8d9254fc8a
From-SVN: r279813
697 lines
13 KiB
ArmAsm
697 lines
13 KiB
ArmAsm
/* HImode div/mod functions for the GCC support library for the Renesas RL78 processors.
|
|
Copyright (C) 2012-2020 Free Software Foundation, Inc.
|
|
Contributed by Red Hat.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
Under Section 7 of GPL version 3, you are granted additional
|
|
permissions described in the GCC Runtime Library Exception, version
|
|
3.1, as published by the Free Software Foundation.
|
|
|
|
You should have received a copy of the GNU General Public License and
|
|
a copy of the GCC Runtime Library Exception along with this program;
|
|
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "vregs.h"
|
|
|
|
#if defined __RL78_MUL_G14__
|
|
|
|
START_FUNC ___divhi3
|
|
;; r8 = 4[sp] / 6[sp]
|
|
|
|
;; Test for a negative denumerator.
|
|
movw ax, [sp+6]
|
|
mov1 cy, a.7
|
|
movw de, ax
|
|
bc $__div_neg_den
|
|
|
|
;; Test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
bc $__div_neg_num
|
|
|
|
;; Neither are negative - we can use the unsigned divide instruction.
|
|
__div_no_convert:
|
|
push psw
|
|
di
|
|
divhu
|
|
pop psw
|
|
|
|
movw r8, ax
|
|
ret
|
|
|
|
__div_neg_den:
|
|
;; Negate the denumerator (which is in DE)
|
|
clrw ax
|
|
subw ax, de
|
|
movw de, ax
|
|
|
|
;; Test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
;; If it is not negative then we perform the division and then negate the result.
|
|
bnc $__div_then_convert
|
|
|
|
;; Otherwise we negate the numerator and then go with an unsigned division.
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
br $__div_no_convert
|
|
|
|
__div_neg_num:
|
|
;; Negate the numerator (which is in AX)
|
|
;; We know that the denumerator is positive.
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
|
|
__div_then_convert:
|
|
push psw
|
|
di
|
|
divhu
|
|
pop psw
|
|
|
|
;; Negate result and transfer into r8
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
movw r8, ax
|
|
ret
|
|
|
|
END_FUNC ___divhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___modhi3
|
|
;; r8 = 4[sp] % 6[sp]
|
|
|
|
;; Test for a negative denumerator.
|
|
movw ax, [sp+6]
|
|
mov1 cy, a.7
|
|
movw de, ax
|
|
bc $__mod_neg_den
|
|
|
|
;; Test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
bc $__mod_neg_num
|
|
|
|
;; Neither are negative - we can use the unsigned divide instruction.
|
|
__mod_no_convert:
|
|
push psw
|
|
di
|
|
divhu
|
|
pop psw
|
|
|
|
movw ax, de
|
|
movw r8, ax
|
|
ret
|
|
|
|
__mod_neg_den:
|
|
;; Negate the denumerator (which is in DE)
|
|
clrw ax
|
|
subw ax, de
|
|
movw de, ax
|
|
|
|
;; Test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
;; If it is not negative then we perform the modulo operation without conversion.
|
|
bnc $__mod_no_convert
|
|
|
|
;; Otherwise we negate the numerator and then go with an unsigned modulo operation.
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
br $__mod_then_convert
|
|
|
|
__mod_neg_num:
|
|
;; Negate the numerator (which is in AX)
|
|
;; We know that the denumerator is positive.
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
|
|
__mod_then_convert:
|
|
push psw
|
|
di
|
|
divhu
|
|
pop psw
|
|
|
|
;; Negate result and transfer into r8
|
|
clrw ax
|
|
subw ax, de
|
|
movw r8, ax
|
|
ret
|
|
|
|
END_FUNC ___modhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
#elif defined __RL78_MUL_G13__
|
|
|
|
;; The G13 S2 core does not have a 16 bit divide peripheral.
|
|
;; So instead we perform a 32-bit divide and twiddle the inputs
|
|
;; as necessary.
|
|
|
|
;; Hardware registers. Note - these values match the silicon, not the documentation.
|
|
MDAL = 0xffff0
|
|
MDAH = 0xffff2
|
|
MDBL = 0xffff6
|
|
MDBH = 0xffff4
|
|
MDCL = 0xf00e0
|
|
MDCH = 0xf00e2
|
|
MDUC = 0xf00e8
|
|
|
|
.macro _Negate src, dest
|
|
movw ax, !\src
|
|
movw bc, ax
|
|
clrw ax
|
|
subw ax, bc
|
|
movw \dest, ax
|
|
.endm
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___divhi3
|
|
;; r8 = 4[sp] / 6[sp] (signed division)
|
|
|
|
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
|
|
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
|
|
|
|
clrw ax ; Clear the top 16-bits of the divisor and dividend
|
|
movw MDBH, ax
|
|
movw MDAH, ax
|
|
|
|
;; Load and test for a negative denumerator.
|
|
movw ax, [sp+6]
|
|
movw MDBL, ax
|
|
mov1 cy, a.7
|
|
bc $__div_neg_den
|
|
|
|
;; Load and test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
movw MDAL, ax
|
|
bc $__div_neg_num
|
|
|
|
;; Neither are negative - we can use the unsigned divide hardware.
|
|
__div_no_convert:
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
movw ax, MDAL ; Read the result
|
|
movw r8, ax
|
|
ret
|
|
|
|
__div_neg_den:
|
|
;; Negate the denumerator (which is in MDBL)
|
|
_Negate MDBL MDBL
|
|
|
|
;; Load and test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
movw MDAL, ax
|
|
;; If it is not negative then we perform the division and then negate the result.
|
|
bnc $__div_then_convert
|
|
|
|
;; Otherwise we negate the numerator and then go with a straightforward unsigned division.
|
|
_Negate MDAL MDAL
|
|
br $!__div_no_convert
|
|
|
|
__div_neg_num:
|
|
;; Negate the numerator (which is in MDAL)
|
|
;; We know that the denumerator is positive.
|
|
_Negate MDAL MDAL
|
|
|
|
__div_then_convert:
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
;; Negate result and transfer into r8
|
|
_Negate MDAL r8
|
|
ret
|
|
|
|
END_FUNC ___divhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___modhi3
|
|
;; r8 = 4[sp] % 6[sp] (signed modulus)
|
|
|
|
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
|
|
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
|
|
|
|
clrw ax ; Clear the top 16-bits of the divisor and dividend
|
|
movw MDBH, ax
|
|
movw MDAH, ax
|
|
|
|
;; Load and test for a negative denumerator.
|
|
movw ax, [sp+6]
|
|
movw MDBL, ax
|
|
mov1 cy, a.7
|
|
bc $__mod_neg_den
|
|
|
|
;; Load and test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
movw MDAL, ax
|
|
bc $__mod_neg_num
|
|
|
|
;; Neither are negative - we can use the unsigned divide hardware
|
|
__mod_no_convert:
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
movw ax, !MDCL ; Read the remainder
|
|
movw r8, ax
|
|
ret
|
|
|
|
__mod_neg_den:
|
|
;; Negate the denumerator (which is in MDBL)
|
|
_Negate MDBL MDBL
|
|
|
|
;; Load and test for a negative numerator.
|
|
movw ax, [sp+4]
|
|
mov1 cy, a.7
|
|
movw MDAL, ax
|
|
;; If it is not negative then we perform the modulo operation without conversion.
|
|
bnc $__mod_no_convert
|
|
|
|
;; Otherwise we negate the numerator and then go with a modulo followed by negation.
|
|
_Negate MDAL MDAL
|
|
br $!__mod_then_convert
|
|
|
|
__mod_neg_num:
|
|
;; Negate the numerator (which is in MDAL)
|
|
;; We know that the denumerator is positive.
|
|
_Negate MDAL MDAL
|
|
|
|
__mod_then_convert:
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
_Negate MDCL r8
|
|
ret
|
|
|
|
END_FUNC ___modhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___udivhi3
|
|
;; r8 = 4[sp] / 6[sp] (unsigned division)
|
|
|
|
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
|
|
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
|
|
|
|
movw ax, [sp+4] ; Load the divisor
|
|
movw MDAL, ax
|
|
movw ax, [sp+6] ; Load the dividend
|
|
movw MDBL, ax
|
|
clrw ax
|
|
movw MDAH, ax
|
|
movw MDBH, ax
|
|
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
movw ax, !MDAL ; Read the remainder
|
|
movw r8, ax
|
|
ret
|
|
|
|
END_FUNC ___udivhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___umodhi3
|
|
;; r8 = 4[sp] % 6[sp] (unsigned modulus)
|
|
|
|
mov a, #0xC0 ; Set DIVMODE=1 and MACMODE=1
|
|
mov !MDUC, a ; This preps the peripheral for division without interrupt generation
|
|
|
|
movw ax, [sp+4] ; Load the divisor
|
|
movw MDAL, ax
|
|
movw ax, [sp+6] ; Load the dividend
|
|
movw MDBL, ax
|
|
clrw ax
|
|
movw MDAH, ax
|
|
movw MDBH, ax
|
|
|
|
mov a, #0xC1 ; Set the DIVST bit in MDUC
|
|
mov !MDUC, a ; This starts the division op
|
|
|
|
1: mov a, !MDUC ; Wait 16 clocks or until DIVST is clear
|
|
bt a.0, $1b
|
|
|
|
movw ax, !MDCL ; Read the remainder
|
|
movw r8, ax
|
|
ret
|
|
|
|
END_FUNC ___umodhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
#elif defined __RL78_MUL_NONE__
|
|
|
|
.macro MAKE_GENERIC which,need_result
|
|
|
|
.if \need_result
|
|
quot = r8
|
|
num = r10
|
|
den = r12
|
|
bit = r14
|
|
.else
|
|
num = r8
|
|
quot = r10
|
|
den = r12
|
|
bit = r14
|
|
.endif
|
|
|
|
quotB0 = quot
|
|
quotB1 = quot+1
|
|
|
|
numB0 = num
|
|
numB1 = num+1
|
|
|
|
denB0 = den
|
|
denB1 = den+1
|
|
|
|
bitB0 = bit
|
|
bitB1 = bit+1
|
|
|
|
#define bit bc
|
|
#define bitB0 c
|
|
#define bitB1 b
|
|
|
|
START_FUNC __generic_hidivmod\which
|
|
|
|
num_lt_den\which:
|
|
.if \need_result
|
|
movw r8, #0
|
|
.else
|
|
movw ax, [sp+8]
|
|
movw r8, ax
|
|
.endif
|
|
ret
|
|
|
|
;; These routines leave DE alone - the signed functions use DE
|
|
;; to store sign information that must remain intact
|
|
|
|
.if \need_result
|
|
.global __generic_hidiv
|
|
__generic_hidiv:
|
|
|
|
.else
|
|
|
|
.global __generic_himod
|
|
__generic_himod:
|
|
|
|
.endif
|
|
|
|
;; (quot,rem) = 8[sp] /% 10[sp]
|
|
|
|
movw hl, sp
|
|
movw ax, [hl+10] ; denH
|
|
cmpw ax, [hl+8] ; numH
|
|
bh $num_lt_den\which
|
|
|
|
;; (quot,rem) = 16[sp] /% 20[sp]
|
|
|
|
;; copy numerator
|
|
movw ax, [hl+8]
|
|
movw num, ax
|
|
|
|
;; copy denomonator
|
|
movw ax, [hl+10]
|
|
movw den, ax
|
|
|
|
movw ax, den
|
|
cmpw ax, #0
|
|
bnz $den_not_zero\which
|
|
.if \need_result
|
|
movw quot, #0
|
|
.else
|
|
movw num, #0
|
|
.endif
|
|
ret
|
|
|
|
den_not_zero\which:
|
|
.if \need_result
|
|
;; zero out quot
|
|
movw quot, #0
|
|
.endif
|
|
|
|
;; initialize bit to 1
|
|
movw bit, #1
|
|
|
|
; while (den < num && !(den & (1L << BITS_MINUS_1)))
|
|
|
|
shift_den_bit\which:
|
|
movw ax, den
|
|
mov1 cy,a.7
|
|
bc $enter_main_loop\which
|
|
cmpw ax, num
|
|
bh $enter_main_loop\which
|
|
|
|
;; den <<= 1
|
|
; movw ax, den ; already has it from the cmpw above
|
|
shlw ax, 1
|
|
movw den, ax
|
|
|
|
;; bit <<= 1
|
|
.if \need_result
|
|
#ifdef bit
|
|
shlw bit, 1
|
|
#else
|
|
movw ax, bit
|
|
shlw ax, 1
|
|
movw bit, ax
|
|
#endif
|
|
.else
|
|
;; if we don't need to compute the quotent, we don't need an
|
|
;; actual bit *mask*, we just need to keep track of which bit
|
|
inc bitB0
|
|
.endif
|
|
|
|
br $shift_den_bit\which
|
|
|
|
main_loop\which:
|
|
|
|
;; if (num >= den) (cmp den > num)
|
|
movw ax, den
|
|
cmpw ax, num
|
|
bh $next_loop\which
|
|
|
|
;; num -= den
|
|
movw ax, num
|
|
subw ax, den
|
|
movw num, ax
|
|
|
|
.if \need_result
|
|
;; res |= bit
|
|
mov a, quotB0
|
|
or a, bitB0
|
|
mov quotB0, a
|
|
mov a, quotB1
|
|
or a, bitB1
|
|
mov quotB1, a
|
|
.endif
|
|
|
|
next_loop\which:
|
|
|
|
;; den >>= 1
|
|
movw ax, den
|
|
shrw ax, 1
|
|
movw den, ax
|
|
|
|
.if \need_result
|
|
;; bit >>= 1
|
|
movw ax, bit
|
|
shrw ax, 1
|
|
movw bit, ax
|
|
.else
|
|
dec bitB0
|
|
.endif
|
|
|
|
enter_main_loop\which:
|
|
.if \need_result
|
|
movw ax, bit
|
|
cmpw ax, #0
|
|
.else
|
|
cmp0 bitB0
|
|
.endif
|
|
bnz $main_loop\which
|
|
|
|
main_loop_done\which:
|
|
ret
|
|
END_FUNC __generic_hidivmod\which
|
|
.endm
|
|
;----------------------------------------------------------------------
|
|
|
|
MAKE_GENERIC _d 1
|
|
MAKE_GENERIC _m 0
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___udivhi3
|
|
;; r8 = 4[sp] / 6[sp]
|
|
call $!__generic_hidiv
|
|
ret
|
|
END_FUNC ___udivhi3
|
|
|
|
|
|
START_FUNC ___umodhi3
|
|
;; r8 = 4[sp] % 6[sp]
|
|
call $!__generic_himod
|
|
ret
|
|
END_FUNC ___umodhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
.macro NEG_AX
|
|
movw hl, ax
|
|
movw ax, #0
|
|
subw ax, [hl]
|
|
movw [hl], ax
|
|
.endm
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
START_FUNC ___divhi3
|
|
;; r8 = 4[sp] / 6[sp]
|
|
movw de, #0
|
|
mov a, [sp+5]
|
|
mov1 cy, a.7
|
|
bc $div_signed_num
|
|
mov a, [sp+7]
|
|
mov1 cy, a.7
|
|
bc $div_signed_den
|
|
call $!__generic_hidiv
|
|
ret
|
|
|
|
div_signed_num:
|
|
;; neg [sp+4]
|
|
movw ax, sp
|
|
addw ax, #4
|
|
NEG_AX
|
|
mov d, #1
|
|
mov a, [sp+7]
|
|
mov1 cy, a.7
|
|
bnc $div_unsigned_den
|
|
div_signed_den:
|
|
;; neg [sp+6]
|
|
movw ax, sp
|
|
addw ax, #6
|
|
NEG_AX
|
|
mov e, #1
|
|
div_unsigned_den:
|
|
call $!__generic_hidiv
|
|
|
|
mov a, d
|
|
cmp0 a
|
|
bz $div_skip_restore_num
|
|
;; We have to restore the numerator [sp+4]
|
|
movw ax, sp
|
|
addw ax, #4
|
|
NEG_AX
|
|
mov a, d
|
|
div_skip_restore_num:
|
|
xor a, e
|
|
bz $div_no_neg
|
|
movw ax, #r8
|
|
NEG_AX
|
|
div_no_neg:
|
|
mov a, e
|
|
cmp0 a
|
|
bz $div_skip_restore_den
|
|
movw ax, sp
|
|
addw ax, #6
|
|
NEG_AX
|
|
div_skip_restore_den:
|
|
ret
|
|
END_FUNC ___divhi3
|
|
|
|
|
|
START_FUNC ___modhi3
|
|
;; r8 = 4[sp] % 6[sp]
|
|
movw de, #0
|
|
mov a, [sp+5]
|
|
mov1 cy, a.7
|
|
bc $mod_signed_num
|
|
mov a, [sp+7]
|
|
mov1 cy, a.7
|
|
bc $mod_signed_den
|
|
call $!__generic_himod
|
|
ret
|
|
|
|
mod_signed_num:
|
|
;; neg [sp+4]
|
|
movw ax, sp
|
|
addw ax, #4
|
|
NEG_AX
|
|
mov d, #1
|
|
mov a, [sp+7]
|
|
mov1 cy, a.7
|
|
bnc $mod_unsigned_den
|
|
mod_signed_den:
|
|
;; neg [sp+6]
|
|
movw ax, sp
|
|
addw ax, #6
|
|
NEG_AX
|
|
mod_unsigned_den:
|
|
call $!__generic_himod
|
|
|
|
mov a, d
|
|
cmp0 a
|
|
bz $mod_no_neg
|
|
movw ax, #r8
|
|
NEG_AX
|
|
;; Also restore numerator
|
|
movw ax, sp
|
|
addw ax, #4
|
|
NEG_AX
|
|
mod_no_neg:
|
|
mov a, e
|
|
cmp0 a
|
|
bz $mod_skip_restore_den
|
|
movw ax, sp
|
|
addw ax, #6
|
|
NEG_AX
|
|
mod_skip_restore_den:
|
|
ret
|
|
END_FUNC ___modhi3
|
|
|
|
;----------------------------------------------------------------------
|
|
|
|
#else
|
|
|
|
#error "Unknown RL78 hardware multiply/divide support"
|
|
|
|
#endif
|