22b955cca5
Reviewed-on: https://go-review.googlesource.com/25150 From-SVN: r238662
282 lines
7.1 KiB
Go
282 lines
7.1 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
|
|
// defined in FIPS 186-3.
|
|
//
|
|
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by
|
|
// ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by
|
|
// a result of Coron; the AES-CTR stream is IRO under standard assumptions.
|
|
package ecdsa
|
|
|
|
// References:
|
|
// [NSA]: Suite B implementer's guide to FIPS 186-3,
|
|
// http://www.nsa.gov/ia/_files/ecdsa.pdf
|
|
// [SECG]: SECG, SEC1
|
|
// http://www.secg.org/sec1-v2.pdf
|
|
|
|
import (
|
|
"crypto"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/elliptic"
|
|
"crypto/sha512"
|
|
"encoding/asn1"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
)
|
|
|
|
// A invertible implements fast inverse mod Curve.Params().N
|
|
type invertible interface {
|
|
// Inverse returns the inverse of k in GF(P)
|
|
Inverse(k *big.Int) *big.Int
|
|
}
|
|
|
|
// combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point)
|
|
type combinedMult interface {
|
|
CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int)
|
|
}
|
|
|
|
const (
|
|
aesIV = "IV for ECDSA CTR"
|
|
)
|
|
|
|
// PublicKey represents an ECDSA public key.
|
|
type PublicKey struct {
|
|
elliptic.Curve
|
|
X, Y *big.Int
|
|
}
|
|
|
|
// PrivateKey represents a ECDSA private key.
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
D *big.Int
|
|
}
|
|
|
|
type ecdsaSignature struct {
|
|
R, S *big.Int
|
|
}
|
|
|
|
// Public returns the public key corresponding to priv.
|
|
func (priv *PrivateKey) Public() crypto.PublicKey {
|
|
return &priv.PublicKey
|
|
}
|
|
|
|
// Sign signs msg with priv, reading randomness from rand. This method is
|
|
// intended to support keys where the private part is kept in, for example, a
|
|
// hardware module. Common uses should use the Sign function in this package
|
|
// directly.
|
|
func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) {
|
|
r, s, err := Sign(rand, priv, msg)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return asn1.Marshal(ecdsaSignature{r, s})
|
|
}
|
|
|
|
var one = new(big.Int).SetInt64(1)
|
|
|
|
// randFieldElement returns a random element of the field underlying the given
|
|
// curve using the procedure given in [NSA] A.2.1.
|
|
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
|
|
params := c.Params()
|
|
b := make([]byte, params.BitSize/8+8)
|
|
_, err = io.ReadFull(rand, b)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
k = new(big.Int).SetBytes(b)
|
|
n := new(big.Int).Sub(params.N, one)
|
|
k.Mod(k, n)
|
|
k.Add(k, one)
|
|
return
|
|
}
|
|
|
|
// GenerateKey generates a public and private key pair.
|
|
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
|
|
k, err := randFieldElement(c, rand)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
priv := new(PrivateKey)
|
|
priv.PublicKey.Curve = c
|
|
priv.D = k
|
|
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
|
|
return priv, nil
|
|
}
|
|
|
|
// hashToInt converts a hash value to an integer. There is some disagreement
|
|
// about how this is done. [NSA] suggests that this is done in the obvious
|
|
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
|
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
|
// OpenSSL right shifts excess bits from the number if the hash is too large
|
|
// and we mirror that too.
|
|
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
|
orderBits := c.Params().N.BitLen()
|
|
orderBytes := (orderBits + 7) / 8
|
|
if len(hash) > orderBytes {
|
|
hash = hash[:orderBytes]
|
|
}
|
|
|
|
ret := new(big.Int).SetBytes(hash)
|
|
excess := len(hash)*8 - orderBits
|
|
if excess > 0 {
|
|
ret.Rsh(ret, uint(excess))
|
|
}
|
|
return ret
|
|
}
|
|
|
|
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method.
|
|
// This has better constant-time properties than Euclid's method (implemented
|
|
// in math/big.Int.ModInverse) although math/big itself isn't strictly
|
|
// constant-time so it's not perfect.
|
|
func fermatInverse(k, N *big.Int) *big.Int {
|
|
two := big.NewInt(2)
|
|
nMinus2 := new(big.Int).Sub(N, two)
|
|
return new(big.Int).Exp(k, nMinus2, N)
|
|
}
|
|
|
|
var errZeroParam = errors.New("zero parameter")
|
|
|
|
// Sign signs a hash (which should be the result of hashing a larger message)
|
|
// using the private key, priv. If the hash is longer than the bit-length of the
|
|
// private key's curve order, the hash will be truncated to that length. It
|
|
// returns the signature as a pair of integers. The security of the private key
|
|
// depends on the entropy of rand.
|
|
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
|
|
// Get max(log2(q) / 2, 256) bits of entropy from rand.
|
|
entropylen := (priv.Curve.Params().BitSize + 7) / 16
|
|
if entropylen > 32 {
|
|
entropylen = 32
|
|
}
|
|
entropy := make([]byte, entropylen)
|
|
_, err = io.ReadFull(rand, entropy)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
// Initialize an SHA-512 hash context; digest ...
|
|
md := sha512.New()
|
|
md.Write(priv.D.Bytes()) // the private key,
|
|
md.Write(entropy) // the entropy,
|
|
md.Write(hash) // and the input hash;
|
|
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
|
|
// which is an indifferentiable MAC.
|
|
|
|
// Create an AES-CTR instance to use as a CSPRNG.
|
|
block, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
// Create a CSPRNG that xors a stream of zeros with
|
|
// the output of the AES-CTR instance.
|
|
csprng := cipher.StreamReader{
|
|
R: zeroReader,
|
|
S: cipher.NewCTR(block, []byte(aesIV)),
|
|
}
|
|
|
|
// See [NSA] 3.4.1
|
|
c := priv.PublicKey.Curve
|
|
N := c.Params().N
|
|
if N.Sign() == 0 {
|
|
return nil, nil, errZeroParam
|
|
}
|
|
var k, kInv *big.Int
|
|
for {
|
|
for {
|
|
k, err = randFieldElement(c, csprng)
|
|
if err != nil {
|
|
r = nil
|
|
return
|
|
}
|
|
|
|
if in, ok := priv.Curve.(invertible); ok {
|
|
kInv = in.Inverse(k)
|
|
} else {
|
|
kInv = fermatInverse(k, N) // N != 0
|
|
}
|
|
|
|
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
|
|
r.Mod(r, N)
|
|
if r.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
e := hashToInt(hash, c)
|
|
s = new(big.Int).Mul(priv.D, r)
|
|
s.Add(s, e)
|
|
s.Mul(s, kInv)
|
|
s.Mod(s, N) // N != 0
|
|
if s.Sign() != 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Verify verifies the signature in r, s of hash using the public key, pub. Its
|
|
// return value records whether the signature is valid.
|
|
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
|
|
// See [NSA] 3.4.2
|
|
c := pub.Curve
|
|
N := c.Params().N
|
|
|
|
if r.Sign() <= 0 || s.Sign() <= 0 {
|
|
return false
|
|
}
|
|
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
|
|
return false
|
|
}
|
|
e := hashToInt(hash, c)
|
|
|
|
var w *big.Int
|
|
if in, ok := c.(invertible); ok {
|
|
w = in.Inverse(s)
|
|
} else {
|
|
w = new(big.Int).ModInverse(s, N)
|
|
}
|
|
|
|
u1 := e.Mul(e, w)
|
|
u1.Mod(u1, N)
|
|
u2 := w.Mul(r, w)
|
|
u2.Mod(u2, N)
|
|
|
|
// Check if implements S1*g + S2*p
|
|
var x, y *big.Int
|
|
if opt, ok := c.(combinedMult); ok {
|
|
x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
|
|
} else {
|
|
x1, y1 := c.ScalarBaseMult(u1.Bytes())
|
|
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
|
|
x, y = c.Add(x1, y1, x2, y2)
|
|
}
|
|
|
|
if x.Sign() == 0 && y.Sign() == 0 {
|
|
return false
|
|
}
|
|
x.Mod(x, N)
|
|
return x.Cmp(r) == 0
|
|
}
|
|
|
|
type zr struct {
|
|
io.Reader
|
|
}
|
|
|
|
// Read replaces the contents of dst with zeros.
|
|
func (z *zr) Read(dst []byte) (n int, err error) {
|
|
for i := range dst {
|
|
dst[i] = 0
|
|
}
|
|
return len(dst), nil
|
|
}
|
|
|
|
var zeroReader = &zr{}
|