_clean_eh_stmt (stmt)
|
|
&& gimple_purge_dead_eh_edges (gimple_bb (stmt)))
|
|
*m_cfg_changed = true;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Return true if we have recorded VALUE and MASK about PARM.
|
|
Set VALUE and MASk accordingly. */
|
|
|
|
bool
|
|
ipcp_get_parm_bits (tree parm, tree *value, widest_int *mask)
|
|
{
|
|
cgraph_node *cnode = cgraph_node::get (current_function_decl);
|
|
ipcp_transformation *ts = ipcp_get_transformation_summary (cnode);
|
|
if (!ts || vec_safe_length (ts->bits) == 0)
|
|
return false;
|
|
|
|
int i = 0;
|
|
for (tree p = DECL_ARGUMENTS (current_function_decl);
|
|
p != parm; p = DECL_CHAIN (p))
|
|
{
|
|
i++;
|
|
/* Ignore static chain. */
|
|
if (!p)
|
|
return false;
|
|
}
|
|
|
|
if (cnode->clone.param_adjustments)
|
|
{
|
|
i = cnode->clone.param_adjustments->get_original_index (i);
|
|
if (i < 0)
|
|
return false;
|
|
}
|
|
|
|
vec<ipa_bits *, va_gc> &bits = *ts->bits;
|
|
if (!bits[i])
|
|
return false;
|
|
*mask = bits[i]->mask;
|
|
*value = wide_int_to_tree (TREE_TYPE (parm), bits[i]->value);
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Update bits info of formal parameters as described in
|
|
ipcp_transformation. */
|
|
|
|
static void
|
|
ipcp_update_bits (struct cgraph_node *node)
|
|
{
|
|
ipcp_transformation *ts = ipcp_get_transformation_summary (node);
|
|
|
|
if (!ts || vec_safe_length (ts->bits) == 0)
|
|
return;
|
|
vec<ipa_bits *, va_gc> &bits = *ts->bits;
|
|
unsigned count = bits.length ();
|
|
if (!count)
|
|
return;
|
|
|
|
auto_vec<int, 16> new_indices;
|
|
bool need_remapping = false;
|
|
if (node->clone.param_adjustments)
|
|
{
|
|
node->clone.param_adjustments->get_updated_indices (&new_indices);
|
|
need_remapping = true;
|
|
}
|
|
auto_vec <tree, 16> parm_decls;
|
|
push_function_arg_decls (&parm_decls, node->decl);
|
|
|
|
for (unsigned i = 0; i < count; ++i)
|
|
{
|
|
tree parm;
|
|
if (need_remapping)
|
|
{
|
|
if (i >= new_indices.length ())
|
|
continue;
|
|
int idx = new_indices[i];
|
|
if (idx < 0)
|
|
continue;
|
|
parm = parm_decls[idx];
|
|
}
|
|
else
|
|
parm = parm_decls[i];
|
|
gcc_checking_assert (parm);
|
|
|
|
|
|
if (!bits[i]
|
|
|| !(INTEGRAL_TYPE_P (TREE_TYPE (parm))
|
|
|| POINTER_TYPE_P (TREE_TYPE (parm)))
|
|
|| !is_gimple_reg (parm))
|
|
continue;
|
|
|
|
tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), parm);
|
|
if (!ddef)
|
|
continue;
|
|
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Adjusting mask for param %u to ", i);
|
|
print_hex (bits[i]->mask, dump_file);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (ddef)))
|
|
{
|
|
unsigned prec = TYPE_PRECISION (TREE_TYPE (ddef));
|
|
signop sgn = TYPE_SIGN (TREE_TYPE (ddef));
|
|
|
|
wide_int nonzero_bits = wide_int::from (bits[i]->mask, prec, UNSIGNED)
|
|
| wide_int::from (bits[i]->value, prec, sgn);
|
|
set_nonzero_bits (ddef, nonzero_bits);
|
|
}
|
|
else
|
|
{
|
|
unsigned tem = bits[i]->mask.to_uhwi ();
|
|
unsigned HOST_WIDE_INT bitpos = bits[i]->value.to_uhwi ();
|
|
unsigned align = tem & -tem;
|
|
unsigned misalign = bitpos & (align - 1);
|
|
|
|
if (align > 1)
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Adjusting align: %u, misalign: %u\n", align, misalign);
|
|
|
|
unsigned old_align, old_misalign;
|
|
struct ptr_info_def *pi = get_ptr_info (ddef);
|
|
bool old_known = get_ptr_info_alignment (pi, &old_align, &old_misalign);
|
|
|
|
if (old_known
|
|
&& old_align > align)
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "But alignment was already %u.\n", old_align);
|
|
if ((old_misalign & (align - 1)) != misalign)
|
|
fprintf (dump_file, "old_misalign (%u) and misalign (%u) mismatch\n",
|
|
old_misalign, misalign);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (old_known
|
|
&& ((misalign & (old_align - 1)) != old_misalign)
|
|
&& dump_file)
|
|
fprintf (dump_file, "old_misalign (%u) and misalign (%u) mismatch\n",
|
|
old_misalign, misalign);
|
|
|
|
set_ptr_info_alignment (pi, align, misalign);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool
|
|
ipa_vr::nonzero_p (tree expr_type) const
|
|
{
|
|
if (type == VR_ANTI_RANGE && wi::eq_p (min, 0) && wi::eq_p (max, 0))
|
|
return true;
|
|
|
|
unsigned prec = TYPE_PRECISION (expr_type);
|
|
return (type == VR_RANGE
|
|
&& TYPE_UNSIGNED (expr_type)
|
|
&& wi::eq_p (min, wi::one (prec))
|
|
&& wi::eq_p (max, wi::max_value (prec, TYPE_SIGN (expr_type))));
|
|
}
|
|
|
|
/* Update value range of formal parameters as described in
|
|
ipcp_transformation. */
|
|
|
|
static void
|
|
ipcp_update_vr (struct cgraph_node *node)
|
|
{
|
|
ipcp_transformation *ts = ipcp_get_transformation_summary (node);
|
|
if (!ts || vec_safe_length (ts->m_vr) == 0)
|
|
return;
|
|
const vec<ipa_vr, va_gc> &vr = *ts->m_vr;
|
|
unsigned count = vr.length ();
|
|
if (!count)
|
|
return;
|
|
|
|
auto_vec<int, 16> new_indices;
|
|
bool need_remapping = false;
|
|
if (node->clone.param_adjustments)
|
|
{
|
|
node->clone.param_adjustments->get_updated_indices (&new_indices);
|
|
need_remapping = true;
|
|
}
|
|
auto_vec <tree, 16> parm_decls;
|
|
push_function_arg_decls (&parm_decls, node->decl);
|
|
|
|
for (unsigned i = 0; i < count; ++i)
|
|
{
|
|
tree parm;
|
|
int remapped_idx;
|
|
if (need_remapping)
|
|
{
|
|
if (i >= new_indices.length ())
|
|
continue;
|
|
remapped_idx = new_indices[i];
|
|
if (remapped_idx < 0)
|
|
continue;
|
|
}
|
|
else
|
|
remapped_idx = i;
|
|
|
|
parm = parm_decls[remapped_idx];
|
|
|
|
gcc_checking_assert (parm);
|
|
tree ddef = ssa_default_def (DECL_STRUCT_FUNCTION (node->decl), parm);
|
|
|
|
if (!ddef || !is_gimple_reg (parm))
|
|
continue;
|
|
|
|
if (vr[i].known
|
|
&& (vr[i].type == VR_RANGE || vr[i].type == VR_ANTI_RANGE))
|
|
{
|
|
tree type = TREE_TYPE (ddef);
|
|
unsigned prec = TYPE_PRECISION (type);
|
|
if (INTEGRAL_TYPE_P (TREE_TYPE (ddef)))
|
|
{
|
|
if (dump_file)
|
|
{
|
|
fprintf (dump_file, "Setting value range of param %u "
|
|
"(now %i) ", i, remapped_idx);
|
|
fprintf (dump_file, "%s[",
|
|
(vr[i].type == VR_ANTI_RANGE) ? "~" : "");
|
|
print_decs (vr[i].min, dump_file);
|
|
fprintf (dump_file, ", ");
|
|
print_decs (vr[i].max, dump_file);
|
|
fprintf (dump_file, "]\n");
|
|
}
|
|
set_range_info (ddef, vr[i].type,
|
|
wide_int_storage::from (vr[i].min, prec,
|
|
TYPE_SIGN (type)),
|
|
wide_int_storage::from (vr[i].max, prec,
|
|
TYPE_SIGN (type)));
|
|
}
|
|
else if (POINTER_TYPE_P (TREE_TYPE (ddef))
|
|
&& vr[i].nonzero_p (TREE_TYPE (ddef)))
|
|
{
|
|
if (dump_file)
|
|
fprintf (dump_file, "Setting nonnull for %u\n", i);
|
|
set_ptr_nonnull (ddef);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* IPCP transformation phase doing propagation of aggregate values. */
|
|
|
|
unsigned int
|
|
ipcp_transform_function (struct cgraph_node *node)
|
|
{
|
|
vec<ipa_param_descriptor, va_gc> *descriptors = NULL;
|
|
struct ipa_func_body_info fbi;
|
|
struct ipa_agg_replacement_value *aggval;
|
|
int param_count;
|
|
bool cfg_changed = false, something_changed = false;
|
|
|
|
gcc_checking_assert (cfun);
|
|
gcc_checking_assert (current_function_decl);
|
|
|
|
if (dump_file)
|
|
fprintf (dump_file, "Modification phase of node %s\n",
|
|
node->dump_name ());
|
|
|
|
ipcp_update_bits (node);
|
|
ipcp_update_vr (node);
|
|
aggval = ipa_get_agg_replacements_for_node (node);
|
|
if (!aggval)
|
|
return 0;
|
|
param_count = count_formal_params (node->decl);
|
|
if (param_count == 0)
|
|
return 0;
|
|
adjust_agg_replacement_values (node, aggval);
|
|
if (dump_file)
|
|
ipa_dump_agg_replacement_values (dump_file, aggval);
|
|
|
|
fbi.node = node;
|
|
fbi.info = NULL;
|
|
fbi.bb_infos = vNULL;
|
|
fbi.bb_infos.safe_grow_cleared (last_basic_block_for_fn (cfun));
|
|
fbi.param_count = param_count;
|
|
fbi.aa_walk_budget = opt_for_fn (node->decl, param_ipa_max_aa_steps);
|
|
|
|
vec_safe_grow_cleared (descriptors, param_count);
|
|
ipa_populate_param_decls (node, *descriptors);
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
ipcp_modif_dom_walker (&fbi, descriptors, aggval, &something_changed,
|
|
&cfg_changed).walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
|
|
int i;
|
|
struct ipa_bb_info *bi;
|
|
FOR_EACH_VEC_ELT (fbi.bb_infos, i, bi)
|
|
free_ipa_bb_info (bi);
|
|
fbi.bb_infos.release ();
|
|
free_dominance_info (CDI_DOMINATORS);
|
|
|
|
ipcp_transformation *s = ipcp_transformation_sum->get (node);
|
|
s->agg_values = NULL;
|
|
s->bits = NULL;
|
|
s->m_vr = NULL;
|
|
|
|
vec_free (descriptors);
|
|
|
|
if (!something_changed)
|
|
return 0;
|
|
|
|
if (cfg_changed)
|
|
delete_unreachable_blocks_update_callgraph (node, false);
|
|
|
|
return TODO_update_ssa_only_virtuals;
|
|
}
|
|
|
|
|
|
/* Return true if OTHER describes same agg value. */
|
|
bool
|
|
ipa_agg_value::equal_to (const ipa_agg_value &other)
|
|
{
|
|
return offset == other.offset
|
|
&& operand_equal_p (value, other.value, 0);
|
|
}
|
|
#include "gt-ipa-prop.h"
|