3604480a6f
This avoids HWI -> unsigned truncation to end up with zero alignment which set_ptr_info_alignment ICEs on. 2020-03-13 Richard Biener <rguenther@suse.de> PR tree-optimization/94163 * tree-ssa-pre.c (create_expression_by_pieces): Check whether alignment would be zero.
4285 lines
126 KiB
C
4285 lines
126 KiB
C
/* Full and partial redundancy elimination and code hoisting on SSA GIMPLE.
|
|
Copyright (C) 2001-2020 Free Software Foundation, Inc.
|
|
Contributed by Daniel Berlin <dan@dberlin.org> and Steven Bosscher
|
|
<stevenb@suse.de>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "rtl.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "predict.h"
|
|
#include "alloc-pool.h"
|
|
#include "tree-pass.h"
|
|
#include "ssa.h"
|
|
#include "cgraph.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "fold-const.h"
|
|
#include "cfganal.h"
|
|
#include "gimple-fold.h"
|
|
#include "tree-eh.h"
|
|
#include "gimplify.h"
|
|
#include "gimple-iterator.h"
|
|
#include "tree-cfg.h"
|
|
#include "tree-into-ssa.h"
|
|
#include "tree-dfa.h"
|
|
#include "tree-ssa.h"
|
|
#include "cfgloop.h"
|
|
#include "tree-ssa-sccvn.h"
|
|
#include "tree-scalar-evolution.h"
|
|
#include "dbgcnt.h"
|
|
#include "domwalk.h"
|
|
#include "tree-ssa-propagate.h"
|
|
#include "tree-ssa-dce.h"
|
|
#include "tree-cfgcleanup.h"
|
|
#include "alias.h"
|
|
|
|
/* Even though this file is called tree-ssa-pre.c, we actually
|
|
implement a bit more than just PRE here. All of them piggy-back
|
|
on GVN which is implemented in tree-ssa-sccvn.c.
|
|
|
|
1. Full Redundancy Elimination (FRE)
|
|
This is the elimination phase of GVN.
|
|
|
|
2. Partial Redundancy Elimination (PRE)
|
|
This is adds computation of AVAIL_OUT and ANTIC_IN and
|
|
doing expression insertion to form GVN-PRE.
|
|
|
|
3. Code hoisting
|
|
This optimization uses the ANTIC_IN sets computed for PRE
|
|
to move expressions further up than PRE would do, to make
|
|
multiple computations of the same value fully redundant.
|
|
This pass is explained below (after the explanation of the
|
|
basic algorithm for PRE).
|
|
*/
|
|
|
|
/* TODO:
|
|
|
|
1. Avail sets can be shared by making an avail_find_leader that
|
|
walks up the dominator tree and looks in those avail sets.
|
|
This might affect code optimality, it's unclear right now.
|
|
Currently the AVAIL_OUT sets are the remaining quadraticness in
|
|
memory of GVN-PRE.
|
|
2. Strength reduction can be performed by anticipating expressions
|
|
we can repair later on.
|
|
3. We can do back-substitution or smarter value numbering to catch
|
|
commutative expressions split up over multiple statements.
|
|
*/
|
|
|
|
/* For ease of terminology, "expression node" in the below refers to
|
|
every expression node but GIMPLE_ASSIGN, because GIMPLE_ASSIGNs
|
|
represent the actual statement containing the expressions we care about,
|
|
and we cache the value number by putting it in the expression. */
|
|
|
|
/* Basic algorithm for Partial Redundancy Elimination:
|
|
|
|
First we walk the statements to generate the AVAIL sets, the
|
|
EXP_GEN sets, and the tmp_gen sets. EXP_GEN sets represent the
|
|
generation of values/expressions by a given block. We use them
|
|
when computing the ANTIC sets. The AVAIL sets consist of
|
|
SSA_NAME's that represent values, so we know what values are
|
|
available in what blocks. AVAIL is a forward dataflow problem. In
|
|
SSA, values are never killed, so we don't need a kill set, or a
|
|
fixpoint iteration, in order to calculate the AVAIL sets. In
|
|
traditional parlance, AVAIL sets tell us the downsafety of the
|
|
expressions/values.
|
|
|
|
Next, we generate the ANTIC sets. These sets represent the
|
|
anticipatable expressions. ANTIC is a backwards dataflow
|
|
problem. An expression is anticipatable in a given block if it could
|
|
be generated in that block. This means that if we had to perform
|
|
an insertion in that block, of the value of that expression, we
|
|
could. Calculating the ANTIC sets requires phi translation of
|
|
expressions, because the flow goes backwards through phis. We must
|
|
iterate to a fixpoint of the ANTIC sets, because we have a kill
|
|
set. Even in SSA form, values are not live over the entire
|
|
function, only from their definition point onwards. So we have to
|
|
remove values from the ANTIC set once we go past the definition
|
|
point of the leaders that make them up.
|
|
compute_antic/compute_antic_aux performs this computation.
|
|
|
|
Third, we perform insertions to make partially redundant
|
|
expressions fully redundant.
|
|
|
|
An expression is partially redundant (excluding partial
|
|
anticipation) if:
|
|
|
|
1. It is AVAIL in some, but not all, of the predecessors of a
|
|
given block.
|
|
2. It is ANTIC in all the predecessors.
|
|
|
|
In order to make it fully redundant, we insert the expression into
|
|
the predecessors where it is not available, but is ANTIC.
|
|
|
|
When optimizing for size, we only eliminate the partial redundancy
|
|
if we need to insert in only one predecessor. This avoids almost
|
|
completely the code size increase that PRE usually causes.
|
|
|
|
For the partial anticipation case, we only perform insertion if it
|
|
is partially anticipated in some block, and fully available in all
|
|
of the predecessors.
|
|
|
|
do_pre_regular_insertion/do_pre_partial_partial_insertion
|
|
performs these steps, driven by insert/insert_aux.
|
|
|
|
Fourth, we eliminate fully redundant expressions.
|
|
This is a simple statement walk that replaces redundant
|
|
calculations with the now available values. */
|
|
|
|
/* Basic algorithm for Code Hoisting:
|
|
|
|
Code hoisting is: Moving value computations up in the control flow
|
|
graph to make multiple copies redundant. Typically this is a size
|
|
optimization, but there are cases where it also is helpful for speed.
|
|
|
|
A simple code hoisting algorithm is implemented that piggy-backs on
|
|
the PRE infrastructure. For code hoisting, we have to know ANTIC_OUT
|
|
which is effectively ANTIC_IN - AVAIL_OUT. The latter two have to be
|
|
computed for PRE, and we can use them to perform a limited version of
|
|
code hoisting, too.
|
|
|
|
For the purpose of this implementation, a value is hoistable to a basic
|
|
block B if the following properties are met:
|
|
|
|
1. The value is in ANTIC_IN(B) -- the value will be computed on all
|
|
paths from B to function exit and it can be computed in B);
|
|
|
|
2. The value is not in AVAIL_OUT(B) -- there would be no need to
|
|
compute the value again and make it available twice;
|
|
|
|
3. All successors of B are dominated by B -- makes sure that inserting
|
|
a computation of the value in B will make the remaining
|
|
computations fully redundant;
|
|
|
|
4. At least one successor has the value in AVAIL_OUT -- to avoid
|
|
hoisting values up too far;
|
|
|
|
5. There are at least two successors of B -- hoisting in straight
|
|
line code is pointless.
|
|
|
|
The third condition is not strictly necessary, but it would complicate
|
|
the hoisting pass a lot. In fact, I don't know of any code hoisting
|
|
algorithm that does not have this requirement. Fortunately, experiments
|
|
have show that most candidate hoistable values are in regions that meet
|
|
this condition (e.g. diamond-shape regions).
|
|
|
|
The forth condition is necessary to avoid hoisting things up too far
|
|
away from the uses of the value. Nothing else limits the algorithm
|
|
from hoisting everything up as far as ANTIC_IN allows. Experiments
|
|
with SPEC and CSiBE have shown that hoisting up too far results in more
|
|
spilling, less benefits for code size, and worse benchmark scores.
|
|
Fortunately, in practice most of the interesting hoisting opportunities
|
|
are caught despite this limitation.
|
|
|
|
For hoistable values that meet all conditions, expressions are inserted
|
|
to make the calculation of the hoistable value fully redundant. We
|
|
perform code hoisting insertions after each round of PRE insertions,
|
|
because code hoisting never exposes new PRE opportunities, but PRE can
|
|
create new code hoisting opportunities.
|
|
|
|
The code hoisting algorithm is implemented in do_hoist_insert, driven
|
|
by insert/insert_aux. */
|
|
|
|
/* Representations of value numbers:
|
|
|
|
Value numbers are represented by a representative SSA_NAME. We
|
|
will create fake SSA_NAME's in situations where we need a
|
|
representative but do not have one (because it is a complex
|
|
expression). In order to facilitate storing the value numbers in
|
|
bitmaps, and keep the number of wasted SSA_NAME's down, we also
|
|
associate a value_id with each value number, and create full blown
|
|
ssa_name's only where we actually need them (IE in operands of
|
|
existing expressions).
|
|
|
|
Theoretically you could replace all the value_id's with
|
|
SSA_NAME_VERSION, but this would allocate a large number of
|
|
SSA_NAME's (which are each > 30 bytes) just to get a 4 byte number.
|
|
It would also require an additional indirection at each point we
|
|
use the value id. */
|
|
|
|
/* Representation of expressions on value numbers:
|
|
|
|
Expressions consisting of value numbers are represented the same
|
|
way as our VN internally represents them, with an additional
|
|
"pre_expr" wrapping around them in order to facilitate storing all
|
|
of the expressions in the same sets. */
|
|
|
|
/* Representation of sets:
|
|
|
|
The dataflow sets do not need to be sorted in any particular order
|
|
for the majority of their lifetime, are simply represented as two
|
|
bitmaps, one that keeps track of values present in the set, and one
|
|
that keeps track of expressions present in the set.
|
|
|
|
When we need them in topological order, we produce it on demand by
|
|
transforming the bitmap into an array and sorting it into topo
|
|
order. */
|
|
|
|
/* Type of expression, used to know which member of the PRE_EXPR union
|
|
is valid. */
|
|
|
|
enum pre_expr_kind
|
|
{
|
|
NAME,
|
|
NARY,
|
|
REFERENCE,
|
|
CONSTANT
|
|
};
|
|
|
|
union pre_expr_union
|
|
{
|
|
tree name;
|
|
tree constant;
|
|
vn_nary_op_t nary;
|
|
vn_reference_t reference;
|
|
};
|
|
|
|
typedef struct pre_expr_d : nofree_ptr_hash <pre_expr_d>
|
|
{
|
|
enum pre_expr_kind kind;
|
|
unsigned int id;
|
|
location_t loc;
|
|
pre_expr_union u;
|
|
|
|
/* hash_table support. */
|
|
static inline hashval_t hash (const pre_expr_d *);
|
|
static inline int equal (const pre_expr_d *, const pre_expr_d *);
|
|
} *pre_expr;
|
|
|
|
#define PRE_EXPR_NAME(e) (e)->u.name
|
|
#define PRE_EXPR_NARY(e) (e)->u.nary
|
|
#define PRE_EXPR_REFERENCE(e) (e)->u.reference
|
|
#define PRE_EXPR_CONSTANT(e) (e)->u.constant
|
|
|
|
/* Compare E1 and E1 for equality. */
|
|
|
|
inline int
|
|
pre_expr_d::equal (const pre_expr_d *e1, const pre_expr_d *e2)
|
|
{
|
|
if (e1->kind != e2->kind)
|
|
return false;
|
|
|
|
switch (e1->kind)
|
|
{
|
|
case CONSTANT:
|
|
return vn_constant_eq_with_type (PRE_EXPR_CONSTANT (e1),
|
|
PRE_EXPR_CONSTANT (e2));
|
|
case NAME:
|
|
return PRE_EXPR_NAME (e1) == PRE_EXPR_NAME (e2);
|
|
case NARY:
|
|
return vn_nary_op_eq (PRE_EXPR_NARY (e1), PRE_EXPR_NARY (e2));
|
|
case REFERENCE:
|
|
return vn_reference_eq (PRE_EXPR_REFERENCE (e1),
|
|
PRE_EXPR_REFERENCE (e2));
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Hash E. */
|
|
|
|
inline hashval_t
|
|
pre_expr_d::hash (const pre_expr_d *e)
|
|
{
|
|
switch (e->kind)
|
|
{
|
|
case CONSTANT:
|
|
return vn_hash_constant_with_type (PRE_EXPR_CONSTANT (e));
|
|
case NAME:
|
|
return SSA_NAME_VERSION (PRE_EXPR_NAME (e));
|
|
case NARY:
|
|
return PRE_EXPR_NARY (e)->hashcode;
|
|
case REFERENCE:
|
|
return PRE_EXPR_REFERENCE (e)->hashcode;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Next global expression id number. */
|
|
static unsigned int next_expression_id;
|
|
|
|
/* Mapping from expression to id number we can use in bitmap sets. */
|
|
static vec<pre_expr> expressions;
|
|
static hash_table<pre_expr_d> *expression_to_id;
|
|
static vec<unsigned> name_to_id;
|
|
|
|
/* Allocate an expression id for EXPR. */
|
|
|
|
static inline unsigned int
|
|
alloc_expression_id (pre_expr expr)
|
|
{
|
|
struct pre_expr_d **slot;
|
|
/* Make sure we won't overflow. */
|
|
gcc_assert (next_expression_id + 1 > next_expression_id);
|
|
expr->id = next_expression_id++;
|
|
expressions.safe_push (expr);
|
|
if (expr->kind == NAME)
|
|
{
|
|
unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
|
|
/* vec::safe_grow_cleared allocates no headroom. Avoid frequent
|
|
re-allocations by using vec::reserve upfront. */
|
|
unsigned old_len = name_to_id.length ();
|
|
name_to_id.reserve (num_ssa_names - old_len);
|
|
name_to_id.quick_grow_cleared (num_ssa_names);
|
|
gcc_assert (name_to_id[version] == 0);
|
|
name_to_id[version] = expr->id;
|
|
}
|
|
else
|
|
{
|
|
slot = expression_to_id->find_slot (expr, INSERT);
|
|
gcc_assert (!*slot);
|
|
*slot = expr;
|
|
}
|
|
return next_expression_id - 1;
|
|
}
|
|
|
|
/* Return the expression id for tree EXPR. */
|
|
|
|
static inline unsigned int
|
|
get_expression_id (const pre_expr expr)
|
|
{
|
|
return expr->id;
|
|
}
|
|
|
|
static inline unsigned int
|
|
lookup_expression_id (const pre_expr expr)
|
|
{
|
|
struct pre_expr_d **slot;
|
|
|
|
if (expr->kind == NAME)
|
|
{
|
|
unsigned version = SSA_NAME_VERSION (PRE_EXPR_NAME (expr));
|
|
if (name_to_id.length () <= version)
|
|
return 0;
|
|
return name_to_id[version];
|
|
}
|
|
else
|
|
{
|
|
slot = expression_to_id->find_slot (expr, NO_INSERT);
|
|
if (!slot)
|
|
return 0;
|
|
return ((pre_expr)*slot)->id;
|
|
}
|
|
}
|
|
|
|
/* Return the existing expression id for EXPR, or create one if one
|
|
does not exist yet. */
|
|
|
|
static inline unsigned int
|
|
get_or_alloc_expression_id (pre_expr expr)
|
|
{
|
|
unsigned int id = lookup_expression_id (expr);
|
|
if (id == 0)
|
|
return alloc_expression_id (expr);
|
|
return expr->id = id;
|
|
}
|
|
|
|
/* Return the expression that has expression id ID */
|
|
|
|
static inline pre_expr
|
|
expression_for_id (unsigned int id)
|
|
{
|
|
return expressions[id];
|
|
}
|
|
|
|
static object_allocator<pre_expr_d> pre_expr_pool ("pre_expr nodes");
|
|
|
|
/* Given an SSA_NAME NAME, get or create a pre_expr to represent it. */
|
|
|
|
static pre_expr
|
|
get_or_alloc_expr_for_name (tree name)
|
|
{
|
|
struct pre_expr_d expr;
|
|
pre_expr result;
|
|
unsigned int result_id;
|
|
|
|
expr.kind = NAME;
|
|
expr.id = 0;
|
|
PRE_EXPR_NAME (&expr) = name;
|
|
result_id = lookup_expression_id (&expr);
|
|
if (result_id != 0)
|
|
return expression_for_id (result_id);
|
|
|
|
result = pre_expr_pool.allocate ();
|
|
result->kind = NAME;
|
|
result->loc = UNKNOWN_LOCATION;
|
|
PRE_EXPR_NAME (result) = name;
|
|
alloc_expression_id (result);
|
|
return result;
|
|
}
|
|
|
|
/* An unordered bitmap set. One bitmap tracks values, the other,
|
|
expressions. */
|
|
typedef class bitmap_set
|
|
{
|
|
public:
|
|
bitmap_head expressions;
|
|
bitmap_head values;
|
|
} *bitmap_set_t;
|
|
|
|
#define FOR_EACH_EXPR_ID_IN_SET(set, id, bi) \
|
|
EXECUTE_IF_SET_IN_BITMAP (&(set)->expressions, 0, (id), (bi))
|
|
|
|
#define FOR_EACH_VALUE_ID_IN_SET(set, id, bi) \
|
|
EXECUTE_IF_SET_IN_BITMAP (&(set)->values, 0, (id), (bi))
|
|
|
|
/* Mapping from value id to expressions with that value_id. */
|
|
static vec<bitmap> value_expressions;
|
|
|
|
/* Sets that we need to keep track of. */
|
|
typedef struct bb_bitmap_sets
|
|
{
|
|
/* The EXP_GEN set, which represents expressions/values generated in
|
|
a basic block. */
|
|
bitmap_set_t exp_gen;
|
|
|
|
/* The PHI_GEN set, which represents PHI results generated in a
|
|
basic block. */
|
|
bitmap_set_t phi_gen;
|
|
|
|
/* The TMP_GEN set, which represents results/temporaries generated
|
|
in a basic block. IE the LHS of an expression. */
|
|
bitmap_set_t tmp_gen;
|
|
|
|
/* The AVAIL_OUT set, which represents which values are available in
|
|
a given basic block. */
|
|
bitmap_set_t avail_out;
|
|
|
|
/* The ANTIC_IN set, which represents which values are anticipatable
|
|
in a given basic block. */
|
|
bitmap_set_t antic_in;
|
|
|
|
/* The PA_IN set, which represents which values are
|
|
partially anticipatable in a given basic block. */
|
|
bitmap_set_t pa_in;
|
|
|
|
/* The NEW_SETS set, which is used during insertion to augment the
|
|
AVAIL_OUT set of blocks with the new insertions performed during
|
|
the current iteration. */
|
|
bitmap_set_t new_sets;
|
|
|
|
/* A cache for value_dies_in_block_x. */
|
|
bitmap expr_dies;
|
|
|
|
/* The live virtual operand on successor edges. */
|
|
tree vop_on_exit;
|
|
|
|
/* True if we have visited this block during ANTIC calculation. */
|
|
unsigned int visited : 1;
|
|
|
|
/* True when the block contains a call that might not return. */
|
|
unsigned int contains_may_not_return_call : 1;
|
|
} *bb_value_sets_t;
|
|
|
|
#define EXP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->exp_gen
|
|
#define PHI_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->phi_gen
|
|
#define TMP_GEN(BB) ((bb_value_sets_t) ((BB)->aux))->tmp_gen
|
|
#define AVAIL_OUT(BB) ((bb_value_sets_t) ((BB)->aux))->avail_out
|
|
#define ANTIC_IN(BB) ((bb_value_sets_t) ((BB)->aux))->antic_in
|
|
#define PA_IN(BB) ((bb_value_sets_t) ((BB)->aux))->pa_in
|
|
#define NEW_SETS(BB) ((bb_value_sets_t) ((BB)->aux))->new_sets
|
|
#define EXPR_DIES(BB) ((bb_value_sets_t) ((BB)->aux))->expr_dies
|
|
#define BB_VISITED(BB) ((bb_value_sets_t) ((BB)->aux))->visited
|
|
#define BB_MAY_NOTRETURN(BB) ((bb_value_sets_t) ((BB)->aux))->contains_may_not_return_call
|
|
#define BB_LIVE_VOP_ON_EXIT(BB) ((bb_value_sets_t) ((BB)->aux))->vop_on_exit
|
|
|
|
|
|
/* This structure is used to keep track of statistics on what
|
|
optimization PRE was able to perform. */
|
|
static struct
|
|
{
|
|
/* The number of new expressions/temporaries generated by PRE. */
|
|
int insertions;
|
|
|
|
/* The number of inserts found due to partial anticipation */
|
|
int pa_insert;
|
|
|
|
/* The number of inserts made for code hoisting. */
|
|
int hoist_insert;
|
|
|
|
/* The number of new PHI nodes added by PRE. */
|
|
int phis;
|
|
} pre_stats;
|
|
|
|
static bool do_partial_partial;
|
|
static pre_expr bitmap_find_leader (bitmap_set_t, unsigned int);
|
|
static void bitmap_value_insert_into_set (bitmap_set_t, pre_expr);
|
|
static void bitmap_value_replace_in_set (bitmap_set_t, pre_expr);
|
|
static void bitmap_set_copy (bitmap_set_t, bitmap_set_t);
|
|
static bool bitmap_set_contains_value (bitmap_set_t, unsigned int);
|
|
static void bitmap_insert_into_set (bitmap_set_t, pre_expr);
|
|
static bitmap_set_t bitmap_set_new (void);
|
|
static tree create_expression_by_pieces (basic_block, pre_expr, gimple_seq *,
|
|
tree);
|
|
static tree find_or_generate_expression (basic_block, tree, gimple_seq *);
|
|
static unsigned int get_expr_value_id (pre_expr);
|
|
|
|
/* We can add and remove elements and entries to and from sets
|
|
and hash tables, so we use alloc pools for them. */
|
|
|
|
static object_allocator<bitmap_set> bitmap_set_pool ("Bitmap sets");
|
|
static bitmap_obstack grand_bitmap_obstack;
|
|
|
|
/* A three tuple {e, pred, v} used to cache phi translations in the
|
|
phi_translate_table. */
|
|
|
|
typedef struct expr_pred_trans_d : free_ptr_hash<expr_pred_trans_d>
|
|
{
|
|
/* The expression. */
|
|
pre_expr e;
|
|
|
|
/* The predecessor block along which we translated the expression. */
|
|
basic_block pred;
|
|
|
|
/* The value that resulted from the translation. */
|
|
pre_expr v;
|
|
|
|
/* The hashcode for the expression, pred pair. This is cached for
|
|
speed reasons. */
|
|
hashval_t hashcode;
|
|
|
|
/* hash_table support. */
|
|
static inline hashval_t hash (const expr_pred_trans_d *);
|
|
static inline int equal (const expr_pred_trans_d *, const expr_pred_trans_d *);
|
|
} *expr_pred_trans_t;
|
|
typedef const struct expr_pred_trans_d *const_expr_pred_trans_t;
|
|
|
|
inline hashval_t
|
|
expr_pred_trans_d::hash (const expr_pred_trans_d *e)
|
|
{
|
|
return e->hashcode;
|
|
}
|
|
|
|
inline int
|
|
expr_pred_trans_d::equal (const expr_pred_trans_d *ve1,
|
|
const expr_pred_trans_d *ve2)
|
|
{
|
|
basic_block b1 = ve1->pred;
|
|
basic_block b2 = ve2->pred;
|
|
|
|
/* If they are not translations for the same basic block, they can't
|
|
be equal. */
|
|
if (b1 != b2)
|
|
return false;
|
|
return pre_expr_d::equal (ve1->e, ve2->e);
|
|
}
|
|
|
|
/* The phi_translate_table caches phi translations for a given
|
|
expression and predecessor. */
|
|
static hash_table<expr_pred_trans_d> *phi_translate_table;
|
|
|
|
/* Add the tuple mapping from {expression E, basic block PRED} to
|
|
the phi translation table and return whether it pre-existed. */
|
|
|
|
static inline bool
|
|
phi_trans_add (expr_pred_trans_t *entry, pre_expr e, basic_block pred)
|
|
{
|
|
expr_pred_trans_t *slot;
|
|
expr_pred_trans_d tem;
|
|
hashval_t hash = iterative_hash_hashval_t (pre_expr_d::hash (e),
|
|
pred->index);
|
|
tem.e = e;
|
|
tem.pred = pred;
|
|
tem.hashcode = hash;
|
|
slot = phi_translate_table->find_slot_with_hash (&tem, hash, INSERT);
|
|
if (*slot)
|
|
{
|
|
*entry = *slot;
|
|
return true;
|
|
}
|
|
|
|
*entry = *slot = XNEW (struct expr_pred_trans_d);
|
|
(*entry)->e = e;
|
|
(*entry)->pred = pred;
|
|
(*entry)->hashcode = hash;
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Add expression E to the expression set of value id V. */
|
|
|
|
static void
|
|
add_to_value (unsigned int v, pre_expr e)
|
|
{
|
|
bitmap set;
|
|
|
|
gcc_checking_assert (get_expr_value_id (e) == v);
|
|
|
|
if (v >= value_expressions.length ())
|
|
{
|
|
value_expressions.safe_grow_cleared (v + 1);
|
|
}
|
|
|
|
set = value_expressions[v];
|
|
if (!set)
|
|
{
|
|
set = BITMAP_ALLOC (&grand_bitmap_obstack);
|
|
value_expressions[v] = set;
|
|
}
|
|
|
|
bitmap_set_bit (set, get_or_alloc_expression_id (e));
|
|
}
|
|
|
|
/* Create a new bitmap set and return it. */
|
|
|
|
static bitmap_set_t
|
|
bitmap_set_new (void)
|
|
{
|
|
bitmap_set_t ret = bitmap_set_pool.allocate ();
|
|
bitmap_initialize (&ret->expressions, &grand_bitmap_obstack);
|
|
bitmap_initialize (&ret->values, &grand_bitmap_obstack);
|
|
return ret;
|
|
}
|
|
|
|
/* Return the value id for a PRE expression EXPR. */
|
|
|
|
static unsigned int
|
|
get_expr_value_id (pre_expr expr)
|
|
{
|
|
unsigned int id;
|
|
switch (expr->kind)
|
|
{
|
|
case CONSTANT:
|
|
id = get_constant_value_id (PRE_EXPR_CONSTANT (expr));
|
|
break;
|
|
case NAME:
|
|
id = VN_INFO (PRE_EXPR_NAME (expr))->value_id;
|
|
break;
|
|
case NARY:
|
|
gcc_assert (!PRE_EXPR_NARY (expr)->predicated_values);
|
|
id = PRE_EXPR_NARY (expr)->value_id;
|
|
break;
|
|
case REFERENCE:
|
|
id = PRE_EXPR_REFERENCE (expr)->value_id;
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
/* ??? We cannot assert that expr has a value-id (it can be 0), because
|
|
we assign value-ids only to expressions that have a result
|
|
in set_hashtable_value_ids. */
|
|
return id;
|
|
}
|
|
|
|
/* Return a VN valnum (SSA name or constant) for the PRE value-id VAL. */
|
|
|
|
static tree
|
|
vn_valnum_from_value_id (unsigned int val)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
bitmap exprset = value_expressions[val];
|
|
EXECUTE_IF_SET_IN_BITMAP (exprset, 0, i, bi)
|
|
{
|
|
pre_expr vexpr = expression_for_id (i);
|
|
if (vexpr->kind == NAME)
|
|
return VN_INFO (PRE_EXPR_NAME (vexpr))->valnum;
|
|
else if (vexpr->kind == CONSTANT)
|
|
return PRE_EXPR_CONSTANT (vexpr);
|
|
}
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Insert an expression EXPR into a bitmapped set. */
|
|
|
|
static void
|
|
bitmap_insert_into_set (bitmap_set_t set, pre_expr expr)
|
|
{
|
|
unsigned int val = get_expr_value_id (expr);
|
|
if (! value_id_constant_p (val))
|
|
{
|
|
/* Note this is the only function causing multiple expressions
|
|
for the same value to appear in a set. This is needed for
|
|
TMP_GEN, PHI_GEN and NEW_SETs. */
|
|
bitmap_set_bit (&set->values, val);
|
|
bitmap_set_bit (&set->expressions, get_or_alloc_expression_id (expr));
|
|
}
|
|
}
|
|
|
|
/* Copy a bitmapped set ORIG, into bitmapped set DEST. */
|
|
|
|
static void
|
|
bitmap_set_copy (bitmap_set_t dest, bitmap_set_t orig)
|
|
{
|
|
bitmap_copy (&dest->expressions, &orig->expressions);
|
|
bitmap_copy (&dest->values, &orig->values);
|
|
}
|
|
|
|
|
|
/* Free memory used up by SET. */
|
|
static void
|
|
bitmap_set_free (bitmap_set_t set)
|
|
{
|
|
bitmap_clear (&set->expressions);
|
|
bitmap_clear (&set->values);
|
|
}
|
|
|
|
|
|
/* Generate an topological-ordered array of bitmap set SET. */
|
|
|
|
static vec<pre_expr>
|
|
sorted_array_from_bitmap_set (bitmap_set_t set)
|
|
{
|
|
unsigned int i, j;
|
|
bitmap_iterator bi, bj;
|
|
vec<pre_expr> result;
|
|
|
|
/* Pre-allocate enough space for the array. */
|
|
result.create (bitmap_count_bits (&set->expressions));
|
|
|
|
FOR_EACH_VALUE_ID_IN_SET (set, i, bi)
|
|
{
|
|
/* The number of expressions having a given value is usually
|
|
relatively small. Thus, rather than making a vector of all
|
|
the expressions and sorting it by value-id, we walk the values
|
|
and check in the reverse mapping that tells us what expressions
|
|
have a given value, to filter those in our set. As a result,
|
|
the expressions are inserted in value-id order, which means
|
|
topological order.
|
|
|
|
If this is somehow a significant lose for some cases, we can
|
|
choose which set to walk based on the set size. */
|
|
bitmap exprset = value_expressions[i];
|
|
EXECUTE_IF_SET_IN_BITMAP (exprset, 0, j, bj)
|
|
{
|
|
if (bitmap_bit_p (&set->expressions, j))
|
|
result.quick_push (expression_for_id (j));
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Subtract all expressions contained in ORIG from DEST. */
|
|
|
|
static bitmap_set_t
|
|
bitmap_set_subtract_expressions (bitmap_set_t dest, bitmap_set_t orig)
|
|
{
|
|
bitmap_set_t result = bitmap_set_new ();
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
|
|
bitmap_and_compl (&result->expressions, &dest->expressions,
|
|
&orig->expressions);
|
|
|
|
FOR_EACH_EXPR_ID_IN_SET (result, i, bi)
|
|
{
|
|
pre_expr expr = expression_for_id (i);
|
|
unsigned int value_id = get_expr_value_id (expr);
|
|
bitmap_set_bit (&result->values, value_id);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Subtract all values in bitmap set B from bitmap set A. */
|
|
|
|
static void
|
|
bitmap_set_subtract_values (bitmap_set_t a, bitmap_set_t b)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
unsigned to_remove = -1U;
|
|
bitmap_and_compl_into (&a->values, &b->values);
|
|
FOR_EACH_EXPR_ID_IN_SET (a, i, bi)
|
|
{
|
|
if (to_remove != -1U)
|
|
{
|
|
bitmap_clear_bit (&a->expressions, to_remove);
|
|
to_remove = -1U;
|
|
}
|
|
pre_expr expr = expression_for_id (i);
|
|
if (! bitmap_bit_p (&a->values, get_expr_value_id (expr)))
|
|
to_remove = i;
|
|
}
|
|
if (to_remove != -1U)
|
|
bitmap_clear_bit (&a->expressions, to_remove);
|
|
}
|
|
|
|
|
|
/* Return true if bitmapped set SET contains the value VALUE_ID. */
|
|
|
|
static bool
|
|
bitmap_set_contains_value (bitmap_set_t set, unsigned int value_id)
|
|
{
|
|
if (value_id_constant_p (value_id))
|
|
return true;
|
|
|
|
return bitmap_bit_p (&set->values, value_id);
|
|
}
|
|
|
|
/* Return true if two bitmap sets are equal. */
|
|
|
|
static bool
|
|
bitmap_set_equal (bitmap_set_t a, bitmap_set_t b)
|
|
{
|
|
return bitmap_equal_p (&a->values, &b->values);
|
|
}
|
|
|
|
/* Replace an instance of EXPR's VALUE with EXPR in SET if it exists,
|
|
and add it otherwise. */
|
|
|
|
static void
|
|
bitmap_value_replace_in_set (bitmap_set_t set, pre_expr expr)
|
|
{
|
|
unsigned int val = get_expr_value_id (expr);
|
|
if (value_id_constant_p (val))
|
|
return;
|
|
|
|
if (bitmap_set_contains_value (set, val))
|
|
{
|
|
/* The number of expressions having a given value is usually
|
|
significantly less than the total number of expressions in SET.
|
|
Thus, rather than check, for each expression in SET, whether it
|
|
has the value LOOKFOR, we walk the reverse mapping that tells us
|
|
what expressions have a given value, and see if any of those
|
|
expressions are in our set. For large testcases, this is about
|
|
5-10x faster than walking the bitmap. If this is somehow a
|
|
significant lose for some cases, we can choose which set to walk
|
|
based on the set size. */
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bitmap exprset = value_expressions[val];
|
|
EXECUTE_IF_SET_IN_BITMAP (exprset, 0, i, bi)
|
|
{
|
|
if (bitmap_clear_bit (&set->expressions, i))
|
|
{
|
|
bitmap_set_bit (&set->expressions, get_expression_id (expr));
|
|
return;
|
|
}
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
else
|
|
bitmap_insert_into_set (set, expr);
|
|
}
|
|
|
|
/* Insert EXPR into SET if EXPR's value is not already present in
|
|
SET. */
|
|
|
|
static void
|
|
bitmap_value_insert_into_set (bitmap_set_t set, pre_expr expr)
|
|
{
|
|
unsigned int val = get_expr_value_id (expr);
|
|
|
|
gcc_checking_assert (expr->id == get_or_alloc_expression_id (expr));
|
|
|
|
/* Constant values are always considered to be part of the set. */
|
|
if (value_id_constant_p (val))
|
|
return;
|
|
|
|
/* If the value membership changed, add the expression. */
|
|
if (bitmap_set_bit (&set->values, val))
|
|
bitmap_set_bit (&set->expressions, expr->id);
|
|
}
|
|
|
|
/* Print out EXPR to outfile. */
|
|
|
|
static void
|
|
print_pre_expr (FILE *outfile, const pre_expr expr)
|
|
{
|
|
if (! expr)
|
|
{
|
|
fprintf (outfile, "NULL");
|
|
return;
|
|
}
|
|
switch (expr->kind)
|
|
{
|
|
case CONSTANT:
|
|
print_generic_expr (outfile, PRE_EXPR_CONSTANT (expr));
|
|
break;
|
|
case NAME:
|
|
print_generic_expr (outfile, PRE_EXPR_NAME (expr));
|
|
break;
|
|
case NARY:
|
|
{
|
|
unsigned int i;
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
|
fprintf (outfile, "{%s,", get_tree_code_name (nary->opcode));
|
|
for (i = 0; i < nary->length; i++)
|
|
{
|
|
print_generic_expr (outfile, nary->op[i]);
|
|
if (i != (unsigned) nary->length - 1)
|
|
fprintf (outfile, ",");
|
|
}
|
|
fprintf (outfile, "}");
|
|
}
|
|
break;
|
|
|
|
case REFERENCE:
|
|
{
|
|
vn_reference_op_t vro;
|
|
unsigned int i;
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
|
fprintf (outfile, "{");
|
|
for (i = 0;
|
|
ref->operands.iterate (i, &vro);
|
|
i++)
|
|
{
|
|
bool closebrace = false;
|
|
if (vro->opcode != SSA_NAME
|
|
&& TREE_CODE_CLASS (vro->opcode) != tcc_declaration)
|
|
{
|
|
fprintf (outfile, "%s", get_tree_code_name (vro->opcode));
|
|
if (vro->op0)
|
|
{
|
|
fprintf (outfile, "<");
|
|
closebrace = true;
|
|
}
|
|
}
|
|
if (vro->op0)
|
|
{
|
|
print_generic_expr (outfile, vro->op0);
|
|
if (vro->op1)
|
|
{
|
|
fprintf (outfile, ",");
|
|
print_generic_expr (outfile, vro->op1);
|
|
}
|
|
if (vro->op2)
|
|
{
|
|
fprintf (outfile, ",");
|
|
print_generic_expr (outfile, vro->op2);
|
|
}
|
|
}
|
|
if (closebrace)
|
|
fprintf (outfile, ">");
|
|
if (i != ref->operands.length () - 1)
|
|
fprintf (outfile, ",");
|
|
}
|
|
fprintf (outfile, "}");
|
|
if (ref->vuse)
|
|
{
|
|
fprintf (outfile, "@");
|
|
print_generic_expr (outfile, ref->vuse);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
void debug_pre_expr (pre_expr);
|
|
|
|
/* Like print_pre_expr but always prints to stderr. */
|
|
DEBUG_FUNCTION void
|
|
debug_pre_expr (pre_expr e)
|
|
{
|
|
print_pre_expr (stderr, e);
|
|
fprintf (stderr, "\n");
|
|
}
|
|
|
|
/* Print out SET to OUTFILE. */
|
|
|
|
static void
|
|
print_bitmap_set (FILE *outfile, bitmap_set_t set,
|
|
const char *setname, int blockindex)
|
|
{
|
|
fprintf (outfile, "%s[%d] := { ", setname, blockindex);
|
|
if (set)
|
|
{
|
|
bool first = true;
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
|
|
FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
|
|
{
|
|
const pre_expr expr = expression_for_id (i);
|
|
|
|
if (!first)
|
|
fprintf (outfile, ", ");
|
|
first = false;
|
|
print_pre_expr (outfile, expr);
|
|
|
|
fprintf (outfile, " (%04d)", get_expr_value_id (expr));
|
|
}
|
|
}
|
|
fprintf (outfile, " }\n");
|
|
}
|
|
|
|
void debug_bitmap_set (bitmap_set_t);
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_bitmap_set (bitmap_set_t set)
|
|
{
|
|
print_bitmap_set (stderr, set, "debug", 0);
|
|
}
|
|
|
|
void debug_bitmap_sets_for (basic_block);
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_bitmap_sets_for (basic_block bb)
|
|
{
|
|
print_bitmap_set (stderr, AVAIL_OUT (bb), "avail_out", bb->index);
|
|
print_bitmap_set (stderr, EXP_GEN (bb), "exp_gen", bb->index);
|
|
print_bitmap_set (stderr, PHI_GEN (bb), "phi_gen", bb->index);
|
|
print_bitmap_set (stderr, TMP_GEN (bb), "tmp_gen", bb->index);
|
|
print_bitmap_set (stderr, ANTIC_IN (bb), "antic_in", bb->index);
|
|
if (do_partial_partial)
|
|
print_bitmap_set (stderr, PA_IN (bb), "pa_in", bb->index);
|
|
print_bitmap_set (stderr, NEW_SETS (bb), "new_sets", bb->index);
|
|
}
|
|
|
|
/* Print out the expressions that have VAL to OUTFILE. */
|
|
|
|
static void
|
|
print_value_expressions (FILE *outfile, unsigned int val)
|
|
{
|
|
bitmap set = value_expressions[val];
|
|
if (set)
|
|
{
|
|
bitmap_set x;
|
|
char s[10];
|
|
sprintf (s, "%04d", val);
|
|
x.expressions = *set;
|
|
print_bitmap_set (outfile, &x, s, 0);
|
|
}
|
|
}
|
|
|
|
|
|
DEBUG_FUNCTION void
|
|
debug_value_expressions (unsigned int val)
|
|
{
|
|
print_value_expressions (stderr, val);
|
|
}
|
|
|
|
/* Given a CONSTANT, allocate a new CONSTANT type PRE_EXPR to
|
|
represent it. */
|
|
|
|
static pre_expr
|
|
get_or_alloc_expr_for_constant (tree constant)
|
|
{
|
|
unsigned int result_id;
|
|
unsigned int value_id;
|
|
struct pre_expr_d expr;
|
|
pre_expr newexpr;
|
|
|
|
expr.kind = CONSTANT;
|
|
PRE_EXPR_CONSTANT (&expr) = constant;
|
|
result_id = lookup_expression_id (&expr);
|
|
if (result_id != 0)
|
|
return expression_for_id (result_id);
|
|
|
|
newexpr = pre_expr_pool.allocate ();
|
|
newexpr->kind = CONSTANT;
|
|
newexpr->loc = UNKNOWN_LOCATION;
|
|
PRE_EXPR_CONSTANT (newexpr) = constant;
|
|
alloc_expression_id (newexpr);
|
|
value_id = get_or_alloc_constant_value_id (constant);
|
|
add_to_value (value_id, newexpr);
|
|
return newexpr;
|
|
}
|
|
|
|
/* Get or allocate a pre_expr for a piece of GIMPLE, and return it.
|
|
Currently only supports constants and SSA_NAMES. */
|
|
static pre_expr
|
|
get_or_alloc_expr_for (tree t)
|
|
{
|
|
if (TREE_CODE (t) == SSA_NAME)
|
|
return get_or_alloc_expr_for_name (t);
|
|
else if (is_gimple_min_invariant (t))
|
|
return get_or_alloc_expr_for_constant (t);
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Return the folded version of T if T, when folded, is a gimple
|
|
min_invariant or an SSA name. Otherwise, return T. */
|
|
|
|
static pre_expr
|
|
fully_constant_expression (pre_expr e)
|
|
{
|
|
switch (e->kind)
|
|
{
|
|
case CONSTANT:
|
|
return e;
|
|
case NARY:
|
|
{
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (e);
|
|
tree res = vn_nary_simplify (nary);
|
|
if (!res)
|
|
return e;
|
|
if (is_gimple_min_invariant (res))
|
|
return get_or_alloc_expr_for_constant (res);
|
|
if (TREE_CODE (res) == SSA_NAME)
|
|
return get_or_alloc_expr_for_name (res);
|
|
return e;
|
|
}
|
|
case REFERENCE:
|
|
{
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (e);
|
|
tree folded;
|
|
if ((folded = fully_constant_vn_reference_p (ref)))
|
|
return get_or_alloc_expr_for_constant (folded);
|
|
return e;
|
|
}
|
|
default:
|
|
return e;
|
|
}
|
|
return e;
|
|
}
|
|
|
|
/* Translate the VUSE backwards through phi nodes in PHIBLOCK, so that
|
|
it has the value it would have in BLOCK. Set *SAME_VALID to true
|
|
in case the new vuse doesn't change the value id of the OPERANDS. */
|
|
|
|
static tree
|
|
translate_vuse_through_block (vec<vn_reference_op_s> operands,
|
|
alias_set_type set, alias_set_type base_set,
|
|
tree type, tree vuse,
|
|
basic_block phiblock,
|
|
basic_block block, bool *same_valid)
|
|
{
|
|
gimple *phi = SSA_NAME_DEF_STMT (vuse);
|
|
ao_ref ref;
|
|
edge e = NULL;
|
|
bool use_oracle;
|
|
|
|
if (same_valid)
|
|
*same_valid = true;
|
|
|
|
if (gimple_bb (phi) != phiblock)
|
|
return vuse;
|
|
|
|
unsigned int cnt = param_sccvn_max_alias_queries_per_access;
|
|
use_oracle = ao_ref_init_from_vn_reference (&ref, set, base_set,
|
|
type, operands);
|
|
|
|
/* Use the alias-oracle to find either the PHI node in this block,
|
|
the first VUSE used in this block that is equivalent to vuse or
|
|
the first VUSE which definition in this block kills the value. */
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
|
e = find_edge (block, phiblock);
|
|
else if (use_oracle)
|
|
while (cnt > 0
|
|
&& !stmt_may_clobber_ref_p_1 (phi, &ref))
|
|
{
|
|
--cnt;
|
|
vuse = gimple_vuse (phi);
|
|
phi = SSA_NAME_DEF_STMT (vuse);
|
|
if (gimple_bb (phi) != phiblock)
|
|
return vuse;
|
|
if (gimple_code (phi) == GIMPLE_PHI)
|
|
{
|
|
e = find_edge (block, phiblock);
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
return NULL_TREE;
|
|
|
|
if (e)
|
|
{
|
|
if (use_oracle && same_valid)
|
|
{
|
|
bitmap visited = NULL;
|
|
/* Try to find a vuse that dominates this phi node by skipping
|
|
non-clobbering statements. */
|
|
vuse = get_continuation_for_phi (phi, &ref, true,
|
|
cnt, &visited, false, NULL, NULL);
|
|
if (visited)
|
|
BITMAP_FREE (visited);
|
|
}
|
|
else
|
|
vuse = NULL_TREE;
|
|
/* If we didn't find any, the value ID can't stay the same. */
|
|
if (!vuse && same_valid)
|
|
*same_valid = false;
|
|
/* ??? We would like to return vuse here as this is the canonical
|
|
upmost vdef that this reference is associated with. But during
|
|
insertion of the references into the hash tables we only ever
|
|
directly insert with their direct gimple_vuse, hence returning
|
|
something else would make us not find the other expression. */
|
|
return PHI_ARG_DEF (phi, e->dest_idx);
|
|
}
|
|
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Like bitmap_find_leader, but checks for the value existing in SET1 *or*
|
|
SET2 *or* SET3. This is used to avoid making a set consisting of the union
|
|
of PA_IN and ANTIC_IN during insert and phi-translation. */
|
|
|
|
static inline pre_expr
|
|
find_leader_in_sets (unsigned int val, bitmap_set_t set1, bitmap_set_t set2,
|
|
bitmap_set_t set3 = NULL)
|
|
{
|
|
pre_expr result = NULL;
|
|
|
|
if (set1)
|
|
result = bitmap_find_leader (set1, val);
|
|
if (!result && set2)
|
|
result = bitmap_find_leader (set2, val);
|
|
if (!result && set3)
|
|
result = bitmap_find_leader (set3, val);
|
|
return result;
|
|
}
|
|
|
|
/* Get the tree type for our PRE expression e. */
|
|
|
|
static tree
|
|
get_expr_type (const pre_expr e)
|
|
{
|
|
switch (e->kind)
|
|
{
|
|
case NAME:
|
|
return TREE_TYPE (PRE_EXPR_NAME (e));
|
|
case CONSTANT:
|
|
return TREE_TYPE (PRE_EXPR_CONSTANT (e));
|
|
case REFERENCE:
|
|
return PRE_EXPR_REFERENCE (e)->type;
|
|
case NARY:
|
|
return PRE_EXPR_NARY (e)->type;
|
|
}
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
/* Get a representative SSA_NAME for a given expression that is available in B.
|
|
Since all of our sub-expressions are treated as values, we require
|
|
them to be SSA_NAME's for simplicity.
|
|
Prior versions of GVNPRE used to use "value handles" here, so that
|
|
an expression would be VH.11 + VH.10 instead of d_3 + e_6. In
|
|
either case, the operands are really values (IE we do not expect
|
|
them to be usable without finding leaders). */
|
|
|
|
static tree
|
|
get_representative_for (const pre_expr e, basic_block b = NULL)
|
|
{
|
|
tree name, valnum = NULL_TREE;
|
|
unsigned int value_id = get_expr_value_id (e);
|
|
|
|
switch (e->kind)
|
|
{
|
|
case NAME:
|
|
return PRE_EXPR_NAME (e);
|
|
case CONSTANT:
|
|
return PRE_EXPR_CONSTANT (e);
|
|
case NARY:
|
|
case REFERENCE:
|
|
{
|
|
/* Go through all of the expressions representing this value
|
|
and pick out an SSA_NAME. */
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bitmap exprs = value_expressions[value_id];
|
|
EXECUTE_IF_SET_IN_BITMAP (exprs, 0, i, bi)
|
|
{
|
|
pre_expr rep = expression_for_id (i);
|
|
if (rep->kind == NAME)
|
|
{
|
|
tree name = PRE_EXPR_NAME (rep);
|
|
valnum = VN_INFO (name)->valnum;
|
|
gimple *def = SSA_NAME_DEF_STMT (name);
|
|
/* We have to return either a new representative or one
|
|
that can be used for expression simplification and thus
|
|
is available in B. */
|
|
if (! b
|
|
|| gimple_nop_p (def)
|
|
|| dominated_by_p (CDI_DOMINATORS, b, gimple_bb (def)))
|
|
return name;
|
|
}
|
|
else if (rep->kind == CONSTANT)
|
|
return PRE_EXPR_CONSTANT (rep);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* If we reached here we couldn't find an SSA_NAME. This can
|
|
happen when we've discovered a value that has never appeared in
|
|
the program as set to an SSA_NAME, as the result of phi translation.
|
|
Create one here.
|
|
??? We should be able to re-use this when we insert the statement
|
|
to compute it. */
|
|
name = make_temp_ssa_name (get_expr_type (e), gimple_build_nop (), "pretmp");
|
|
VN_INFO (name)->value_id = value_id;
|
|
VN_INFO (name)->valnum = valnum ? valnum : name;
|
|
/* ??? For now mark this SSA name for release by VN. */
|
|
VN_INFO (name)->needs_insertion = true;
|
|
add_to_value (value_id, get_or_alloc_expr_for_name (name));
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Created SSA_NAME representative ");
|
|
print_generic_expr (dump_file, name);
|
|
fprintf (dump_file, " for expression:");
|
|
print_pre_expr (dump_file, e);
|
|
fprintf (dump_file, " (%04d)\n", value_id);
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
|
|
static pre_expr
|
|
phi_translate (bitmap_set_t, pre_expr, bitmap_set_t, bitmap_set_t, edge);
|
|
|
|
/* Translate EXPR using phis in PHIBLOCK, so that it has the values of
|
|
the phis in PRED. Return NULL if we can't find a leader for each part
|
|
of the translated expression. */
|
|
|
|
static pre_expr
|
|
phi_translate_1 (bitmap_set_t dest,
|
|
pre_expr expr, bitmap_set_t set1, bitmap_set_t set2, edge e)
|
|
{
|
|
basic_block pred = e->src;
|
|
basic_block phiblock = e->dest;
|
|
location_t expr_loc = expr->loc;
|
|
switch (expr->kind)
|
|
{
|
|
case NARY:
|
|
{
|
|
unsigned int i;
|
|
bool changed = false;
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
|
vn_nary_op_t newnary = XALLOCAVAR (struct vn_nary_op_s,
|
|
sizeof_vn_nary_op (nary->length));
|
|
memcpy (newnary, nary, sizeof_vn_nary_op (nary->length));
|
|
|
|
for (i = 0; i < newnary->length; i++)
|
|
{
|
|
if (TREE_CODE (newnary->op[i]) != SSA_NAME)
|
|
continue;
|
|
else
|
|
{
|
|
pre_expr leader, result;
|
|
unsigned int op_val_id = VN_INFO (newnary->op[i])->value_id;
|
|
leader = find_leader_in_sets (op_val_id, set1, set2);
|
|
result = phi_translate (dest, leader, set1, set2, e);
|
|
if (result && result != leader)
|
|
/* If op has a leader in the sets we translate make
|
|
sure to use the value of the translated expression.
|
|
We might need a new representative for that. */
|
|
newnary->op[i] = get_representative_for (result, pred);
|
|
else if (!result)
|
|
return NULL;
|
|
|
|
changed |= newnary->op[i] != nary->op[i];
|
|
}
|
|
}
|
|
if (changed)
|
|
{
|
|
pre_expr constant;
|
|
unsigned int new_val_id;
|
|
|
|
PRE_EXPR_NARY (expr) = newnary;
|
|
constant = fully_constant_expression (expr);
|
|
PRE_EXPR_NARY (expr) = nary;
|
|
if (constant != expr)
|
|
{
|
|
/* For non-CONSTANTs we have to make sure we can eventually
|
|
insert the expression. Which means we need to have a
|
|
leader for it. */
|
|
if (constant->kind != CONSTANT)
|
|
{
|
|
/* Do not allow simplifications to non-constants over
|
|
backedges as this will likely result in a loop PHI node
|
|
to be inserted and increased register pressure.
|
|
See PR77498 - this avoids doing predcoms work in
|
|
a less efficient way. */
|
|
if (e->flags & EDGE_DFS_BACK)
|
|
;
|
|
else
|
|
{
|
|
unsigned value_id = get_expr_value_id (constant);
|
|
/* We want a leader in ANTIC_OUT or AVAIL_OUT here.
|
|
dest has what we computed into ANTIC_OUT sofar
|
|
so pick from that - since topological sorting
|
|
by sorted_array_from_bitmap_set isn't perfect
|
|
we may lose some cases here. */
|
|
constant = find_leader_in_sets (value_id, dest,
|
|
AVAIL_OUT (pred));
|
|
if (constant)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "simplifying ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " translated %d -> %d to ",
|
|
phiblock->index, pred->index);
|
|
PRE_EXPR_NARY (expr) = newnary;
|
|
print_pre_expr (dump_file, expr);
|
|
PRE_EXPR_NARY (expr) = nary;
|
|
fprintf (dump_file, " to ");
|
|
print_pre_expr (dump_file, constant);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
return constant;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
return constant;
|
|
}
|
|
|
|
/* vn_nary_* do not valueize operands. */
|
|
for (i = 0; i < newnary->length; ++i)
|
|
if (TREE_CODE (newnary->op[i]) == SSA_NAME)
|
|
newnary->op[i] = VN_INFO (newnary->op[i])->valnum;
|
|
tree result = vn_nary_op_lookup_pieces (newnary->length,
|
|
newnary->opcode,
|
|
newnary->type,
|
|
&newnary->op[0],
|
|
&nary);
|
|
if (result && is_gimple_min_invariant (result))
|
|
return get_or_alloc_expr_for_constant (result);
|
|
|
|
expr = pre_expr_pool.allocate ();
|
|
expr->kind = NARY;
|
|
expr->id = 0;
|
|
expr->loc = expr_loc;
|
|
if (nary && !nary->predicated_values)
|
|
{
|
|
PRE_EXPR_NARY (expr) = nary;
|
|
new_val_id = nary->value_id;
|
|
get_or_alloc_expression_id (expr);
|
|
}
|
|
else
|
|
{
|
|
new_val_id = get_next_value_id ();
|
|
value_expressions.safe_grow_cleared (get_max_value_id () + 1);
|
|
nary = vn_nary_op_insert_pieces (newnary->length,
|
|
newnary->opcode,
|
|
newnary->type,
|
|
&newnary->op[0],
|
|
result, new_val_id);
|
|
PRE_EXPR_NARY (expr) = nary;
|
|
get_or_alloc_expression_id (expr);
|
|
}
|
|
add_to_value (new_val_id, expr);
|
|
}
|
|
return expr;
|
|
}
|
|
break;
|
|
|
|
case REFERENCE:
|
|
{
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
|
vec<vn_reference_op_s> operands = ref->operands;
|
|
tree vuse = ref->vuse;
|
|
tree newvuse = vuse;
|
|
vec<vn_reference_op_s> newoperands = vNULL;
|
|
bool changed = false, same_valid = true;
|
|
unsigned int i, n;
|
|
vn_reference_op_t operand;
|
|
vn_reference_t newref;
|
|
|
|
for (i = 0; operands.iterate (i, &operand); i++)
|
|
{
|
|
pre_expr opresult;
|
|
pre_expr leader;
|
|
tree op[3];
|
|
tree type = operand->type;
|
|
vn_reference_op_s newop = *operand;
|
|
op[0] = operand->op0;
|
|
op[1] = operand->op1;
|
|
op[2] = operand->op2;
|
|
for (n = 0; n < 3; ++n)
|
|
{
|
|
unsigned int op_val_id;
|
|
if (!op[n])
|
|
continue;
|
|
if (TREE_CODE (op[n]) != SSA_NAME)
|
|
{
|
|
/* We can't possibly insert these. */
|
|
if (n != 0
|
|
&& !is_gimple_min_invariant (op[n]))
|
|
break;
|
|
continue;
|
|
}
|
|
op_val_id = VN_INFO (op[n])->value_id;
|
|
leader = find_leader_in_sets (op_val_id, set1, set2);
|
|
opresult = phi_translate (dest, leader, set1, set2, e);
|
|
if (opresult && opresult != leader)
|
|
{
|
|
tree name = get_representative_for (opresult);
|
|
changed |= name != op[n];
|
|
op[n] = name;
|
|
}
|
|
else if (!opresult)
|
|
break;
|
|
}
|
|
if (n != 3)
|
|
{
|
|
newoperands.release ();
|
|
return NULL;
|
|
}
|
|
if (!changed)
|
|
continue;
|
|
if (!newoperands.exists ())
|
|
newoperands = operands.copy ();
|
|
/* We may have changed from an SSA_NAME to a constant */
|
|
if (newop.opcode == SSA_NAME && TREE_CODE (op[0]) != SSA_NAME)
|
|
newop.opcode = TREE_CODE (op[0]);
|
|
newop.type = type;
|
|
newop.op0 = op[0];
|
|
newop.op1 = op[1];
|
|
newop.op2 = op[2];
|
|
newoperands[i] = newop;
|
|
}
|
|
gcc_checking_assert (i == operands.length ());
|
|
|
|
if (vuse)
|
|
{
|
|
newvuse = translate_vuse_through_block (newoperands.exists ()
|
|
? newoperands : operands,
|
|
ref->set, ref->base_set,
|
|
ref->type,
|
|
vuse, phiblock, pred,
|
|
changed
|
|
? NULL : &same_valid);
|
|
if (newvuse == NULL_TREE)
|
|
{
|
|
newoperands.release ();
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
if (changed || newvuse != vuse)
|
|
{
|
|
unsigned int new_val_id;
|
|
|
|
tree result = vn_reference_lookup_pieces (newvuse, ref->set,
|
|
ref->base_set,
|
|
ref->type,
|
|
newoperands.exists ()
|
|
? newoperands : operands,
|
|
&newref, VN_WALK);
|
|
if (result)
|
|
newoperands.release ();
|
|
|
|
/* We can always insert constants, so if we have a partial
|
|
redundant constant load of another type try to translate it
|
|
to a constant of appropriate type. */
|
|
if (result && is_gimple_min_invariant (result))
|
|
{
|
|
tree tem = result;
|
|
if (!useless_type_conversion_p (ref->type, TREE_TYPE (result)))
|
|
{
|
|
tem = fold_unary (VIEW_CONVERT_EXPR, ref->type, result);
|
|
if (tem && !is_gimple_min_invariant (tem))
|
|
tem = NULL_TREE;
|
|
}
|
|
if (tem)
|
|
return get_or_alloc_expr_for_constant (tem);
|
|
}
|
|
|
|
/* If we'd have to convert things we would need to validate
|
|
if we can insert the translated expression. So fail
|
|
here for now - we cannot insert an alias with a different
|
|
type in the VN tables either, as that would assert. */
|
|
if (result
|
|
&& !useless_type_conversion_p (ref->type, TREE_TYPE (result)))
|
|
return NULL;
|
|
else if (!result && newref
|
|
&& !useless_type_conversion_p (ref->type, newref->type))
|
|
{
|
|
newoperands.release ();
|
|
return NULL;
|
|
}
|
|
|
|
expr = pre_expr_pool.allocate ();
|
|
expr->kind = REFERENCE;
|
|
expr->id = 0;
|
|
expr->loc = expr_loc;
|
|
|
|
if (newref)
|
|
new_val_id = newref->value_id;
|
|
else
|
|
{
|
|
if (changed || !same_valid)
|
|
{
|
|
new_val_id = get_next_value_id ();
|
|
value_expressions.safe_grow_cleared
|
|
(get_max_value_id () + 1);
|
|
}
|
|
else
|
|
new_val_id = ref->value_id;
|
|
if (!newoperands.exists ())
|
|
newoperands = operands.copy ();
|
|
newref = vn_reference_insert_pieces (newvuse, ref->set,
|
|
ref->base_set, ref->type,
|
|
newoperands,
|
|
result, new_val_id);
|
|
newoperands = vNULL;
|
|
}
|
|
PRE_EXPR_REFERENCE (expr) = newref;
|
|
get_or_alloc_expression_id (expr);
|
|
add_to_value (new_val_id, expr);
|
|
}
|
|
newoperands.release ();
|
|
return expr;
|
|
}
|
|
break;
|
|
|
|
case NAME:
|
|
{
|
|
tree name = PRE_EXPR_NAME (expr);
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (name);
|
|
/* If the SSA name is defined by a PHI node in this block,
|
|
translate it. */
|
|
if (gimple_code (def_stmt) == GIMPLE_PHI
|
|
&& gimple_bb (def_stmt) == phiblock)
|
|
{
|
|
tree def = PHI_ARG_DEF (def_stmt, e->dest_idx);
|
|
|
|
/* Handle constant. */
|
|
if (is_gimple_min_invariant (def))
|
|
return get_or_alloc_expr_for_constant (def);
|
|
|
|
return get_or_alloc_expr_for_name (def);
|
|
}
|
|
/* Otherwise return it unchanged - it will get removed if its
|
|
value is not available in PREDs AVAIL_OUT set of expressions
|
|
by the subtraction of TMP_GEN. */
|
|
return expr;
|
|
}
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Wrapper around phi_translate_1 providing caching functionality. */
|
|
|
|
static pre_expr
|
|
phi_translate (bitmap_set_t dest, pre_expr expr,
|
|
bitmap_set_t set1, bitmap_set_t set2, edge e)
|
|
{
|
|
expr_pred_trans_t slot = NULL;
|
|
pre_expr phitrans;
|
|
|
|
if (!expr)
|
|
return NULL;
|
|
|
|
/* Constants contain no values that need translation. */
|
|
if (expr->kind == CONSTANT)
|
|
return expr;
|
|
|
|
if (value_id_constant_p (get_expr_value_id (expr)))
|
|
return expr;
|
|
|
|
/* Don't add translations of NAMEs as those are cheap to translate. */
|
|
if (expr->kind != NAME)
|
|
{
|
|
if (phi_trans_add (&slot, expr, e->src))
|
|
return slot->v;
|
|
/* Store NULL for the value we want to return in the case of
|
|
recursing. */
|
|
slot->v = NULL;
|
|
}
|
|
|
|
/* Translate. */
|
|
basic_block saved_valueize_bb = vn_context_bb;
|
|
vn_context_bb = e->src;
|
|
phitrans = phi_translate_1 (dest, expr, set1, set2, e);
|
|
vn_context_bb = saved_valueize_bb;
|
|
|
|
if (slot)
|
|
{
|
|
if (phitrans)
|
|
slot->v = phitrans;
|
|
else
|
|
/* Remove failed translations again, they cause insert
|
|
iteration to not pick up new opportunities reliably. */
|
|
phi_translate_table->remove_elt_with_hash (slot, slot->hashcode);
|
|
}
|
|
|
|
return phitrans;
|
|
}
|
|
|
|
|
|
/* For each expression in SET, translate the values through phi nodes
|
|
in PHIBLOCK using edge PHIBLOCK->PRED, and store the resulting
|
|
expressions in DEST. */
|
|
|
|
static void
|
|
phi_translate_set (bitmap_set_t dest, bitmap_set_t set, edge e)
|
|
{
|
|
vec<pre_expr> exprs;
|
|
pre_expr expr;
|
|
int i;
|
|
|
|
if (gimple_seq_empty_p (phi_nodes (e->dest)))
|
|
{
|
|
bitmap_set_copy (dest, set);
|
|
return;
|
|
}
|
|
|
|
exprs = sorted_array_from_bitmap_set (set);
|
|
FOR_EACH_VEC_ELT (exprs, i, expr)
|
|
{
|
|
pre_expr translated;
|
|
translated = phi_translate (dest, expr, set, NULL, e);
|
|
if (!translated)
|
|
continue;
|
|
|
|
bitmap_insert_into_set (dest, translated);
|
|
}
|
|
exprs.release ();
|
|
}
|
|
|
|
/* Find the leader for a value (i.e., the name representing that
|
|
value) in a given set, and return it. Return NULL if no leader
|
|
is found. */
|
|
|
|
static pre_expr
|
|
bitmap_find_leader (bitmap_set_t set, unsigned int val)
|
|
{
|
|
if (value_id_constant_p (val))
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bitmap exprset = value_expressions[val];
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (exprset, 0, i, bi)
|
|
{
|
|
pre_expr expr = expression_for_id (i);
|
|
if (expr->kind == CONSTANT)
|
|
return expr;
|
|
}
|
|
}
|
|
if (bitmap_set_contains_value (set, val))
|
|
{
|
|
/* Rather than walk the entire bitmap of expressions, and see
|
|
whether any of them has the value we are looking for, we look
|
|
at the reverse mapping, which tells us the set of expressions
|
|
that have a given value (IE value->expressions with that
|
|
value) and see if any of those expressions are in our set.
|
|
The number of expressions per value is usually significantly
|
|
less than the number of expressions in the set. In fact, for
|
|
large testcases, doing it this way is roughly 5-10x faster
|
|
than walking the bitmap.
|
|
If this is somehow a significant lose for some cases, we can
|
|
choose which set to walk based on which set is smaller. */
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
bitmap exprset = value_expressions[val];
|
|
|
|
EXECUTE_IF_AND_IN_BITMAP (exprset, &set->expressions, 0, i, bi)
|
|
return expression_for_id (i);
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/* Determine if EXPR, a memory expression, is ANTIC_IN at the top of
|
|
BLOCK by seeing if it is not killed in the block. Note that we are
|
|
only determining whether there is a store that kills it. Because
|
|
of the order in which clean iterates over values, we are guaranteed
|
|
that altered operands will have caused us to be eliminated from the
|
|
ANTIC_IN set already. */
|
|
|
|
static bool
|
|
value_dies_in_block_x (pre_expr expr, basic_block block)
|
|
{
|
|
tree vuse = PRE_EXPR_REFERENCE (expr)->vuse;
|
|
vn_reference_t refx = PRE_EXPR_REFERENCE (expr);
|
|
gimple *def;
|
|
gimple_stmt_iterator gsi;
|
|
unsigned id = get_expression_id (expr);
|
|
bool res = false;
|
|
ao_ref ref;
|
|
|
|
if (!vuse)
|
|
return false;
|
|
|
|
/* Lookup a previously calculated result. */
|
|
if (EXPR_DIES (block)
|
|
&& bitmap_bit_p (EXPR_DIES (block), id * 2))
|
|
return bitmap_bit_p (EXPR_DIES (block), id * 2 + 1);
|
|
|
|
/* A memory expression {e, VUSE} dies in the block if there is a
|
|
statement that may clobber e. If, starting statement walk from the
|
|
top of the basic block, a statement uses VUSE there can be no kill
|
|
inbetween that use and the original statement that loaded {e, VUSE},
|
|
so we can stop walking. */
|
|
ref.base = NULL_TREE;
|
|
for (gsi = gsi_start_bb (block); !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
tree def_vuse, def_vdef;
|
|
def = gsi_stmt (gsi);
|
|
def_vuse = gimple_vuse (def);
|
|
def_vdef = gimple_vdef (def);
|
|
|
|
/* Not a memory statement. */
|
|
if (!def_vuse)
|
|
continue;
|
|
|
|
/* Not a may-def. */
|
|
if (!def_vdef)
|
|
{
|
|
/* A load with the same VUSE, we're done. */
|
|
if (def_vuse == vuse)
|
|
break;
|
|
|
|
continue;
|
|
}
|
|
|
|
/* Init ref only if we really need it. */
|
|
if (ref.base == NULL_TREE
|
|
&& !ao_ref_init_from_vn_reference (&ref, refx->set, refx->base_set,
|
|
refx->type, refx->operands))
|
|
{
|
|
res = true;
|
|
break;
|
|
}
|
|
/* If the statement may clobber expr, it dies. */
|
|
if (stmt_may_clobber_ref_p_1 (def, &ref))
|
|
{
|
|
res = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Remember the result. */
|
|
if (!EXPR_DIES (block))
|
|
EXPR_DIES (block) = BITMAP_ALLOC (&grand_bitmap_obstack);
|
|
bitmap_set_bit (EXPR_DIES (block), id * 2);
|
|
if (res)
|
|
bitmap_set_bit (EXPR_DIES (block), id * 2 + 1);
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/* Determine if OP is valid in SET1 U SET2, which it is when the union
|
|
contains its value-id. */
|
|
|
|
static bool
|
|
op_valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, tree op)
|
|
{
|
|
if (op && TREE_CODE (op) == SSA_NAME)
|
|
{
|
|
unsigned int value_id = VN_INFO (op)->value_id;
|
|
if (!(bitmap_set_contains_value (set1, value_id)
|
|
|| (set2 && bitmap_set_contains_value (set2, value_id))))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* Determine if the expression EXPR is valid in SET1 U SET2.
|
|
ONLY SET2 CAN BE NULL.
|
|
This means that we have a leader for each part of the expression
|
|
(if it consists of values), or the expression is an SSA_NAME.
|
|
For loads/calls, we also see if the vuse is killed in this block. */
|
|
|
|
static bool
|
|
valid_in_sets (bitmap_set_t set1, bitmap_set_t set2, pre_expr expr)
|
|
{
|
|
switch (expr->kind)
|
|
{
|
|
case NAME:
|
|
/* By construction all NAMEs are available. Non-available
|
|
NAMEs are removed by subtracting TMP_GEN from the sets. */
|
|
return true;
|
|
case NARY:
|
|
{
|
|
unsigned int i;
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
|
for (i = 0; i < nary->length; i++)
|
|
if (!op_valid_in_sets (set1, set2, nary->op[i]))
|
|
return false;
|
|
return true;
|
|
}
|
|
break;
|
|
case REFERENCE:
|
|
{
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
|
vn_reference_op_t vro;
|
|
unsigned int i;
|
|
|
|
FOR_EACH_VEC_ELT (ref->operands, i, vro)
|
|
{
|
|
if (!op_valid_in_sets (set1, set2, vro->op0)
|
|
|| !op_valid_in_sets (set1, set2, vro->op1)
|
|
|| !op_valid_in_sets (set1, set2, vro->op2))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* Clean the set of expressions SET1 that are no longer valid in SET1 or SET2.
|
|
This means expressions that are made up of values we have no leaders for
|
|
in SET1 or SET2. */
|
|
|
|
static void
|
|
clean (bitmap_set_t set1, bitmap_set_t set2 = NULL)
|
|
{
|
|
vec<pre_expr> exprs = sorted_array_from_bitmap_set (set1);
|
|
pre_expr expr;
|
|
int i;
|
|
|
|
FOR_EACH_VEC_ELT (exprs, i, expr)
|
|
{
|
|
if (!valid_in_sets (set1, set2, expr))
|
|
{
|
|
unsigned int val = get_expr_value_id (expr);
|
|
bitmap_clear_bit (&set1->expressions, get_expression_id (expr));
|
|
/* We are entered with possibly multiple expressions for a value
|
|
so before removing a value from the set see if there's an
|
|
expression for it left. */
|
|
if (! bitmap_find_leader (set1, val))
|
|
bitmap_clear_bit (&set1->values, val);
|
|
}
|
|
}
|
|
exprs.release ();
|
|
}
|
|
|
|
/* Clean the set of expressions that are no longer valid in SET because
|
|
they are clobbered in BLOCK or because they trap and may not be executed. */
|
|
|
|
static void
|
|
prune_clobbered_mems (bitmap_set_t set, basic_block block)
|
|
{
|
|
bitmap_iterator bi;
|
|
unsigned i;
|
|
unsigned to_remove = -1U;
|
|
bool any_removed = false;
|
|
|
|
FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
|
|
{
|
|
/* Remove queued expr. */
|
|
if (to_remove != -1U)
|
|
{
|
|
bitmap_clear_bit (&set->expressions, to_remove);
|
|
any_removed = true;
|
|
to_remove = -1U;
|
|
}
|
|
|
|
pre_expr expr = expression_for_id (i);
|
|
if (expr->kind == REFERENCE)
|
|
{
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
|
if (ref->vuse)
|
|
{
|
|
gimple *def_stmt = SSA_NAME_DEF_STMT (ref->vuse);
|
|
if (!gimple_nop_p (def_stmt)
|
|
&& ((gimple_bb (def_stmt) != block
|
|
&& !dominated_by_p (CDI_DOMINATORS,
|
|
block, gimple_bb (def_stmt)))
|
|
|| (gimple_bb (def_stmt) == block
|
|
&& value_dies_in_block_x (expr, block))))
|
|
to_remove = i;
|
|
}
|
|
}
|
|
else if (expr->kind == NARY)
|
|
{
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
|
/* If the NARY may trap make sure the block does not contain
|
|
a possible exit point.
|
|
??? This is overly conservative if we translate AVAIL_OUT
|
|
as the available expression might be after the exit point. */
|
|
if (BB_MAY_NOTRETURN (block)
|
|
&& vn_nary_may_trap (nary))
|
|
to_remove = i;
|
|
}
|
|
}
|
|
|
|
/* Remove queued expr. */
|
|
if (to_remove != -1U)
|
|
{
|
|
bitmap_clear_bit (&set->expressions, to_remove);
|
|
any_removed = true;
|
|
}
|
|
|
|
/* Above we only removed expressions, now clean the set of values
|
|
which no longer have any corresponding expression. We cannot
|
|
clear the value at the time we remove an expression since there
|
|
may be multiple expressions per value.
|
|
If we'd queue possibly to be removed values we could use
|
|
the bitmap_find_leader way to see if there's still an expression
|
|
for it. For some ratio of to be removed values and number of
|
|
values/expressions in the set this might be faster than rebuilding
|
|
the value-set. */
|
|
if (any_removed)
|
|
{
|
|
bitmap_clear (&set->values);
|
|
FOR_EACH_EXPR_ID_IN_SET (set, i, bi)
|
|
{
|
|
pre_expr expr = expression_for_id (i);
|
|
unsigned int value_id = get_expr_value_id (expr);
|
|
bitmap_set_bit (&set->values, value_id);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Compute the ANTIC set for BLOCK.
|
|
|
|
If succs(BLOCK) > 1 then
|
|
ANTIC_OUT[BLOCK] = intersection of ANTIC_IN[b] for all succ(BLOCK)
|
|
else if succs(BLOCK) == 1 then
|
|
ANTIC_OUT[BLOCK] = phi_translate (ANTIC_IN[succ(BLOCK)])
|
|
|
|
ANTIC_IN[BLOCK] = clean(ANTIC_OUT[BLOCK] U EXP_GEN[BLOCK] - TMP_GEN[BLOCK])
|
|
|
|
Note that clean() is deferred until after the iteration. */
|
|
|
|
static bool
|
|
compute_antic_aux (basic_block block, bool block_has_abnormal_pred_edge)
|
|
{
|
|
bitmap_set_t S, old, ANTIC_OUT;
|
|
edge e;
|
|
edge_iterator ei;
|
|
|
|
bool was_visited = BB_VISITED (block);
|
|
bool changed = ! BB_VISITED (block);
|
|
BB_VISITED (block) = 1;
|
|
old = ANTIC_OUT = S = NULL;
|
|
|
|
/* If any edges from predecessors are abnormal, antic_in is empty,
|
|
so do nothing. */
|
|
if (block_has_abnormal_pred_edge)
|
|
goto maybe_dump_sets;
|
|
|
|
old = ANTIC_IN (block);
|
|
ANTIC_OUT = bitmap_set_new ();
|
|
|
|
/* If the block has no successors, ANTIC_OUT is empty. */
|
|
if (EDGE_COUNT (block->succs) == 0)
|
|
;
|
|
/* If we have one successor, we could have some phi nodes to
|
|
translate through. */
|
|
else if (single_succ_p (block))
|
|
{
|
|
e = single_succ_edge (block);
|
|
gcc_assert (BB_VISITED (e->dest));
|
|
phi_translate_set (ANTIC_OUT, ANTIC_IN (e->dest), e);
|
|
}
|
|
/* If we have multiple successors, we take the intersection of all of
|
|
them. Note that in the case of loop exit phi nodes, we may have
|
|
phis to translate through. */
|
|
else
|
|
{
|
|
size_t i;
|
|
edge first = NULL;
|
|
|
|
auto_vec<edge> worklist (EDGE_COUNT (block->succs));
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
{
|
|
if (!first
|
|
&& BB_VISITED (e->dest))
|
|
first = e;
|
|
else if (BB_VISITED (e->dest))
|
|
worklist.quick_push (e);
|
|
else
|
|
{
|
|
/* Unvisited successors get their ANTIC_IN replaced by the
|
|
maximal set to arrive at a maximum ANTIC_IN solution.
|
|
We can ignore them in the intersection operation and thus
|
|
need not explicitely represent that maximum solution. */
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "ANTIC_IN is MAX on %d->%d\n",
|
|
e->src->index, e->dest->index);
|
|
}
|
|
}
|
|
|
|
/* Of multiple successors we have to have visited one already
|
|
which is guaranteed by iteration order. */
|
|
gcc_assert (first != NULL);
|
|
|
|
phi_translate_set (ANTIC_OUT, ANTIC_IN (first->dest), first);
|
|
|
|
/* If we have multiple successors we need to intersect the ANTIC_OUT
|
|
sets. For values that's a simple intersection but for
|
|
expressions it is a union. Given we want to have a single
|
|
expression per value in our sets we have to canonicalize.
|
|
Avoid randomness and running into cycles like for PR82129 and
|
|
canonicalize the expression we choose to the one with the
|
|
lowest id. This requires we actually compute the union first. */
|
|
FOR_EACH_VEC_ELT (worklist, i, e)
|
|
{
|
|
if (!gimple_seq_empty_p (phi_nodes (e->dest)))
|
|
{
|
|
bitmap_set_t tmp = bitmap_set_new ();
|
|
phi_translate_set (tmp, ANTIC_IN (e->dest), e);
|
|
bitmap_and_into (&ANTIC_OUT->values, &tmp->values);
|
|
bitmap_ior_into (&ANTIC_OUT->expressions, &tmp->expressions);
|
|
bitmap_set_free (tmp);
|
|
}
|
|
else
|
|
{
|
|
bitmap_and_into (&ANTIC_OUT->values, &ANTIC_IN (e->dest)->values);
|
|
bitmap_ior_into (&ANTIC_OUT->expressions,
|
|
&ANTIC_IN (e->dest)->expressions);
|
|
}
|
|
}
|
|
if (! worklist.is_empty ())
|
|
{
|
|
/* Prune expressions not in the value set. */
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
unsigned int to_clear = -1U;
|
|
FOR_EACH_EXPR_ID_IN_SET (ANTIC_OUT, i, bi)
|
|
{
|
|
if (to_clear != -1U)
|
|
{
|
|
bitmap_clear_bit (&ANTIC_OUT->expressions, to_clear);
|
|
to_clear = -1U;
|
|
}
|
|
pre_expr expr = expression_for_id (i);
|
|
unsigned int value_id = get_expr_value_id (expr);
|
|
if (!bitmap_bit_p (&ANTIC_OUT->values, value_id))
|
|
to_clear = i;
|
|
}
|
|
if (to_clear != -1U)
|
|
bitmap_clear_bit (&ANTIC_OUT->expressions, to_clear);
|
|
}
|
|
}
|
|
|
|
/* Prune expressions that are clobbered in block and thus become
|
|
invalid if translated from ANTIC_OUT to ANTIC_IN. */
|
|
prune_clobbered_mems (ANTIC_OUT, block);
|
|
|
|
/* Generate ANTIC_OUT - TMP_GEN. */
|
|
S = bitmap_set_subtract_expressions (ANTIC_OUT, TMP_GEN (block));
|
|
|
|
/* Start ANTIC_IN with EXP_GEN - TMP_GEN. */
|
|
ANTIC_IN (block) = bitmap_set_subtract_expressions (EXP_GEN (block),
|
|
TMP_GEN (block));
|
|
|
|
/* Then union in the ANTIC_OUT - TMP_GEN values,
|
|
to get ANTIC_OUT U EXP_GEN - TMP_GEN */
|
|
bitmap_ior_into (&ANTIC_IN (block)->values, &S->values);
|
|
bitmap_ior_into (&ANTIC_IN (block)->expressions, &S->expressions);
|
|
|
|
/* clean (ANTIC_IN (block)) is defered to after the iteration converged
|
|
because it can cause non-convergence, see for example PR81181. */
|
|
|
|
/* Intersect ANTIC_IN with the old ANTIC_IN. This is required until
|
|
we properly represent the maximum expression set, thus not prune
|
|
values without expressions during the iteration. */
|
|
if (was_visited
|
|
&& bitmap_and_into (&ANTIC_IN (block)->values, &old->values))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "warning: intersecting with old ANTIC_IN "
|
|
"shrinks the set\n");
|
|
/* Prune expressions not in the value set. */
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
unsigned int to_clear = -1U;
|
|
FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (block), i, bi)
|
|
{
|
|
if (to_clear != -1U)
|
|
{
|
|
bitmap_clear_bit (&ANTIC_IN (block)->expressions, to_clear);
|
|
to_clear = -1U;
|
|
}
|
|
pre_expr expr = expression_for_id (i);
|
|
unsigned int value_id = get_expr_value_id (expr);
|
|
if (!bitmap_bit_p (&ANTIC_IN (block)->values, value_id))
|
|
to_clear = i;
|
|
}
|
|
if (to_clear != -1U)
|
|
bitmap_clear_bit (&ANTIC_IN (block)->expressions, to_clear);
|
|
}
|
|
|
|
if (!bitmap_set_equal (old, ANTIC_IN (block)))
|
|
changed = true;
|
|
|
|
maybe_dump_sets:
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (ANTIC_OUT)
|
|
print_bitmap_set (dump_file, ANTIC_OUT, "ANTIC_OUT", block->index);
|
|
|
|
if (changed)
|
|
fprintf (dump_file, "[changed] ");
|
|
print_bitmap_set (dump_file, ANTIC_IN (block), "ANTIC_IN",
|
|
block->index);
|
|
|
|
if (S)
|
|
print_bitmap_set (dump_file, S, "S", block->index);
|
|
}
|
|
if (old)
|
|
bitmap_set_free (old);
|
|
if (S)
|
|
bitmap_set_free (S);
|
|
if (ANTIC_OUT)
|
|
bitmap_set_free (ANTIC_OUT);
|
|
return changed;
|
|
}
|
|
|
|
/* Compute PARTIAL_ANTIC for BLOCK.
|
|
|
|
If succs(BLOCK) > 1 then
|
|
PA_OUT[BLOCK] = value wise union of PA_IN[b] + all ANTIC_IN not
|
|
in ANTIC_OUT for all succ(BLOCK)
|
|
else if succs(BLOCK) == 1 then
|
|
PA_OUT[BLOCK] = phi_translate (PA_IN[succ(BLOCK)])
|
|
|
|
PA_IN[BLOCK] = clean(PA_OUT[BLOCK] - TMP_GEN[BLOCK] - ANTIC_IN[BLOCK])
|
|
|
|
*/
|
|
static void
|
|
compute_partial_antic_aux (basic_block block,
|
|
bool block_has_abnormal_pred_edge)
|
|
{
|
|
bitmap_set_t old_PA_IN;
|
|
bitmap_set_t PA_OUT;
|
|
edge e;
|
|
edge_iterator ei;
|
|
unsigned long max_pa = param_max_partial_antic_length;
|
|
|
|
old_PA_IN = PA_OUT = NULL;
|
|
|
|
/* If any edges from predecessors are abnormal, antic_in is empty,
|
|
so do nothing. */
|
|
if (block_has_abnormal_pred_edge)
|
|
goto maybe_dump_sets;
|
|
|
|
/* If there are too many partially anticipatable values in the
|
|
block, phi_translate_set can take an exponential time: stop
|
|
before the translation starts. */
|
|
if (max_pa
|
|
&& single_succ_p (block)
|
|
&& bitmap_count_bits (&PA_IN (single_succ (block))->values) > max_pa)
|
|
goto maybe_dump_sets;
|
|
|
|
old_PA_IN = PA_IN (block);
|
|
PA_OUT = bitmap_set_new ();
|
|
|
|
/* If the block has no successors, ANTIC_OUT is empty. */
|
|
if (EDGE_COUNT (block->succs) == 0)
|
|
;
|
|
/* If we have one successor, we could have some phi nodes to
|
|
translate through. Note that we can't phi translate across DFS
|
|
back edges in partial antic, because it uses a union operation on
|
|
the successors. For recurrences like IV's, we will end up
|
|
generating a new value in the set on each go around (i + 3 (VH.1)
|
|
VH.1 + 1 (VH.2), VH.2 + 1 (VH.3), etc), forever. */
|
|
else if (single_succ_p (block))
|
|
{
|
|
e = single_succ_edge (block);
|
|
if (!(e->flags & EDGE_DFS_BACK))
|
|
phi_translate_set (PA_OUT, PA_IN (e->dest), e);
|
|
}
|
|
/* If we have multiple successors, we take the union of all of
|
|
them. */
|
|
else
|
|
{
|
|
size_t i;
|
|
|
|
auto_vec<edge> worklist (EDGE_COUNT (block->succs));
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
{
|
|
if (e->flags & EDGE_DFS_BACK)
|
|
continue;
|
|
worklist.quick_push (e);
|
|
}
|
|
if (worklist.length () > 0)
|
|
{
|
|
FOR_EACH_VEC_ELT (worklist, i, e)
|
|
{
|
|
unsigned int i;
|
|
bitmap_iterator bi;
|
|
|
|
FOR_EACH_EXPR_ID_IN_SET (ANTIC_IN (e->dest), i, bi)
|
|
bitmap_value_insert_into_set (PA_OUT,
|
|
expression_for_id (i));
|
|
if (!gimple_seq_empty_p (phi_nodes (e->dest)))
|
|
{
|
|
bitmap_set_t pa_in = bitmap_set_new ();
|
|
phi_translate_set (pa_in, PA_IN (e->dest), e);
|
|
FOR_EACH_EXPR_ID_IN_SET (pa_in, i, bi)
|
|
bitmap_value_insert_into_set (PA_OUT,
|
|
expression_for_id (i));
|
|
bitmap_set_free (pa_in);
|
|
}
|
|
else
|
|
FOR_EACH_EXPR_ID_IN_SET (PA_IN (e->dest), i, bi)
|
|
bitmap_value_insert_into_set (PA_OUT,
|
|
expression_for_id (i));
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Prune expressions that are clobbered in block and thus become
|
|
invalid if translated from PA_OUT to PA_IN. */
|
|
prune_clobbered_mems (PA_OUT, block);
|
|
|
|
/* PA_IN starts with PA_OUT - TMP_GEN.
|
|
Then we subtract things from ANTIC_IN. */
|
|
PA_IN (block) = bitmap_set_subtract_expressions (PA_OUT, TMP_GEN (block));
|
|
|
|
/* For partial antic, we want to put back in the phi results, since
|
|
we will properly avoid making them partially antic over backedges. */
|
|
bitmap_ior_into (&PA_IN (block)->values, &PHI_GEN (block)->values);
|
|
bitmap_ior_into (&PA_IN (block)->expressions, &PHI_GEN (block)->expressions);
|
|
|
|
/* PA_IN[block] = PA_IN[block] - ANTIC_IN[block] */
|
|
bitmap_set_subtract_values (PA_IN (block), ANTIC_IN (block));
|
|
|
|
clean (PA_IN (block), ANTIC_IN (block));
|
|
|
|
maybe_dump_sets:
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
if (PA_OUT)
|
|
print_bitmap_set (dump_file, PA_OUT, "PA_OUT", block->index);
|
|
|
|
print_bitmap_set (dump_file, PA_IN (block), "PA_IN", block->index);
|
|
}
|
|
if (old_PA_IN)
|
|
bitmap_set_free (old_PA_IN);
|
|
if (PA_OUT)
|
|
bitmap_set_free (PA_OUT);
|
|
}
|
|
|
|
/* Compute ANTIC and partial ANTIC sets. */
|
|
|
|
static void
|
|
compute_antic (void)
|
|
{
|
|
bool changed = true;
|
|
int num_iterations = 0;
|
|
basic_block block;
|
|
int i;
|
|
edge_iterator ei;
|
|
edge e;
|
|
|
|
/* If any predecessor edges are abnormal, we punt, so antic_in is empty.
|
|
We pre-build the map of blocks with incoming abnormal edges here. */
|
|
auto_sbitmap has_abnormal_preds (last_basic_block_for_fn (cfun));
|
|
bitmap_clear (has_abnormal_preds);
|
|
|
|
FOR_ALL_BB_FN (block, cfun)
|
|
{
|
|
BB_VISITED (block) = 0;
|
|
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
|
if (e->flags & EDGE_ABNORMAL)
|
|
{
|
|
bitmap_set_bit (has_abnormal_preds, block->index);
|
|
break;
|
|
}
|
|
|
|
/* While we are here, give empty ANTIC_IN sets to each block. */
|
|
ANTIC_IN (block) = bitmap_set_new ();
|
|
if (do_partial_partial)
|
|
PA_IN (block) = bitmap_set_new ();
|
|
}
|
|
|
|
/* At the exit block we anticipate nothing. */
|
|
BB_VISITED (EXIT_BLOCK_PTR_FOR_FN (cfun)) = 1;
|
|
|
|
/* For ANTIC computation we need a postorder that also guarantees that
|
|
a block with a single successor is visited after its successor.
|
|
RPO on the inverted CFG has this property. */
|
|
auto_vec<int, 20> postorder;
|
|
inverted_post_order_compute (&postorder);
|
|
|
|
auto_sbitmap worklist (last_basic_block_for_fn (cfun) + 1);
|
|
bitmap_clear (worklist);
|
|
FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
|
|
bitmap_set_bit (worklist, e->src->index);
|
|
while (changed)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Starting iteration %d\n", num_iterations);
|
|
/* ??? We need to clear our PHI translation cache here as the
|
|
ANTIC sets shrink and we restrict valid translations to
|
|
those having operands with leaders in ANTIC. Same below
|
|
for PA ANTIC computation. */
|
|
num_iterations++;
|
|
changed = false;
|
|
for (i = postorder.length () - 1; i >= 0; i--)
|
|
{
|
|
if (bitmap_bit_p (worklist, postorder[i]))
|
|
{
|
|
basic_block block = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
|
|
bitmap_clear_bit (worklist, block->index);
|
|
if (compute_antic_aux (block,
|
|
bitmap_bit_p (has_abnormal_preds,
|
|
block->index)))
|
|
{
|
|
FOR_EACH_EDGE (e, ei, block->preds)
|
|
bitmap_set_bit (worklist, e->src->index);
|
|
changed = true;
|
|
}
|
|
}
|
|
}
|
|
/* Theoretically possible, but *highly* unlikely. */
|
|
gcc_checking_assert (num_iterations < 500);
|
|
}
|
|
|
|
/* We have to clean after the dataflow problem converged as cleaning
|
|
can cause non-convergence because it is based on expressions
|
|
rather than values. */
|
|
FOR_EACH_BB_FN (block, cfun)
|
|
clean (ANTIC_IN (block));
|
|
|
|
statistics_histogram_event (cfun, "compute_antic iterations",
|
|
num_iterations);
|
|
|
|
if (do_partial_partial)
|
|
{
|
|
/* For partial antic we ignore backedges and thus we do not need
|
|
to perform any iteration when we process blocks in postorder. */
|
|
for (i = postorder.length () - 1; i >= 0; i--)
|
|
{
|
|
basic_block block = BASIC_BLOCK_FOR_FN (cfun, postorder[i]);
|
|
compute_partial_antic_aux (block,
|
|
bitmap_bit_p (has_abnormal_preds,
|
|
block->index));
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Inserted expressions are placed onto this worklist, which is used
|
|
for performing quick dead code elimination of insertions we made
|
|
that didn't turn out to be necessary. */
|
|
static bitmap inserted_exprs;
|
|
|
|
/* The actual worker for create_component_ref_by_pieces. */
|
|
|
|
static tree
|
|
create_component_ref_by_pieces_1 (basic_block block, vn_reference_t ref,
|
|
unsigned int *operand, gimple_seq *stmts)
|
|
{
|
|
vn_reference_op_t currop = &ref->operands[*operand];
|
|
tree genop;
|
|
++*operand;
|
|
switch (currop->opcode)
|
|
{
|
|
case CALL_EXPR:
|
|
gcc_unreachable ();
|
|
|
|
case MEM_REF:
|
|
{
|
|
tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!baseop)
|
|
return NULL_TREE;
|
|
tree offset = currop->op0;
|
|
if (TREE_CODE (baseop) == ADDR_EXPR
|
|
&& handled_component_p (TREE_OPERAND (baseop, 0)))
|
|
{
|
|
poly_int64 off;
|
|
tree base;
|
|
base = get_addr_base_and_unit_offset (TREE_OPERAND (baseop, 0),
|
|
&off);
|
|
gcc_assert (base);
|
|
offset = int_const_binop (PLUS_EXPR, offset,
|
|
build_int_cst (TREE_TYPE (offset),
|
|
off));
|
|
baseop = build_fold_addr_expr (base);
|
|
}
|
|
genop = build2 (MEM_REF, currop->type, baseop, offset);
|
|
MR_DEPENDENCE_CLIQUE (genop) = currop->clique;
|
|
MR_DEPENDENCE_BASE (genop) = currop->base;
|
|
REF_REVERSE_STORAGE_ORDER (genop) = currop->reverse;
|
|
return genop;
|
|
}
|
|
|
|
case TARGET_MEM_REF:
|
|
{
|
|
tree genop0 = NULL_TREE, genop1 = NULL_TREE;
|
|
vn_reference_op_t nextop = &ref->operands[(*operand)++];
|
|
tree baseop = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!baseop)
|
|
return NULL_TREE;
|
|
if (currop->op0)
|
|
{
|
|
genop0 = find_or_generate_expression (block, currop->op0, stmts);
|
|
if (!genop0)
|
|
return NULL_TREE;
|
|
}
|
|
if (nextop->op0)
|
|
{
|
|
genop1 = find_or_generate_expression (block, nextop->op0, stmts);
|
|
if (!genop1)
|
|
return NULL_TREE;
|
|
}
|
|
genop = build5 (TARGET_MEM_REF, currop->type,
|
|
baseop, currop->op2, genop0, currop->op1, genop1);
|
|
|
|
MR_DEPENDENCE_CLIQUE (genop) = currop->clique;
|
|
MR_DEPENDENCE_BASE (genop) = currop->base;
|
|
return genop;
|
|
}
|
|
|
|
case ADDR_EXPR:
|
|
if (currop->op0)
|
|
{
|
|
gcc_assert (is_gimple_min_invariant (currop->op0));
|
|
return currop->op0;
|
|
}
|
|
/* Fallthrough. */
|
|
case REALPART_EXPR:
|
|
case IMAGPART_EXPR:
|
|
case VIEW_CONVERT_EXPR:
|
|
{
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!genop0)
|
|
return NULL_TREE;
|
|
return fold_build1 (currop->opcode, currop->type, genop0);
|
|
}
|
|
|
|
case WITH_SIZE_EXPR:
|
|
{
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!genop0)
|
|
return NULL_TREE;
|
|
tree genop1 = find_or_generate_expression (block, currop->op0, stmts);
|
|
if (!genop1)
|
|
return NULL_TREE;
|
|
return fold_build2 (currop->opcode, currop->type, genop0, genop1);
|
|
}
|
|
|
|
case BIT_FIELD_REF:
|
|
{
|
|
tree genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!genop0)
|
|
return NULL_TREE;
|
|
tree op1 = currop->op0;
|
|
tree op2 = currop->op1;
|
|
tree t = build3 (BIT_FIELD_REF, currop->type, genop0, op1, op2);
|
|
REF_REVERSE_STORAGE_ORDER (t) = currop->reverse;
|
|
return fold (t);
|
|
}
|
|
|
|
/* For array ref vn_reference_op's, operand 1 of the array ref
|
|
is op0 of the reference op and operand 3 of the array ref is
|
|
op1. */
|
|
case ARRAY_RANGE_REF:
|
|
case ARRAY_REF:
|
|
{
|
|
tree genop0;
|
|
tree genop1 = currop->op0;
|
|
tree genop2 = currop->op1;
|
|
tree genop3 = currop->op2;
|
|
genop0 = create_component_ref_by_pieces_1 (block, ref, operand,
|
|
stmts);
|
|
if (!genop0)
|
|
return NULL_TREE;
|
|
genop1 = find_or_generate_expression (block, genop1, stmts);
|
|
if (!genop1)
|
|
return NULL_TREE;
|
|
if (genop2)
|
|
{
|
|
tree domain_type = TYPE_DOMAIN (TREE_TYPE (genop0));
|
|
/* Drop zero minimum index if redundant. */
|
|
if (integer_zerop (genop2)
|
|
&& (!domain_type
|
|
|| integer_zerop (TYPE_MIN_VALUE (domain_type))))
|
|
genop2 = NULL_TREE;
|
|
else
|
|
{
|
|
genop2 = find_or_generate_expression (block, genop2, stmts);
|
|
if (!genop2)
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
if (genop3)
|
|
{
|
|
tree elmt_type = TREE_TYPE (TREE_TYPE (genop0));
|
|
/* We can't always put a size in units of the element alignment
|
|
here as the element alignment may be not visible. See
|
|
PR43783. Simply drop the element size for constant
|
|
sizes. */
|
|
if (TREE_CODE (genop3) == INTEGER_CST
|
|
&& TREE_CODE (TYPE_SIZE_UNIT (elmt_type)) == INTEGER_CST
|
|
&& wi::eq_p (wi::to_offset (TYPE_SIZE_UNIT (elmt_type)),
|
|
(wi::to_offset (genop3)
|
|
* vn_ref_op_align_unit (currop))))
|
|
genop3 = NULL_TREE;
|
|
else
|
|
{
|
|
genop3 = find_or_generate_expression (block, genop3, stmts);
|
|
if (!genop3)
|
|
return NULL_TREE;
|
|
}
|
|
}
|
|
return build4 (currop->opcode, currop->type, genop0, genop1,
|
|
genop2, genop3);
|
|
}
|
|
case COMPONENT_REF:
|
|
{
|
|
tree op0;
|
|
tree op1;
|
|
tree genop2 = currop->op1;
|
|
op0 = create_component_ref_by_pieces_1 (block, ref, operand, stmts);
|
|
if (!op0)
|
|
return NULL_TREE;
|
|
/* op1 should be a FIELD_DECL, which are represented by themselves. */
|
|
op1 = currop->op0;
|
|
if (genop2)
|
|
{
|
|
genop2 = find_or_generate_expression (block, genop2, stmts);
|
|
if (!genop2)
|
|
return NULL_TREE;
|
|
}
|
|
return fold_build3 (COMPONENT_REF, TREE_TYPE (op1), op0, op1, genop2);
|
|
}
|
|
|
|
case SSA_NAME:
|
|
{
|
|
genop = find_or_generate_expression (block, currop->op0, stmts);
|
|
return genop;
|
|
}
|
|
case STRING_CST:
|
|
case INTEGER_CST:
|
|
case COMPLEX_CST:
|
|
case VECTOR_CST:
|
|
case REAL_CST:
|
|
case CONSTRUCTOR:
|
|
case VAR_DECL:
|
|
case PARM_DECL:
|
|
case CONST_DECL:
|
|
case RESULT_DECL:
|
|
case FUNCTION_DECL:
|
|
return currop->op0;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
|
|
/* For COMPONENT_REF's and ARRAY_REF's, we can't have any intermediates for the
|
|
COMPONENT_REF or MEM_REF or ARRAY_REF portion, because we'd end up with
|
|
trying to rename aggregates into ssa form directly, which is a no no.
|
|
|
|
Thus, this routine doesn't create temporaries, it just builds a
|
|
single access expression for the array, calling
|
|
find_or_generate_expression to build the innermost pieces.
|
|
|
|
This function is a subroutine of create_expression_by_pieces, and
|
|
should not be called on it's own unless you really know what you
|
|
are doing. */
|
|
|
|
static tree
|
|
create_component_ref_by_pieces (basic_block block, vn_reference_t ref,
|
|
gimple_seq *stmts)
|
|
{
|
|
unsigned int op = 0;
|
|
return create_component_ref_by_pieces_1 (block, ref, &op, stmts);
|
|
}
|
|
|
|
/* Find a simple leader for an expression, or generate one using
|
|
create_expression_by_pieces from a NARY expression for the value.
|
|
BLOCK is the basic_block we are looking for leaders in.
|
|
OP is the tree expression to find a leader for or generate.
|
|
Returns the leader or NULL_TREE on failure. */
|
|
|
|
static tree
|
|
find_or_generate_expression (basic_block block, tree op, gimple_seq *stmts)
|
|
{
|
|
pre_expr expr = get_or_alloc_expr_for (op);
|
|
unsigned int lookfor = get_expr_value_id (expr);
|
|
pre_expr leader = bitmap_find_leader (AVAIL_OUT (block), lookfor);
|
|
if (leader)
|
|
{
|
|
if (leader->kind == NAME)
|
|
return PRE_EXPR_NAME (leader);
|
|
else if (leader->kind == CONSTANT)
|
|
return PRE_EXPR_CONSTANT (leader);
|
|
|
|
/* Defer. */
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* It must be a complex expression, so generate it recursively. Note
|
|
that this is only necessary to handle gcc.dg/tree-ssa/ssa-pre28.c
|
|
where the insert algorithm fails to insert a required expression. */
|
|
bitmap exprset = value_expressions[lookfor];
|
|
bitmap_iterator bi;
|
|
unsigned int i;
|
|
EXECUTE_IF_SET_IN_BITMAP (exprset, 0, i, bi)
|
|
{
|
|
pre_expr temp = expression_for_id (i);
|
|
/* We cannot insert random REFERENCE expressions at arbitrary
|
|
places. We can insert NARYs which eventually re-materializes
|
|
its operand values. */
|
|
if (temp->kind == NARY)
|
|
return create_expression_by_pieces (block, temp, stmts,
|
|
get_expr_type (expr));
|
|
}
|
|
|
|
/* Defer. */
|
|
return NULL_TREE;
|
|
}
|
|
|
|
/* Create an expression in pieces, so that we can handle very complex
|
|
expressions that may be ANTIC, but not necessary GIMPLE.
|
|
BLOCK is the basic block the expression will be inserted into,
|
|
EXPR is the expression to insert (in value form)
|
|
STMTS is a statement list to append the necessary insertions into.
|
|
|
|
This function will die if we hit some value that shouldn't be
|
|
ANTIC but is (IE there is no leader for it, or its components).
|
|
The function returns NULL_TREE in case a different antic expression
|
|
has to be inserted first.
|
|
This function may also generate expressions that are themselves
|
|
partially or fully redundant. Those that are will be either made
|
|
fully redundant during the next iteration of insert (for partially
|
|
redundant ones), or eliminated by eliminate (for fully redundant
|
|
ones). */
|
|
|
|
static tree
|
|
create_expression_by_pieces (basic_block block, pre_expr expr,
|
|
gimple_seq *stmts, tree type)
|
|
{
|
|
tree name;
|
|
tree folded;
|
|
gimple_seq forced_stmts = NULL;
|
|
unsigned int value_id;
|
|
gimple_stmt_iterator gsi;
|
|
tree exprtype = type ? type : get_expr_type (expr);
|
|
pre_expr nameexpr;
|
|
gassign *newstmt;
|
|
|
|
switch (expr->kind)
|
|
{
|
|
/* We may hit the NAME/CONSTANT case if we have to convert types
|
|
that value numbering saw through. */
|
|
case NAME:
|
|
folded = PRE_EXPR_NAME (expr);
|
|
if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (folded))
|
|
return NULL_TREE;
|
|
if (useless_type_conversion_p (exprtype, TREE_TYPE (folded)))
|
|
return folded;
|
|
break;
|
|
case CONSTANT:
|
|
{
|
|
folded = PRE_EXPR_CONSTANT (expr);
|
|
tree tem = fold_convert (exprtype, folded);
|
|
if (is_gimple_min_invariant (tem))
|
|
return tem;
|
|
break;
|
|
}
|
|
case REFERENCE:
|
|
if (PRE_EXPR_REFERENCE (expr)->operands[0].opcode == CALL_EXPR)
|
|
{
|
|
vn_reference_t ref = PRE_EXPR_REFERENCE (expr);
|
|
unsigned int operand = 1;
|
|
vn_reference_op_t currop = &ref->operands[0];
|
|
tree sc = NULL_TREE;
|
|
tree fn = find_or_generate_expression (block, currop->op0, stmts);
|
|
if (!fn)
|
|
return NULL_TREE;
|
|
if (currop->op1)
|
|
{
|
|
sc = find_or_generate_expression (block, currop->op1, stmts);
|
|
if (!sc)
|
|
return NULL_TREE;
|
|
}
|
|
auto_vec<tree> args (ref->operands.length () - 1);
|
|
while (operand < ref->operands.length ())
|
|
{
|
|
tree arg = create_component_ref_by_pieces_1 (block, ref,
|
|
&operand, stmts);
|
|
if (!arg)
|
|
return NULL_TREE;
|
|
args.quick_push (arg);
|
|
}
|
|
gcall *call = gimple_build_call_vec (fn, args);
|
|
gimple_set_location (call, expr->loc);
|
|
gimple_call_set_fntype (call, currop->type);
|
|
if (sc)
|
|
gimple_call_set_chain (call, sc);
|
|
tree forcedname = make_ssa_name (TREE_TYPE (currop->type));
|
|
gimple_call_set_lhs (call, forcedname);
|
|
/* There's no CCP pass after PRE which would re-compute alignment
|
|
information so make sure we re-materialize this here. */
|
|
if (gimple_call_builtin_p (call, BUILT_IN_ASSUME_ALIGNED)
|
|
&& args.length () - 2 <= 1
|
|
&& tree_fits_uhwi_p (args[1])
|
|
&& (args.length () != 3 || tree_fits_uhwi_p (args[2])))
|
|
{
|
|
unsigned HOST_WIDE_INT halign = tree_to_uhwi (args[1]);
|
|
unsigned HOST_WIDE_INT hmisalign
|
|
= args.length () == 3 ? tree_to_uhwi (args[2]) : 0;
|
|
if ((halign & (halign - 1)) == 0
|
|
&& (hmisalign & ~(halign - 1)) == 0
|
|
&& (unsigned int)halign != 0)
|
|
set_ptr_info_alignment (get_ptr_info (forcedname),
|
|
halign, hmisalign);
|
|
}
|
|
gimple_set_vuse (call, BB_LIVE_VOP_ON_EXIT (block));
|
|
gimple_seq_add_stmt_without_update (&forced_stmts, call);
|
|
folded = forcedname;
|
|
}
|
|
else
|
|
{
|
|
folded = create_component_ref_by_pieces (block,
|
|
PRE_EXPR_REFERENCE (expr),
|
|
stmts);
|
|
if (!folded)
|
|
return NULL_TREE;
|
|
name = make_temp_ssa_name (exprtype, NULL, "pretmp");
|
|
newstmt = gimple_build_assign (name, folded);
|
|
gimple_set_location (newstmt, expr->loc);
|
|
gimple_seq_add_stmt_without_update (&forced_stmts, newstmt);
|
|
gimple_set_vuse (newstmt, BB_LIVE_VOP_ON_EXIT (block));
|
|
folded = name;
|
|
}
|
|
break;
|
|
case NARY:
|
|
{
|
|
vn_nary_op_t nary = PRE_EXPR_NARY (expr);
|
|
tree *genop = XALLOCAVEC (tree, nary->length);
|
|
unsigned i;
|
|
for (i = 0; i < nary->length; ++i)
|
|
{
|
|
genop[i] = find_or_generate_expression (block, nary->op[i], stmts);
|
|
if (!genop[i])
|
|
return NULL_TREE;
|
|
/* Ensure genop[] is properly typed for POINTER_PLUS_EXPR. It
|
|
may have conversions stripped. */
|
|
if (nary->opcode == POINTER_PLUS_EXPR)
|
|
{
|
|
if (i == 0)
|
|
genop[i] = gimple_convert (&forced_stmts,
|
|
nary->type, genop[i]);
|
|
else if (i == 1)
|
|
genop[i] = gimple_convert (&forced_stmts,
|
|
sizetype, genop[i]);
|
|
}
|
|
else
|
|
genop[i] = gimple_convert (&forced_stmts,
|
|
TREE_TYPE (nary->op[i]), genop[i]);
|
|
}
|
|
if (nary->opcode == CONSTRUCTOR)
|
|
{
|
|
vec<constructor_elt, va_gc> *elts = NULL;
|
|
for (i = 0; i < nary->length; ++i)
|
|
CONSTRUCTOR_APPEND_ELT (elts, NULL_TREE, genop[i]);
|
|
folded = build_constructor (nary->type, elts);
|
|
name = make_temp_ssa_name (exprtype, NULL, "pretmp");
|
|
newstmt = gimple_build_assign (name, folded);
|
|
gimple_set_location (newstmt, expr->loc);
|
|
gimple_seq_add_stmt_without_update (&forced_stmts, newstmt);
|
|
folded = name;
|
|
}
|
|
else
|
|
{
|
|
switch (nary->length)
|
|
{
|
|
case 1:
|
|
folded = gimple_build (&forced_stmts, expr->loc,
|
|
nary->opcode, nary->type, genop[0]);
|
|
break;
|
|
case 2:
|
|
folded = gimple_build (&forced_stmts, expr->loc, nary->opcode,
|
|
nary->type, genop[0], genop[1]);
|
|
break;
|
|
case 3:
|
|
folded = gimple_build (&forced_stmts, expr->loc, nary->opcode,
|
|
nary->type, genop[0], genop[1],
|
|
genop[2]);
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
folded = gimple_convert (&forced_stmts, exprtype, folded);
|
|
|
|
/* If there is nothing to insert, return the simplified result. */
|
|
if (gimple_seq_empty_p (forced_stmts))
|
|
return folded;
|
|
/* If we simplified to a constant return it and discard eventually
|
|
built stmts. */
|
|
if (is_gimple_min_invariant (folded))
|
|
{
|
|
gimple_seq_discard (forced_stmts);
|
|
return folded;
|
|
}
|
|
/* Likewise if we simplified to sth not queued for insertion. */
|
|
bool found = false;
|
|
gsi = gsi_last (forced_stmts);
|
|
for (; !gsi_end_p (gsi); gsi_prev (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
tree forcedname = gimple_get_lhs (stmt);
|
|
if (forcedname == folded)
|
|
{
|
|
found = true;
|
|
break;
|
|
}
|
|
}
|
|
if (! found)
|
|
{
|
|
gimple_seq_discard (forced_stmts);
|
|
return folded;
|
|
}
|
|
gcc_assert (TREE_CODE (folded) == SSA_NAME);
|
|
|
|
/* If we have any intermediate expressions to the value sets, add them
|
|
to the value sets and chain them in the instruction stream. */
|
|
if (forced_stmts)
|
|
{
|
|
gsi = gsi_start (forced_stmts);
|
|
for (; !gsi_end_p (gsi); gsi_next (&gsi))
|
|
{
|
|
gimple *stmt = gsi_stmt (gsi);
|
|
tree forcedname = gimple_get_lhs (stmt);
|
|
pre_expr nameexpr;
|
|
|
|
if (forcedname != folded)
|
|
{
|
|
VN_INFO (forcedname)->valnum = forcedname;
|
|
VN_INFO (forcedname)->value_id = get_next_value_id ();
|
|
nameexpr = get_or_alloc_expr_for_name (forcedname);
|
|
add_to_value (VN_INFO (forcedname)->value_id, nameexpr);
|
|
bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
|
|
}
|
|
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (forcedname));
|
|
}
|
|
gimple_seq_add_seq (stmts, forced_stmts);
|
|
}
|
|
|
|
name = folded;
|
|
|
|
/* Fold the last statement. */
|
|
gsi = gsi_last (*stmts);
|
|
if (fold_stmt_inplace (&gsi))
|
|
update_stmt (gsi_stmt (gsi));
|
|
|
|
/* Add a value number to the temporary.
|
|
The value may already exist in either NEW_SETS, or AVAIL_OUT, because
|
|
we are creating the expression by pieces, and this particular piece of
|
|
the expression may have been represented. There is no harm in replacing
|
|
here. */
|
|
value_id = get_expr_value_id (expr);
|
|
VN_INFO (name)->value_id = value_id;
|
|
VN_INFO (name)->valnum = vn_valnum_from_value_id (value_id);
|
|
if (VN_INFO (name)->valnum == NULL_TREE)
|
|
VN_INFO (name)->valnum = name;
|
|
gcc_assert (VN_INFO (name)->valnum != NULL_TREE);
|
|
nameexpr = get_or_alloc_expr_for_name (name);
|
|
add_to_value (value_id, nameexpr);
|
|
if (NEW_SETS (block))
|
|
bitmap_value_replace_in_set (NEW_SETS (block), nameexpr);
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), nameexpr);
|
|
|
|
pre_stats.insertions++;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Inserted ");
|
|
print_gimple_stmt (dump_file, gsi_stmt (gsi_last (*stmts)), 0);
|
|
fprintf (dump_file, " in predecessor %d (%04d)\n",
|
|
block->index, value_id);
|
|
}
|
|
|
|
return name;
|
|
}
|
|
|
|
|
|
/* Insert the to-be-made-available values of expression EXPRNUM for each
|
|
predecessor, stored in AVAIL, into the predecessors of BLOCK, and
|
|
merge the result with a phi node, given the same value number as
|
|
NODE. Return true if we have inserted new stuff. */
|
|
|
|
static bool
|
|
insert_into_preds_of_block (basic_block block, unsigned int exprnum,
|
|
vec<pre_expr> avail)
|
|
{
|
|
pre_expr expr = expression_for_id (exprnum);
|
|
pre_expr newphi;
|
|
unsigned int val = get_expr_value_id (expr);
|
|
edge pred;
|
|
bool insertions = false;
|
|
bool nophi = false;
|
|
basic_block bprime;
|
|
pre_expr eprime;
|
|
edge_iterator ei;
|
|
tree type = get_expr_type (expr);
|
|
tree temp;
|
|
gphi *phi;
|
|
|
|
/* Make sure we aren't creating an induction variable. */
|
|
if (bb_loop_depth (block) > 0 && EDGE_COUNT (block->preds) == 2)
|
|
{
|
|
bool firstinsideloop = false;
|
|
bool secondinsideloop = false;
|
|
firstinsideloop = flow_bb_inside_loop_p (block->loop_father,
|
|
EDGE_PRED (block, 0)->src);
|
|
secondinsideloop = flow_bb_inside_loop_p (block->loop_father,
|
|
EDGE_PRED (block, 1)->src);
|
|
/* Induction variables only have one edge inside the loop. */
|
|
if ((firstinsideloop ^ secondinsideloop)
|
|
&& expr->kind != REFERENCE)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
fprintf (dump_file, "Skipping insertion of phi for partial redundancy: Looks like an induction variable\n");
|
|
nophi = true;
|
|
}
|
|
}
|
|
|
|
/* Make the necessary insertions. */
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
|
{
|
|
gimple_seq stmts = NULL;
|
|
tree builtexpr;
|
|
bprime = pred->src;
|
|
eprime = avail[pred->dest_idx];
|
|
builtexpr = create_expression_by_pieces (bprime, eprime,
|
|
&stmts, type);
|
|
gcc_assert (!(pred->flags & EDGE_ABNORMAL));
|
|
if (!gimple_seq_empty_p (stmts))
|
|
{
|
|
basic_block new_bb = gsi_insert_seq_on_edge_immediate (pred, stmts);
|
|
gcc_assert (! new_bb);
|
|
insertions = true;
|
|
}
|
|
if (!builtexpr)
|
|
{
|
|
/* We cannot insert a PHI node if we failed to insert
|
|
on one edge. */
|
|
nophi = true;
|
|
continue;
|
|
}
|
|
if (is_gimple_min_invariant (builtexpr))
|
|
avail[pred->dest_idx] = get_or_alloc_expr_for_constant (builtexpr);
|
|
else
|
|
avail[pred->dest_idx] = get_or_alloc_expr_for_name (builtexpr);
|
|
}
|
|
/* If we didn't want a phi node, and we made insertions, we still have
|
|
inserted new stuff, and thus return true. If we didn't want a phi node,
|
|
and didn't make insertions, we haven't added anything new, so return
|
|
false. */
|
|
if (nophi && insertions)
|
|
return true;
|
|
else if (nophi && !insertions)
|
|
return false;
|
|
|
|
/* Now build a phi for the new variable. */
|
|
temp = make_temp_ssa_name (type, NULL, "prephitmp");
|
|
phi = create_phi_node (temp, block);
|
|
|
|
VN_INFO (temp)->value_id = val;
|
|
VN_INFO (temp)->valnum = vn_valnum_from_value_id (val);
|
|
if (VN_INFO (temp)->valnum == NULL_TREE)
|
|
VN_INFO (temp)->valnum = temp;
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (temp));
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
|
{
|
|
pre_expr ae = avail[pred->dest_idx];
|
|
gcc_assert (get_expr_type (ae) == type
|
|
|| useless_type_conversion_p (type, get_expr_type (ae)));
|
|
if (ae->kind == CONSTANT)
|
|
add_phi_arg (phi, unshare_expr (PRE_EXPR_CONSTANT (ae)),
|
|
pred, UNKNOWN_LOCATION);
|
|
else
|
|
add_phi_arg (phi, PRE_EXPR_NAME (ae), pred, UNKNOWN_LOCATION);
|
|
}
|
|
|
|
newphi = get_or_alloc_expr_for_name (temp);
|
|
add_to_value (val, newphi);
|
|
|
|
/* The value should *not* exist in PHI_GEN, or else we wouldn't be doing
|
|
this insertion, since we test for the existence of this value in PHI_GEN
|
|
before proceeding with the partial redundancy checks in insert_aux.
|
|
|
|
The value may exist in AVAIL_OUT, in particular, it could be represented
|
|
by the expression we are trying to eliminate, in which case we want the
|
|
replacement to occur. If it's not existing in AVAIL_OUT, we want it
|
|
inserted there.
|
|
|
|
Similarly, to the PHI_GEN case, the value should not exist in NEW_SETS of
|
|
this block, because if it did, it would have existed in our dominator's
|
|
AVAIL_OUT, and would have been skipped due to the full redundancy check.
|
|
*/
|
|
|
|
bitmap_insert_into_set (PHI_GEN (block), newphi);
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block),
|
|
newphi);
|
|
bitmap_insert_into_set (NEW_SETS (block),
|
|
newphi);
|
|
|
|
/* If we insert a PHI node for a conversion of another PHI node
|
|
in the same basic-block try to preserve range information.
|
|
This is important so that followup loop passes receive optimal
|
|
number of iteration analysis results. See PR61743. */
|
|
if (expr->kind == NARY
|
|
&& CONVERT_EXPR_CODE_P (expr->u.nary->opcode)
|
|
&& TREE_CODE (expr->u.nary->op[0]) == SSA_NAME
|
|
&& gimple_bb (SSA_NAME_DEF_STMT (expr->u.nary->op[0])) == block
|
|
&& INTEGRAL_TYPE_P (type)
|
|
&& INTEGRAL_TYPE_P (TREE_TYPE (expr->u.nary->op[0]))
|
|
&& (TYPE_PRECISION (type)
|
|
>= TYPE_PRECISION (TREE_TYPE (expr->u.nary->op[0])))
|
|
&& SSA_NAME_RANGE_INFO (expr->u.nary->op[0]))
|
|
{
|
|
wide_int min, max;
|
|
if (get_range_info (expr->u.nary->op[0], &min, &max) == VR_RANGE
|
|
&& !wi::neg_p (min, SIGNED)
|
|
&& !wi::neg_p (max, SIGNED))
|
|
/* Just handle extension and sign-changes of all-positive ranges. */
|
|
set_range_info (temp,
|
|
SSA_NAME_RANGE_TYPE (expr->u.nary->op[0]),
|
|
wide_int_storage::from (min, TYPE_PRECISION (type),
|
|
TYPE_SIGN (type)),
|
|
wide_int_storage::from (max, TYPE_PRECISION (type),
|
|
TYPE_SIGN (type)));
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Created phi ");
|
|
print_gimple_stmt (dump_file, phi, 0);
|
|
fprintf (dump_file, " in block %d (%04d)\n", block->index, val);
|
|
}
|
|
pre_stats.phis++;
|
|
return true;
|
|
}
|
|
|
|
|
|
|
|
/* Perform insertion of partially redundant or hoistable values.
|
|
For BLOCK, do the following:
|
|
1. Propagate the NEW_SETS of the dominator into the current block.
|
|
If the block has multiple predecessors,
|
|
2a. Iterate over the ANTIC expressions for the block to see if
|
|
any of them are partially redundant.
|
|
2b. If so, insert them into the necessary predecessors to make
|
|
the expression fully redundant.
|
|
2c. Insert a new PHI merging the values of the predecessors.
|
|
2d. Insert the new PHI, and the new expressions, into the
|
|
NEW_SETS set.
|
|
If the block has multiple successors,
|
|
3a. Iterate over the ANTIC values for the block to see if
|
|
any of them are good candidates for hoisting.
|
|
3b. If so, insert expressions computing the values in BLOCK,
|
|
and add the new expressions into the NEW_SETS set.
|
|
4. Recursively call ourselves on the dominator children of BLOCK.
|
|
|
|
Steps 1, 2a, and 4 are done by insert_aux. 2b, 2c and 2d are done by
|
|
do_pre_regular_insertion and do_partial_insertion. 3a and 3b are
|
|
done in do_hoist_insertion.
|
|
*/
|
|
|
|
static bool
|
|
do_pre_regular_insertion (basic_block block, basic_block dom)
|
|
{
|
|
bool new_stuff = false;
|
|
vec<pre_expr> exprs;
|
|
pre_expr expr;
|
|
auto_vec<pre_expr> avail;
|
|
int i;
|
|
|
|
exprs = sorted_array_from_bitmap_set (ANTIC_IN (block));
|
|
avail.safe_grow (EDGE_COUNT (block->preds));
|
|
|
|
FOR_EACH_VEC_ELT (exprs, i, expr)
|
|
{
|
|
if (expr->kind == NARY
|
|
|| expr->kind == REFERENCE)
|
|
{
|
|
unsigned int val;
|
|
bool by_some = false;
|
|
bool cant_insert = false;
|
|
bool all_same = true;
|
|
pre_expr first_s = NULL;
|
|
edge pred;
|
|
basic_block bprime;
|
|
pre_expr eprime = NULL;
|
|
edge_iterator ei;
|
|
pre_expr edoubleprime = NULL;
|
|
bool do_insertion = false;
|
|
|
|
val = get_expr_value_id (expr);
|
|
if (bitmap_set_contains_value (PHI_GEN (block), val))
|
|
continue;
|
|
if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Found fully redundant value: ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, "\n");
|
|
}
|
|
continue;
|
|
}
|
|
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
|
{
|
|
unsigned int vprime;
|
|
|
|
/* We should never run insertion for the exit block
|
|
and so not come across fake pred edges. */
|
|
gcc_assert (!(pred->flags & EDGE_FAKE));
|
|
bprime = pred->src;
|
|
/* We are looking at ANTIC_OUT of bprime. */
|
|
eprime = phi_translate (NULL, expr, ANTIC_IN (block), NULL, pred);
|
|
|
|
/* eprime will generally only be NULL if the
|
|
value of the expression, translated
|
|
through the PHI for this predecessor, is
|
|
undefined. If that is the case, we can't
|
|
make the expression fully redundant,
|
|
because its value is undefined along a
|
|
predecessor path. We can thus break out
|
|
early because it doesn't matter what the
|
|
rest of the results are. */
|
|
if (eprime == NULL)
|
|
{
|
|
avail[pred->dest_idx] = NULL;
|
|
cant_insert = true;
|
|
break;
|
|
}
|
|
|
|
vprime = get_expr_value_id (eprime);
|
|
edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime),
|
|
vprime);
|
|
if (edoubleprime == NULL)
|
|
{
|
|
avail[pred->dest_idx] = eprime;
|
|
all_same = false;
|
|
}
|
|
else
|
|
{
|
|
avail[pred->dest_idx] = edoubleprime;
|
|
by_some = true;
|
|
/* We want to perform insertions to remove a redundancy on
|
|
a path in the CFG we want to optimize for speed. */
|
|
if (optimize_edge_for_speed_p (pred))
|
|
do_insertion = true;
|
|
if (first_s == NULL)
|
|
first_s = edoubleprime;
|
|
else if (!pre_expr_d::equal (first_s, edoubleprime))
|
|
all_same = false;
|
|
}
|
|
}
|
|
/* If we can insert it, it's not the same value
|
|
already existing along every predecessor, and
|
|
it's defined by some predecessor, it is
|
|
partially redundant. */
|
|
if (!cant_insert && !all_same && by_some)
|
|
{
|
|
if (!do_insertion)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Skipping partial redundancy for "
|
|
"expression ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d), no redundancy on to be "
|
|
"optimized for speed edge\n", val);
|
|
}
|
|
}
|
|
else if (dbg_cnt (treepre_insert))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Found partial redundancy for "
|
|
"expression ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d)\n",
|
|
get_expr_value_id (expr));
|
|
}
|
|
if (insert_into_preds_of_block (block,
|
|
get_expression_id (expr),
|
|
avail))
|
|
new_stuff = true;
|
|
}
|
|
}
|
|
/* If all edges produce the same value and that value is
|
|
an invariant, then the PHI has the same value on all
|
|
edges. Note this. */
|
|
else if (!cant_insert && all_same)
|
|
{
|
|
gcc_assert (edoubleprime->kind == CONSTANT
|
|
|| edoubleprime->kind == NAME);
|
|
|
|
tree temp = make_temp_ssa_name (get_expr_type (expr),
|
|
NULL, "pretmp");
|
|
gassign *assign
|
|
= gimple_build_assign (temp,
|
|
edoubleprime->kind == CONSTANT ?
|
|
PRE_EXPR_CONSTANT (edoubleprime) :
|
|
PRE_EXPR_NAME (edoubleprime));
|
|
gimple_stmt_iterator gsi = gsi_after_labels (block);
|
|
gsi_insert_before (&gsi, assign, GSI_NEW_STMT);
|
|
|
|
VN_INFO (temp)->value_id = val;
|
|
VN_INFO (temp)->valnum = vn_valnum_from_value_id (val);
|
|
if (VN_INFO (temp)->valnum == NULL_TREE)
|
|
VN_INFO (temp)->valnum = temp;
|
|
bitmap_set_bit (inserted_exprs, SSA_NAME_VERSION (temp));
|
|
pre_expr newe = get_or_alloc_expr_for_name (temp);
|
|
add_to_value (val, newe);
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), newe);
|
|
bitmap_insert_into_set (NEW_SETS (block), newe);
|
|
}
|
|
}
|
|
}
|
|
|
|
exprs.release ();
|
|
return new_stuff;
|
|
}
|
|
|
|
|
|
/* Perform insertion for partially anticipatable expressions. There
|
|
is only one case we will perform insertion for these. This case is
|
|
if the expression is partially anticipatable, and fully available.
|
|
In this case, we know that putting it earlier will enable us to
|
|
remove the later computation. */
|
|
|
|
static bool
|
|
do_pre_partial_partial_insertion (basic_block block, basic_block dom)
|
|
{
|
|
bool new_stuff = false;
|
|
vec<pre_expr> exprs;
|
|
pre_expr expr;
|
|
auto_vec<pre_expr> avail;
|
|
int i;
|
|
|
|
exprs = sorted_array_from_bitmap_set (PA_IN (block));
|
|
avail.safe_grow (EDGE_COUNT (block->preds));
|
|
|
|
FOR_EACH_VEC_ELT (exprs, i, expr)
|
|
{
|
|
if (expr->kind == NARY
|
|
|| expr->kind == REFERENCE)
|
|
{
|
|
unsigned int val;
|
|
bool by_all = true;
|
|
bool cant_insert = false;
|
|
edge pred;
|
|
basic_block bprime;
|
|
pre_expr eprime = NULL;
|
|
edge_iterator ei;
|
|
|
|
val = get_expr_value_id (expr);
|
|
if (bitmap_set_contains_value (PHI_GEN (block), val))
|
|
continue;
|
|
if (bitmap_set_contains_value (AVAIL_OUT (dom), val))
|
|
continue;
|
|
|
|
FOR_EACH_EDGE (pred, ei, block->preds)
|
|
{
|
|
unsigned int vprime;
|
|
pre_expr edoubleprime;
|
|
|
|
/* We should never run insertion for the exit block
|
|
and so not come across fake pred edges. */
|
|
gcc_assert (!(pred->flags & EDGE_FAKE));
|
|
bprime = pred->src;
|
|
eprime = phi_translate (NULL, expr, ANTIC_IN (block),
|
|
PA_IN (block), pred);
|
|
|
|
/* eprime will generally only be NULL if the
|
|
value of the expression, translated
|
|
through the PHI for this predecessor, is
|
|
undefined. If that is the case, we can't
|
|
make the expression fully redundant,
|
|
because its value is undefined along a
|
|
predecessor path. We can thus break out
|
|
early because it doesn't matter what the
|
|
rest of the results are. */
|
|
if (eprime == NULL)
|
|
{
|
|
avail[pred->dest_idx] = NULL;
|
|
cant_insert = true;
|
|
break;
|
|
}
|
|
|
|
vprime = get_expr_value_id (eprime);
|
|
edoubleprime = bitmap_find_leader (AVAIL_OUT (bprime), vprime);
|
|
avail[pred->dest_idx] = edoubleprime;
|
|
if (edoubleprime == NULL)
|
|
{
|
|
by_all = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If we can insert it, it's not the same value
|
|
already existing along every predecessor, and
|
|
it's defined by some predecessor, it is
|
|
partially redundant. */
|
|
if (!cant_insert && by_all)
|
|
{
|
|
edge succ;
|
|
bool do_insertion = false;
|
|
|
|
/* Insert only if we can remove a later expression on a path
|
|
that we want to optimize for speed.
|
|
The phi node that we will be inserting in BLOCK is not free,
|
|
and inserting it for the sake of !optimize_for_speed successor
|
|
may cause regressions on the speed path. */
|
|
FOR_EACH_EDGE (succ, ei, block->succs)
|
|
{
|
|
if (bitmap_set_contains_value (PA_IN (succ->dest), val)
|
|
|| bitmap_set_contains_value (ANTIC_IN (succ->dest), val))
|
|
{
|
|
if (optimize_edge_for_speed_p (succ))
|
|
do_insertion = true;
|
|
}
|
|
}
|
|
|
|
if (!do_insertion)
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Skipping partial partial redundancy "
|
|
"for expression ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d), not (partially) anticipated "
|
|
"on any to be optimized for speed edges\n", val);
|
|
}
|
|
}
|
|
else if (dbg_cnt (treepre_insert))
|
|
{
|
|
pre_stats.pa_insert++;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file, "Found partial partial redundancy "
|
|
"for expression ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d)\n",
|
|
get_expr_value_id (expr));
|
|
}
|
|
if (insert_into_preds_of_block (block,
|
|
get_expression_id (expr),
|
|
avail))
|
|
new_stuff = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
exprs.release ();
|
|
return new_stuff;
|
|
}
|
|
|
|
/* Insert expressions in BLOCK to compute hoistable values up.
|
|
Return TRUE if something was inserted, otherwise return FALSE.
|
|
The caller has to make sure that BLOCK has at least two successors. */
|
|
|
|
static bool
|
|
do_hoist_insertion (basic_block block)
|
|
{
|
|
edge e;
|
|
edge_iterator ei;
|
|
bool new_stuff = false;
|
|
unsigned i;
|
|
gimple_stmt_iterator last;
|
|
|
|
/* At least two successors, or else... */
|
|
gcc_assert (EDGE_COUNT (block->succs) >= 2);
|
|
|
|
/* Check that all successors of BLOCK are dominated by block.
|
|
We could use dominated_by_p() for this, but actually there is a much
|
|
quicker check: any successor that is dominated by BLOCK can't have
|
|
more than one predecessor edge. */
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
if (! single_pred_p (e->dest))
|
|
return false;
|
|
|
|
/* Determine the insertion point. If we cannot safely insert before
|
|
the last stmt if we'd have to, bail out. */
|
|
last = gsi_last_bb (block);
|
|
if (!gsi_end_p (last)
|
|
&& !is_ctrl_stmt (gsi_stmt (last))
|
|
&& stmt_ends_bb_p (gsi_stmt (last)))
|
|
return false;
|
|
|
|
/* Compute the set of hoistable expressions from ANTIC_IN. First compute
|
|
hoistable values. */
|
|
bitmap_set hoistable_set;
|
|
|
|
/* A hoistable value must be in ANTIC_IN(block)
|
|
but not in AVAIL_OUT(BLOCK). */
|
|
bitmap_initialize (&hoistable_set.values, &grand_bitmap_obstack);
|
|
bitmap_and_compl (&hoistable_set.values,
|
|
&ANTIC_IN (block)->values, &AVAIL_OUT (block)->values);
|
|
|
|
/* Short-cut for a common case: hoistable_set is empty. */
|
|
if (bitmap_empty_p (&hoistable_set.values))
|
|
return false;
|
|
|
|
/* Compute which of the hoistable values is in AVAIL_OUT of
|
|
at least one of the successors of BLOCK. */
|
|
bitmap_head availout_in_some;
|
|
bitmap_initialize (&availout_in_some, &grand_bitmap_obstack);
|
|
FOR_EACH_EDGE (e, ei, block->succs)
|
|
/* Do not consider expressions solely because their availability
|
|
on loop exits. They'd be ANTIC-IN throughout the whole loop
|
|
and thus effectively hoisted across loops by combination of
|
|
PRE and hoisting. */
|
|
if (! loop_exit_edge_p (block->loop_father, e))
|
|
bitmap_ior_and_into (&availout_in_some, &hoistable_set.values,
|
|
&AVAIL_OUT (e->dest)->values);
|
|
bitmap_clear (&hoistable_set.values);
|
|
|
|
/* Short-cut for a common case: availout_in_some is empty. */
|
|
if (bitmap_empty_p (&availout_in_some))
|
|
return false;
|
|
|
|
/* Hack hoitable_set in-place so we can use sorted_array_from_bitmap_set. */
|
|
bitmap_move (&hoistable_set.values, &availout_in_some);
|
|
hoistable_set.expressions = ANTIC_IN (block)->expressions;
|
|
|
|
/* Now finally construct the topological-ordered expression set. */
|
|
vec<pre_expr> exprs = sorted_array_from_bitmap_set (&hoistable_set);
|
|
|
|
bitmap_clear (&hoistable_set.values);
|
|
|
|
/* If there are candidate values for hoisting, insert expressions
|
|
strategically to make the hoistable expressions fully redundant. */
|
|
pre_expr expr;
|
|
FOR_EACH_VEC_ELT (exprs, i, expr)
|
|
{
|
|
/* While we try to sort expressions topologically above the
|
|
sorting doesn't work out perfectly. Catch expressions we
|
|
already inserted. */
|
|
unsigned int value_id = get_expr_value_id (expr);
|
|
if (bitmap_set_contains_value (AVAIL_OUT (block), value_id))
|
|
{
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Already inserted expression for ");
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d)\n", value_id);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* OK, we should hoist this value. Perform the transformation. */
|
|
pre_stats.hoist_insert++;
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
fprintf (dump_file,
|
|
"Inserting expression in block %d for code hoisting: ",
|
|
block->index);
|
|
print_pre_expr (dump_file, expr);
|
|
fprintf (dump_file, " (%04d)\n", value_id);
|
|
}
|
|
|
|
gimple_seq stmts = NULL;
|
|
tree res = create_expression_by_pieces (block, expr, &stmts,
|
|
get_expr_type (expr));
|
|
|
|
/* Do not return true if expression creation ultimately
|
|
did not insert any statements. */
|
|
if (gimple_seq_empty_p (stmts))
|
|
res = NULL_TREE;
|
|
else
|
|
{
|
|
if (gsi_end_p (last) || is_ctrl_stmt (gsi_stmt (last)))
|
|
gsi_insert_seq_before (&last, stmts, GSI_SAME_STMT);
|
|
else
|
|
gsi_insert_seq_after (&last, stmts, GSI_NEW_STMT);
|
|
}
|
|
|
|
/* Make sure to not return true if expression creation ultimately
|
|
failed but also make sure to insert any stmts produced as they
|
|
are tracked in inserted_exprs. */
|
|
if (! res)
|
|
continue;
|
|
|
|
new_stuff = true;
|
|
}
|
|
|
|
exprs.release ();
|
|
|
|
return new_stuff;
|
|
}
|
|
|
|
/* Perform insertion of partially redundant and hoistable values. */
|
|
|
|
static void
|
|
insert (void)
|
|
{
|
|
basic_block bb;
|
|
|
|
FOR_ALL_BB_FN (bb, cfun)
|
|
NEW_SETS (bb) = bitmap_set_new ();
|
|
|
|
int *rpo = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
|
|
int rpo_num = pre_and_rev_post_order_compute (NULL, rpo, false);
|
|
|
|
int num_iterations = 0;
|
|
bool changed;
|
|
do
|
|
{
|
|
num_iterations++;
|
|
if (dump_file && dump_flags & TDF_DETAILS)
|
|
fprintf (dump_file, "Starting insert iteration %d\n", num_iterations);
|
|
|
|
changed = false;
|
|
for (int idx = 0; idx < rpo_num; ++idx)
|
|
{
|
|
basic_block block = BASIC_BLOCK_FOR_FN (cfun, rpo[idx]);
|
|
basic_block dom = get_immediate_dominator (CDI_DOMINATORS, block);
|
|
if (dom)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
bitmap_set_t newset;
|
|
|
|
/* First, update the AVAIL_OUT set with anything we may have
|
|
inserted higher up in the dominator tree. */
|
|
newset = NEW_SETS (dom);
|
|
if (newset)
|
|
{
|
|
/* Note that we need to value_replace both NEW_SETS, and
|
|
AVAIL_OUT. For both the case of NEW_SETS, the value may be
|
|
represented by some non-simple expression here that we want
|
|
to replace it with. */
|
|
FOR_EACH_EXPR_ID_IN_SET (newset, i, bi)
|
|
{
|
|
pre_expr expr = expression_for_id (i);
|
|
bitmap_value_replace_in_set (NEW_SETS (block), expr);
|
|
bitmap_value_replace_in_set (AVAIL_OUT (block), expr);
|
|
}
|
|
}
|
|
|
|
/* Insert expressions for partial redundancies. */
|
|
if (flag_tree_pre && !single_pred_p (block))
|
|
{
|
|
changed |= do_pre_regular_insertion (block, dom);
|
|
if (do_partial_partial)
|
|
changed |= do_pre_partial_partial_insertion (block, dom);
|
|
}
|
|
|
|
/* Insert expressions for hoisting. */
|
|
if (flag_code_hoisting && EDGE_COUNT (block->succs) >= 2)
|
|
changed |= do_hoist_insertion (block);
|
|
}
|
|
}
|
|
|
|
/* Clear the NEW sets before the next iteration. We have already
|
|
fully propagated its contents. */
|
|
if (changed)
|
|
FOR_ALL_BB_FN (bb, cfun)
|
|
bitmap_set_free (NEW_SETS (bb));
|
|
}
|
|
while (changed);
|
|
|
|
statistics_histogram_event (cfun, "insert iterations", num_iterations);
|
|
|
|
free (rpo);
|
|
}
|
|
|
|
|
|
/* Compute the AVAIL set for all basic blocks.
|
|
|
|
This function performs value numbering of the statements in each basic
|
|
block. The AVAIL sets are built from information we glean while doing
|
|
this value numbering, since the AVAIL sets contain only one entry per
|
|
value.
|
|
|
|
AVAIL_IN[BLOCK] = AVAIL_OUT[dom(BLOCK)].
|
|
AVAIL_OUT[BLOCK] = AVAIL_IN[BLOCK] U PHI_GEN[BLOCK] U TMP_GEN[BLOCK]. */
|
|
|
|
static void
|
|
compute_avail (void)
|
|
{
|
|
|
|
basic_block block, son;
|
|
basic_block *worklist;
|
|
size_t sp = 0;
|
|
unsigned i;
|
|
tree name;
|
|
|
|
/* We pretend that default definitions are defined in the entry block.
|
|
This includes function arguments and the static chain decl. */
|
|
FOR_EACH_SSA_NAME (i, name, cfun)
|
|
{
|
|
pre_expr e;
|
|
if (!SSA_NAME_IS_DEFAULT_DEF (name)
|
|
|| has_zero_uses (name)
|
|
|| virtual_operand_p (name))
|
|
continue;
|
|
|
|
e = get_or_alloc_expr_for_name (name);
|
|
add_to_value (get_expr_value_id (e), e);
|
|
bitmap_insert_into_set (TMP_GEN (ENTRY_BLOCK_PTR_FOR_FN (cfun)), e);
|
|
bitmap_value_insert_into_set (AVAIL_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
|
|
e);
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
print_bitmap_set (dump_file, TMP_GEN (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
|
|
"tmp_gen", ENTRY_BLOCK);
|
|
print_bitmap_set (dump_file, AVAIL_OUT (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
|
|
"avail_out", ENTRY_BLOCK);
|
|
}
|
|
|
|
/* Allocate the worklist. */
|
|
worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun));
|
|
|
|
/* Seed the algorithm by putting the dominator children of the entry
|
|
block on the worklist. */
|
|
for (son = first_dom_son (CDI_DOMINATORS, ENTRY_BLOCK_PTR_FOR_FN (cfun));
|
|
son;
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
|
worklist[sp++] = son;
|
|
|
|
BB_LIVE_VOP_ON_EXIT (ENTRY_BLOCK_PTR_FOR_FN (cfun))
|
|
= ssa_default_def (cfun, gimple_vop (cfun));
|
|
|
|
/* Loop until the worklist is empty. */
|
|
while (sp)
|
|
{
|
|
gimple *stmt;
|
|
basic_block dom;
|
|
|
|
/* Pick a block from the worklist. */
|
|
block = worklist[--sp];
|
|
vn_context_bb = block;
|
|
|
|
/* Initially, the set of available values in BLOCK is that of
|
|
its immediate dominator. */
|
|
dom = get_immediate_dominator (CDI_DOMINATORS, block);
|
|
if (dom)
|
|
{
|
|
bitmap_set_copy (AVAIL_OUT (block), AVAIL_OUT (dom));
|
|
BB_LIVE_VOP_ON_EXIT (block) = BB_LIVE_VOP_ON_EXIT (dom);
|
|
}
|
|
|
|
/* Generate values for PHI nodes. */
|
|
for (gphi_iterator gsi = gsi_start_phis (block); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
tree result = gimple_phi_result (gsi.phi ());
|
|
|
|
/* We have no need for virtual phis, as they don't represent
|
|
actual computations. */
|
|
if (virtual_operand_p (result))
|
|
{
|
|
BB_LIVE_VOP_ON_EXIT (block) = result;
|
|
continue;
|
|
}
|
|
|
|
pre_expr e = get_or_alloc_expr_for_name (result);
|
|
add_to_value (get_expr_value_id (e), e);
|
|
bitmap_value_insert_into_set (AVAIL_OUT (block), e);
|
|
bitmap_insert_into_set (PHI_GEN (block), e);
|
|
}
|
|
|
|
BB_MAY_NOTRETURN (block) = 0;
|
|
|
|
/* Now compute value numbers and populate value sets with all
|
|
the expressions computed in BLOCK. */
|
|
for (gimple_stmt_iterator gsi = gsi_start_bb (block); !gsi_end_p (gsi);
|
|
gsi_next (&gsi))
|
|
{
|
|
ssa_op_iter iter;
|
|
tree op;
|
|
|
|
stmt = gsi_stmt (gsi);
|
|
|
|
/* Cache whether the basic-block has any non-visible side-effect
|
|
or control flow.
|
|
If this isn't a call or it is the last stmt in the
|
|
basic-block then the CFG represents things correctly. */
|
|
if (is_gimple_call (stmt) && !stmt_ends_bb_p (stmt))
|
|
{
|
|
/* Non-looping const functions always return normally.
|
|
Otherwise the call might not return or have side-effects
|
|
that forbids hoisting possibly trapping expressions
|
|
before it. */
|
|
int flags = gimple_call_flags (stmt);
|
|
if (!(flags & ECF_CONST)
|
|
|| (flags & ECF_LOOPING_CONST_OR_PURE))
|
|
BB_MAY_NOTRETURN (block) = 1;
|
|
}
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_DEF)
|
|
{
|
|
pre_expr e = get_or_alloc_expr_for_name (op);
|
|
|
|
add_to_value (get_expr_value_id (e), e);
|
|
bitmap_insert_into_set (TMP_GEN (block), e);
|
|
bitmap_value_insert_into_set (AVAIL_OUT (block), e);
|
|
}
|
|
|
|
if (gimple_vdef (stmt))
|
|
BB_LIVE_VOP_ON_EXIT (block) = gimple_vdef (stmt);
|
|
|
|
if (gimple_has_side_effects (stmt)
|
|
|| stmt_could_throw_p (cfun, stmt)
|
|
|| is_gimple_debug (stmt))
|
|
continue;
|
|
|
|
FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
|
|
{
|
|
if (ssa_undefined_value_p (op))
|
|
continue;
|
|
pre_expr e = get_or_alloc_expr_for_name (op);
|
|
bitmap_value_insert_into_set (EXP_GEN (block), e);
|
|
}
|
|
|
|
switch (gimple_code (stmt))
|
|
{
|
|
case GIMPLE_RETURN:
|
|
continue;
|
|
|
|
case GIMPLE_CALL:
|
|
{
|
|
vn_reference_t ref;
|
|
vn_reference_s ref1;
|
|
pre_expr result = NULL;
|
|
|
|
/* We can value number only calls to real functions. */
|
|
if (gimple_call_internal_p (stmt))
|
|
continue;
|
|
|
|
vn_reference_lookup_call (as_a <gcall *> (stmt), &ref, &ref1);
|
|
if (!ref)
|
|
continue;
|
|
|
|
/* If the value of the call is not invalidated in
|
|
this block until it is computed, add the expression
|
|
to EXP_GEN. */
|
|
if (!gimple_vuse (stmt)
|
|
|| gimple_code
|
|
(SSA_NAME_DEF_STMT (gimple_vuse (stmt))) == GIMPLE_PHI
|
|
|| gimple_bb (SSA_NAME_DEF_STMT
|
|
(gimple_vuse (stmt))) != block)
|
|
{
|
|
result = pre_expr_pool.allocate ();
|
|
result->kind = REFERENCE;
|
|
result->id = 0;
|
|
result->loc = gimple_location (stmt);
|
|
PRE_EXPR_REFERENCE (result) = ref;
|
|
|
|
get_or_alloc_expression_id (result);
|
|
add_to_value (get_expr_value_id (result), result);
|
|
bitmap_value_insert_into_set (EXP_GEN (block), result);
|
|
}
|
|
continue;
|
|
}
|
|
|
|
case GIMPLE_ASSIGN:
|
|
{
|
|
pre_expr result = NULL;
|
|
switch (vn_get_stmt_kind (stmt))
|
|
{
|
|
case VN_NARY:
|
|
{
|
|
enum tree_code code = gimple_assign_rhs_code (stmt);
|
|
vn_nary_op_t nary;
|
|
|
|
/* COND_EXPR and VEC_COND_EXPR are awkward in
|
|
that they contain an embedded complex expression.
|
|
Don't even try to shove those through PRE. */
|
|
if (code == COND_EXPR
|
|
|| code == VEC_COND_EXPR)
|
|
continue;
|
|
|
|
vn_nary_op_lookup_stmt (stmt, &nary);
|
|
if (!nary || nary->predicated_values)
|
|
continue;
|
|
|
|
/* If the NARY traps and there was a preceding
|
|
point in the block that might not return avoid
|
|
adding the nary to EXP_GEN. */
|
|
if (BB_MAY_NOTRETURN (block)
|
|
&& vn_nary_may_trap (nary))
|
|
continue;
|
|
|
|
result = pre_expr_pool.allocate ();
|
|
result->kind = NARY;
|
|
result->id = 0;
|
|
result->loc = gimple_location (stmt);
|
|
PRE_EXPR_NARY (result) = nary;
|
|
break;
|
|
}
|
|
|
|
case VN_REFERENCE:
|
|
{
|
|
tree rhs1 = gimple_assign_rhs1 (stmt);
|
|
ao_ref rhs1_ref;
|
|
ao_ref_init (&rhs1_ref, rhs1);
|
|
alias_set_type set = ao_ref_alias_set (&rhs1_ref);
|
|
alias_set_type base_set
|
|
= ao_ref_base_alias_set (&rhs1_ref);
|
|
vec<vn_reference_op_s> operands
|
|
= vn_reference_operands_for_lookup (rhs1);
|
|
vn_reference_t ref;
|
|
vn_reference_lookup_pieces (gimple_vuse (stmt), set,
|
|
base_set, TREE_TYPE (rhs1),
|
|
operands, &ref, VN_WALK);
|
|
if (!ref)
|
|
{
|
|
operands.release ();
|
|
continue;
|
|
}
|
|
|
|
/* If the REFERENCE traps and there was a preceding
|
|
point in the block that might not return avoid
|
|
adding the reference to EXP_GEN. */
|
|
if (BB_MAY_NOTRETURN (block)
|
|
&& vn_reference_may_trap (ref))
|
|
continue;
|
|
|
|
/* If the value of the reference is not invalidated in
|
|
this block until it is computed, add the expression
|
|
to EXP_GEN. */
|
|
if (gimple_vuse (stmt))
|
|
{
|
|
gimple *def_stmt;
|
|
bool ok = true;
|
|
def_stmt = SSA_NAME_DEF_STMT (gimple_vuse (stmt));
|
|
while (!gimple_nop_p (def_stmt)
|
|
&& gimple_code (def_stmt) != GIMPLE_PHI
|
|
&& gimple_bb (def_stmt) == block)
|
|
{
|
|
if (stmt_may_clobber_ref_p
|
|
(def_stmt, gimple_assign_rhs1 (stmt)))
|
|
{
|
|
ok = false;
|
|
break;
|
|
}
|
|
def_stmt
|
|
= SSA_NAME_DEF_STMT (gimple_vuse (def_stmt));
|
|
}
|
|
if (!ok)
|
|
{
|
|
operands.release ();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* If the load was value-numbered to another
|
|
load make sure we do not use its expression
|
|
for insertion if it wouldn't be a valid
|
|
replacement. */
|
|
/* At the momemt we have a testcase
|
|
for hoist insertion of aligned vs. misaligned
|
|
variants in gcc.dg/torture/pr65270-1.c thus
|
|
with just alignment to be considered we can
|
|
simply replace the expression in the hashtable
|
|
with the most conservative one. */
|
|
vn_reference_op_t ref1 = &ref->operands.last ();
|
|
while (ref1->opcode != TARGET_MEM_REF
|
|
&& ref1->opcode != MEM_REF
|
|
&& ref1 != &ref->operands[0])
|
|
--ref1;
|
|
vn_reference_op_t ref2 = &operands.last ();
|
|
while (ref2->opcode != TARGET_MEM_REF
|
|
&& ref2->opcode != MEM_REF
|
|
&& ref2 != &operands[0])
|
|
--ref2;
|
|
if ((ref1->opcode == TARGET_MEM_REF
|
|
|| ref1->opcode == MEM_REF)
|
|
&& (TYPE_ALIGN (ref1->type)
|
|
> TYPE_ALIGN (ref2->type)))
|
|
ref1->type
|
|
= build_aligned_type (ref1->type,
|
|
TYPE_ALIGN (ref2->type));
|
|
/* TBAA behavior is an obvious part so make sure
|
|
that the hashtable one covers this as well
|
|
by adjusting the ref alias set and its base. */
|
|
if (ref->set == set
|
|
|| alias_set_subset_of (set, ref->set))
|
|
;
|
|
else if (alias_set_subset_of (ref->set, set))
|
|
{
|
|
ref->set = set;
|
|
if (ref1->opcode == MEM_REF)
|
|
ref1->op0
|
|
= wide_int_to_tree (TREE_TYPE (ref2->op0),
|
|
wi::to_wide (ref1->op0));
|
|
else
|
|
ref1->op2
|
|
= wide_int_to_tree (TREE_TYPE (ref2->op2),
|
|
wi::to_wide (ref1->op2));
|
|
}
|
|
else
|
|
{
|
|
ref->set = 0;
|
|
if (ref1->opcode == MEM_REF)
|
|
ref1->op0
|
|
= wide_int_to_tree (ptr_type_node,
|
|
wi::to_wide (ref1->op0));
|
|
else
|
|
ref1->op2
|
|
= wide_int_to_tree (ptr_type_node,
|
|
wi::to_wide (ref1->op2));
|
|
}
|
|
operands.release ();
|
|
|
|
result = pre_expr_pool.allocate ();
|
|
result->kind = REFERENCE;
|
|
result->id = 0;
|
|
result->loc = gimple_location (stmt);
|
|
PRE_EXPR_REFERENCE (result) = ref;
|
|
break;
|
|
}
|
|
|
|
default:
|
|
continue;
|
|
}
|
|
|
|
get_or_alloc_expression_id (result);
|
|
add_to_value (get_expr_value_id (result), result);
|
|
bitmap_value_insert_into_set (EXP_GEN (block), result);
|
|
continue;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (dump_file && (dump_flags & TDF_DETAILS))
|
|
{
|
|
print_bitmap_set (dump_file, EXP_GEN (block),
|
|
"exp_gen", block->index);
|
|
print_bitmap_set (dump_file, PHI_GEN (block),
|
|
"phi_gen", block->index);
|
|
print_bitmap_set (dump_file, TMP_GEN (block),
|
|
"tmp_gen", block->index);
|
|
print_bitmap_set (dump_file, AVAIL_OUT (block),
|
|
"avail_out", block->index);
|
|
}
|
|
|
|
/* Put the dominator children of BLOCK on the worklist of blocks
|
|
to compute available sets for. */
|
|
for (son = first_dom_son (CDI_DOMINATORS, block);
|
|
son;
|
|
son = next_dom_son (CDI_DOMINATORS, son))
|
|
worklist[sp++] = son;
|
|
}
|
|
vn_context_bb = NULL;
|
|
|
|
free (worklist);
|
|
}
|
|
|
|
|
|
/* Initialize data structures used by PRE. */
|
|
|
|
static void
|
|
init_pre (void)
|
|
{
|
|
basic_block bb;
|
|
|
|
next_expression_id = 1;
|
|
expressions.create (0);
|
|
expressions.safe_push (NULL);
|
|
value_expressions.create (get_max_value_id () + 1);
|
|
value_expressions.safe_grow_cleared (get_max_value_id () + 1);
|
|
name_to_id.create (0);
|
|
|
|
inserted_exprs = BITMAP_ALLOC (NULL);
|
|
|
|
connect_infinite_loops_to_exit ();
|
|
memset (&pre_stats, 0, sizeof (pre_stats));
|
|
|
|
alloc_aux_for_blocks (sizeof (struct bb_bitmap_sets));
|
|
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
bitmap_obstack_initialize (&grand_bitmap_obstack);
|
|
phi_translate_table = new hash_table<expr_pred_trans_d> (5110);
|
|
expression_to_id = new hash_table<pre_expr_d> (num_ssa_names * 3);
|
|
FOR_ALL_BB_FN (bb, cfun)
|
|
{
|
|
EXP_GEN (bb) = bitmap_set_new ();
|
|
PHI_GEN (bb) = bitmap_set_new ();
|
|
TMP_GEN (bb) = bitmap_set_new ();
|
|
AVAIL_OUT (bb) = bitmap_set_new ();
|
|
}
|
|
}
|
|
|
|
|
|
/* Deallocate data structures used by PRE. */
|
|
|
|
static void
|
|
fini_pre ()
|
|
{
|
|
value_expressions.release ();
|
|
expressions.release ();
|
|
BITMAP_FREE (inserted_exprs);
|
|
bitmap_obstack_release (&grand_bitmap_obstack);
|
|
bitmap_set_pool.release ();
|
|
pre_expr_pool.release ();
|
|
delete phi_translate_table;
|
|
phi_translate_table = NULL;
|
|
delete expression_to_id;
|
|
expression_to_id = NULL;
|
|
name_to_id.release ();
|
|
|
|
free_aux_for_blocks ();
|
|
}
|
|
|
|
namespace {
|
|
|
|
const pass_data pass_data_pre =
|
|
{
|
|
GIMPLE_PASS, /* type */
|
|
"pre", /* name */
|
|
OPTGROUP_NONE, /* optinfo_flags */
|
|
TV_TREE_PRE, /* tv_id */
|
|
( PROP_cfg | PROP_ssa ), /* properties_required */
|
|
0, /* properties_provided */
|
|
0, /* properties_destroyed */
|
|
TODO_rebuild_alias, /* todo_flags_start */
|
|
0, /* todo_flags_finish */
|
|
};
|
|
|
|
class pass_pre : public gimple_opt_pass
|
|
{
|
|
public:
|
|
pass_pre (gcc::context *ctxt)
|
|
: gimple_opt_pass (pass_data_pre, ctxt)
|
|
{}
|
|
|
|
/* opt_pass methods: */
|
|
virtual bool gate (function *)
|
|
{ return flag_tree_pre != 0 || flag_code_hoisting != 0; }
|
|
virtual unsigned int execute (function *);
|
|
|
|
}; // class pass_pre
|
|
|
|
/* Valueization hook for RPO VN when we are calling back to it
|
|
at ANTIC compute time. */
|
|
|
|
static tree
|
|
pre_valueize (tree name)
|
|
{
|
|
if (TREE_CODE (name) == SSA_NAME)
|
|
{
|
|
tree tem = VN_INFO (name)->valnum;
|
|
if (tem != VN_TOP && tem != name)
|
|
{
|
|
if (TREE_CODE (tem) != SSA_NAME
|
|
|| SSA_NAME_IS_DEFAULT_DEF (tem))
|
|
return tem;
|
|
/* We create temporary SSA names for representatives that
|
|
do not have a definition (yet) but are not default defs either
|
|
assume they are fine to use. */
|
|
basic_block def_bb = gimple_bb (SSA_NAME_DEF_STMT (tem));
|
|
if (! def_bb
|
|
|| dominated_by_p (CDI_DOMINATORS, vn_context_bb, def_bb))
|
|
return tem;
|
|
/* ??? Now we could look for a leader. Ideally we'd somehow
|
|
expose RPO VN leaders and get rid of AVAIL_OUT as well... */
|
|
}
|
|
}
|
|
return name;
|
|
}
|
|
|
|
unsigned int
|
|
pass_pre::execute (function *fun)
|
|
{
|
|
unsigned int todo = 0;
|
|
|
|
do_partial_partial =
|
|
flag_tree_partial_pre && optimize_function_for_speed_p (fun);
|
|
|
|
/* This has to happen before VN runs because
|
|
loop_optimizer_init may create new phis, etc. */
|
|
loop_optimizer_init (LOOPS_NORMAL);
|
|
split_edges_for_insertion ();
|
|
scev_initialize ();
|
|
calculate_dominance_info (CDI_DOMINATORS);
|
|
|
|
run_rpo_vn (VN_WALK);
|
|
|
|
init_pre ();
|
|
|
|
vn_valueize = pre_valueize;
|
|
|
|
/* Insert can get quite slow on an incredibly large number of basic
|
|
blocks due to some quadratic behavior. Until this behavior is
|
|
fixed, don't run it when he have an incredibly large number of
|
|
bb's. If we aren't going to run insert, there is no point in
|
|
computing ANTIC, either, even though it's plenty fast nor do
|
|
we require AVAIL. */
|
|
if (n_basic_blocks_for_fn (fun) < 4000)
|
|
{
|
|
compute_avail ();
|
|
compute_antic ();
|
|
insert ();
|
|
}
|
|
|
|
/* Make sure to remove fake edges before committing our inserts.
|
|
This makes sure we don't end up with extra critical edges that
|
|
we would need to split. */
|
|
remove_fake_exit_edges ();
|
|
gsi_commit_edge_inserts ();
|
|
|
|
/* Eliminate folds statements which might (should not...) end up
|
|
not keeping virtual operands up-to-date. */
|
|
gcc_assert (!need_ssa_update_p (fun));
|
|
|
|
statistics_counter_event (fun, "Insertions", pre_stats.insertions);
|
|
statistics_counter_event (fun, "PA inserted", pre_stats.pa_insert);
|
|
statistics_counter_event (fun, "HOIST inserted", pre_stats.hoist_insert);
|
|
statistics_counter_event (fun, "New PHIs", pre_stats.phis);
|
|
|
|
todo |= eliminate_with_rpo_vn (inserted_exprs);
|
|
|
|
vn_valueize = NULL;
|
|
|
|
/* Because we don't follow exactly the standard PRE algorithm, and decide not
|
|
to insert PHI nodes sometimes, and because value numbering of casts isn't
|
|
perfect, we sometimes end up inserting dead code. This simple DCE-like
|
|
pass removes any insertions we made that weren't actually used. */
|
|
simple_dce_from_worklist (inserted_exprs);
|
|
|
|
fini_pre ();
|
|
|
|
scev_finalize ();
|
|
loop_optimizer_finalize ();
|
|
|
|
/* TODO: tail_merge_optimize may merge all predecessors of a block, in which
|
|
case we can merge the block with the remaining predecessor of the block.
|
|
It should either:
|
|
- call merge_blocks after each tail merge iteration
|
|
- call merge_blocks after all tail merge iterations
|
|
- mark TODO_cleanup_cfg when necessary
|
|
- share the cfg cleanup with fini_pre. */
|
|
todo |= tail_merge_optimize (todo);
|
|
|
|
free_rpo_vn ();
|
|
|
|
/* Tail merging invalidates the virtual SSA web, together with
|
|
cfg-cleanup opportunities exposed by PRE this will wreck the
|
|
SSA updating machinery. So make sure to run update-ssa
|
|
manually, before eventually scheduling cfg-cleanup as part of
|
|
the todo. */
|
|
update_ssa (TODO_update_ssa_only_virtuals);
|
|
|
|
return todo;
|
|
}
|
|
|
|
} // anon namespace
|
|
|
|
gimple_opt_pass *
|
|
make_pass_pre (gcc::context *ctxt)
|
|
{
|
|
return new pass_pre (ctxt);
|
|
}
|