gcc/libgo/go/compress/flate/huffman_code.go
Ian Lance Taylor adb0401dac Update Go library to r60.
From-SVN: r178910
2011-09-16 15:47:21 +00:00

379 lines
10 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
import (
"math"
"sort"
)
type huffmanEncoder struct {
codeBits []uint8
code []uint16
}
type literalNode struct {
literal uint16
freq int32
}
type chain struct {
// The sum of the leaves in this tree
freq int32
// The number of literals to the left of this item at this level
leafCount int32
// The right child of this chain in the previous level.
up *chain
}
type levelInfo struct {
// Our level. for better printing
level int32
// The most recent chain generated for this level
lastChain *chain
// The frequency of the next character to add to this level
nextCharFreq int32
// The frequency of the next pair (from level below) to add to this level.
// Only valid if the "needed" value of the next lower level is 0.
nextPairFreq int32
// The number of chains remaining to generate for this level before moving
// up to the next level
needed int32
// The levelInfo for level+1
up *levelInfo
// The levelInfo for level-1
down *levelInfo
}
func maxNode() literalNode { return literalNode{math.MaxUint16, math.MaxInt32} }
func newHuffmanEncoder(size int) *huffmanEncoder {
return &huffmanEncoder{make([]uint8, size), make([]uint16, size)}
}
// Generates a HuffmanCode corresponding to the fixed literal table
func generateFixedLiteralEncoding() *huffmanEncoder {
h := newHuffmanEncoder(maxLit)
codeBits := h.codeBits
code := h.code
var ch uint16
for ch = 0; ch < maxLit; ch++ {
var bits uint16
var size uint8
switch {
case ch < 144:
// size 8, 000110000 .. 10111111
bits = ch + 48
size = 8
break
case ch < 256:
// size 9, 110010000 .. 111111111
bits = ch + 400 - 144
size = 9
break
case ch < 280:
// size 7, 0000000 .. 0010111
bits = ch - 256
size = 7
break
default:
// size 8, 11000000 .. 11000111
bits = ch + 192 - 280
size = 8
}
codeBits[ch] = size
code[ch] = reverseBits(bits, size)
}
return h
}
func generateFixedOffsetEncoding() *huffmanEncoder {
h := newHuffmanEncoder(30)
codeBits := h.codeBits
code := h.code
for ch := uint16(0); ch < 30; ch++ {
codeBits[ch] = 5
code[ch] = reverseBits(ch, 5)
}
return h
}
var fixedLiteralEncoding *huffmanEncoder = generateFixedLiteralEncoding()
var fixedOffsetEncoding *huffmanEncoder = generateFixedOffsetEncoding()
func (h *huffmanEncoder) bitLength(freq []int32) int64 {
var total int64
for i, f := range freq {
if f != 0 {
total += int64(f) * int64(h.codeBits[i])
}
}
return total
}
// Generate elements in the chain using an iterative algorithm.
func (h *huffmanEncoder) generateChains(top *levelInfo, list []literalNode) {
n := len(list)
list = list[0 : n+1]
list[n] = maxNode()
l := top
for {
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To m sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.lastChain = nil
l.needed = 0
l = l.up
l.nextPairFreq = math.MaxInt32
continue
}
prevFreq := l.lastChain.freq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := l.lastChain.leafCount + 1
l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
l.nextCharFreq = list[n].freq
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
l.down.needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
up := l.up
if up == nil {
// All done!
return
}
up.nextPairFreq = prevFreq + l.lastChain.freq
l = up
} else {
// If we stole from below, move down temporarily to replenish it.
for l.down.needed > 0 {
l = l.down
}
}
}
}
// Return the number of literals assigned to each bit size in the Huffman encoding
//
// This method is only called when list.length >= 3
// The cases of 0, 1, and 2 literals are handled by special case code.
//
// list An array of the literals with non-zero frequencies
// and their associated frequencies. The array is in order of increasing
// frequency, and has as its last element a special element with frequency
// MaxInt32
// maxBits The maximum number of bits that should be used to encode any literal.
// return An integer array in which array[i] indicates the number of literals
// that should be encoded in i bits.
func (h *huffmanEncoder) bitCounts(list []literalNode, maxBits int32) []int32 {
n := int32(len(list))
list = list[0 : n+1]
list[n] = maxNode()
// The tree can't have greater depth than n - 1, no matter what. This
// saves a little bit of work in some small cases
maxBits = minInt32(maxBits, n-1)
// Create information about each of the levels.
// A bogus "Level 0" whose sole purpose is so that
// level1.prev.needed==0. This makes level1.nextPairFreq
// be a legitimate value that never gets chosen.
top := &levelInfo{needed: 0}
chain2 := &chain{list[1].freq, 2, new(chain)}
for level := int32(1); level <= maxBits; level++ {
// For every level, the first two items are the first two characters.
// We initialize the levels as if we had already figured this out.
top = &levelInfo{
level: level,
lastChain: chain2,
nextCharFreq: list[2].freq,
nextPairFreq: list[0].freq + list[1].freq,
down: top,
}
top.down.up = top
if level == 1 {
top.nextPairFreq = math.MaxInt32
}
}
// We need a total of 2*n - 2 items at top level and have already generated 2.
top.needed = 2*n - 4
l := top
for {
if l.nextPairFreq == math.MaxInt32 && l.nextCharFreq == math.MaxInt32 {
// We've run out of both leafs and pairs.
// End all calculations for this level.
// To m sure we never come back to this level or any lower level,
// set nextPairFreq impossibly large.
l.lastChain = nil
l.needed = 0
l = l.up
l.nextPairFreq = math.MaxInt32
continue
}
prevFreq := l.lastChain.freq
if l.nextCharFreq < l.nextPairFreq {
// The next item on this row is a leaf node.
n := l.lastChain.leafCount + 1
l.lastChain = &chain{l.nextCharFreq, n, l.lastChain.up}
l.nextCharFreq = list[n].freq
} else {
// The next item on this row is a pair from the previous row.
// nextPairFreq isn't valid until we generate two
// more values in the level below
l.lastChain = &chain{l.nextPairFreq, l.lastChain.leafCount, l.down.lastChain}
l.down.needed = 2
}
if l.needed--; l.needed == 0 {
// We've done everything we need to do for this level.
// Continue calculating one level up. Fill in nextPairFreq
// of that level with the sum of the two nodes we've just calculated on
// this level.
up := l.up
if up == nil {
// All done!
break
}
up.nextPairFreq = prevFreq + l.lastChain.freq
l = up
} else {
// If we stole from below, move down temporarily to replenish it.
for l.down.needed > 0 {
l = l.down
}
}
}
// Somethings is wrong if at the end, the top level is null or hasn't used
// all of the leaves.
if top.lastChain.leafCount != n {
panic("top.lastChain.leafCount != n")
}
bitCount := make([]int32, maxBits+1)
bits := 1
for chain := top.lastChain; chain.up != nil; chain = chain.up {
// chain.leafCount gives the number of literals requiring at least "bits"
// bits to encode.
bitCount[bits] = chain.leafCount - chain.up.leafCount
bits++
}
return bitCount
}
// Look at the leaves and assign them a bit count and an encoding as specified
// in RFC 1951 3.2.2
func (h *huffmanEncoder) assignEncodingAndSize(bitCount []int32, list []literalNode) {
code := uint16(0)
for n, bits := range bitCount {
code <<= 1
if n == 0 || bits == 0 {
continue
}
// The literals list[len(list)-bits] .. list[len(list)-bits]
// are encoded using "bits" bits, and get the values
// code, code + 1, .... The code values are
// assigned in literal order (not frequency order).
chunk := list[len(list)-int(bits):]
sortByLiteral(chunk)
for _, node := range chunk {
h.codeBits[node.literal] = uint8(n)
h.code[node.literal] = reverseBits(code, uint8(n))
code++
}
list = list[0 : len(list)-int(bits)]
}
}
// Update this Huffman Code object to be the minimum code for the specified frequency count.
//
// freq An array of frequencies, in which frequency[i] gives the frequency of literal i.
// maxBits The maximum number of bits to use for any literal.
func (h *huffmanEncoder) generate(freq []int32, maxBits int32) {
list := make([]literalNode, len(freq)+1)
// Number of non-zero literals
count := 0
// Set list to be the set of all non-zero literals and their frequencies
for i, f := range freq {
if f != 0 {
list[count] = literalNode{uint16(i), f}
count++
} else {
h.codeBits[i] = 0
}
}
// If freq[] is shorter than codeBits[], fill rest of codeBits[] with zeros
h.codeBits = h.codeBits[0:len(freq)]
list = list[0:count]
if count <= 2 {
// Handle the small cases here, because they are awkward for the general case code. With
// two or fewer literals, everything has bit length 1.
for i, node := range list {
// "list" is in order of increasing literal value.
h.codeBits[node.literal] = 1
h.code[node.literal] = uint16(i)
}
return
}
sortByFreq(list)
// Get the number of literals for each bit count
bitCount := h.bitCounts(list, maxBits)
// And do the assignment
h.assignEncodingAndSize(bitCount, list)
}
type literalNodeSorter struct {
a []literalNode
less func(i, j int) bool
}
func (s literalNodeSorter) Len() int { return len(s.a) }
func (s literalNodeSorter) Less(i, j int) bool {
return s.less(i, j)
}
func (s literalNodeSorter) Swap(i, j int) { s.a[i], s.a[j] = s.a[j], s.a[i] }
func sortByFreq(a []literalNode) {
s := &literalNodeSorter{a, func(i, j int) bool {
if a[i].freq == a[j].freq {
return a[i].literal < a[j].literal
}
return a[i].freq < a[j].freq
}}
sort.Sort(s)
}
func sortByLiteral(a []literalNode) {
s := &literalNodeSorter{a, func(i, j int) bool { return a[i].literal < a[j].literal }}
sort.Sort(s)
}